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Abstract 

The purpose of this paper is to present some fixed point theorem in dislocated quasi metric space for expansive 

type mappings. 
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Introduction and Preliminaries: 

It is well known that Banach Contraction mappings principle is one of the pivotal results of analysis. 

Generalizations of this principle have been obtained in several directions .Dass and Gupta [1] generalized 

Banach’s Contraction principle in metric space. Also Rhoades [2] established a partial ordering for various 

definitions of contractive mappings. In 2005, Zeyada Salunke [4] proved some results on fixed point in 

dislocated quasimetric spaces. In 2005, Zeyada et al.[3] established a fixed point theorem in dislocated 

quasimetric spaces. In 2008, Aage and Salunke [4] proved some results on fixed point in dislocated quasimetric 

spaces. Recently, Isufati [5], proved fixed point theorem for contractive type condition with rational expression 

in dislocated quasimetric spaces. The following definitions will be needed in the sequel. 

Definition 1.1(See [3]). Let X be a nonempty set, and let [ )∞→× ,0: XXd  be a function, called a distance 

function. One needs the following conditions: 

(M1) ( ) 0, =xxd , 

(M2) ( ) ( ) 0,, == xydyxd , then yx =  

(M3) ( ) ( )xydyxd ,, = , 

(M4) ( ) ( ) ( )yzdzxdyxd ,,, +≤ , 

(M4)
'
 ( ) ( ) ( ){ }yzdzxdyxd ,,,max, ≤ , for all Xzyx ∈,, . 

If d satisfies conditions (M1)-(M4), then it is called a metric on X . If d satisfies conditions (M1), (M2), and 

(M4), it is called a quasimetric on X . If it satisfies conditions (M2)-(M4) ((M2) and (M4)), it is called a 

dislocated metric (or simply d-metric) (a dislocated quasimetric (or simply dq-metric)) on X , respectively. If a 

metric d  satisfies the strong triangle inequality (M)
'
, then it is called an ultrametric. 

Definition 1.2 (See [3]). A sequence { }
Nnnx ∈  in dq-metric space (dislocated quasimetric space) ( )dX ,  is 

called a Cauchy sequence if , for given 0>ε , there exists Nn ∈0  such that ( ) ε<nm xxd ,  or 

( ) ε<mn xxd ,  , that is , ( ) ( ){ } ε<mnnm xxdxxd ,,,min  for all 0, nnm ≥ . 

Definition 1.3 (See [3]). A sequence { }
Nnnx ∈ in dq-metric space [d-metric space] is said to be d-converge to 

Xx∈ provided that  

                                ( ) ( ) 0,lim,lim ==
∞→∞→

n
n

n
n

xxdxxd                                                                  (1.1) 

In this case, x is called a dq-limit [d-limit] of { }nx  and we write xxn → . 

Definition 1.4 (See [3]). A dq-metric space ( )dX ,  is called complete if every Cauchy sequence in it is a dq-

convergent. 

Main Results  

In this paper, we prove some fixed point theorem for continuous mapping satisfying expansion condition in 

complete dq-metric space. 

Theorem 2.1: Let ( )dX ,  be a complete dislocated metric space and T  a continuous mappings satisfying the 

following condition: 
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( ) ( ) ( )
( ) ( )

( ) ( )[ ]
( )

( )yxd
yxd

TyydTxxd

TxydTyxd

TxydTyxd
TyTxd ,

,1

,1,

,.,1

,,
, γβα +

+
+

≥








+
+

+                                       (2.1) 

For all Xyx ∈, , yx ≠ ,where 0,, ≥γβα  are real constants and αγαγβ +>+>+ 1 , 21 .Then T  

has a fixed point in X . 

Proof: Choose Xx ∈0 be arbitrary, to define the iterative sequence { }
Nnnx ∈  as follows and 

......3,2,1for  1 == − nxTx nn  Then, using (2.1) we obtain  
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nn
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nnnn
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nn xxd
xxd

xxdxxd

xxdxxd

xxdxxd
xxd γβα  

( ) ( ) ( ) ( )21121 ,,,, +++++ +≥+⇒ nnnnnnnn xxdxxdxxdxxd γβα  

( ) ( ) ( ) ( ) ( )2112111 ,,,,, +++++++ +≥++⇒ nnnnnnnnnn xxdxxdxxdxxdxxd γβαα  

( ) ( ) ( ) ( )211 ,,1 +++ −≥−+⇒ nnnn xxdxxd αγβα  

The last inequality gives  

   

( ) ( )121 ,
1

, +++ 








−
−+

≤ nnnn xxdxxd
αγ
βα

                                                                               

( )1, +≤ nn xxkd
                                                                                                                     (2.2) 

 

Where 1
)(

)1(
<

−
−+

=
αγ
βα

k . Hence by induction, we obtain  

( ) ( )10

1

21 ,, xxdkxxd n

nn

+
++ ≤                                                                                             

Note that, for Nnm ∈,  such that nm >  we have  

( ) ( ) ( ) ( )nnmmmmnm xxdxxdxxdxxd ,.................,,, 1211 +−−− +++≤  

                [ ] ( )10

21 ,...................................... xxdkkk nmm +++≤ −−
 

                 ( ) ( )10

12 ,.......................1 xxdkkkk nmn −−++++≤  

                 ( )10

0

, xxdkk
r

rn∑
∞

=

≤                                                                                         

                  = ( )10 ,
1

xxd
k

k n

−                                                                                                                     (2.3)

 

Since 10 <≤ k , then as ∞→n , ( ) 01
1 →− −

kk n . Hence, ( ) ∞→→ nmxxd nm ,  as  0, .This forces 

that { }
Nnnx ∈  is a Cauchy sequence in X . But X is a complete dislocated metric space; hence, { }

Nnnx ∈  is d-

converges. Call the d-limit Xx ∈*
.Then, ∞→→ nxxn   as *

.By continuity of T we have,  

                         ( ) *

1

* limlimlim xxdTxdxdTTx n
n

n
n

n
n

=−=−=−= −
∞→∞→∞→

                                     (2.4) 

That is,
** xTx = ; thus , T  has a fixed point in X . 

Uniqueness  

Let 
*y  be another fixed point of T in X , then 

** yTy = and
** xTx = .now , 
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This implies that  

( ) ( ) ( )
( ) ( )

( ) ( )[ ]
( ) ( )**

**

****

****

****
** ,

,1

,1,

,.,1

,,
, yxd

yxd

yydxxd

xydyxd

xydyxd
yxd γβα +

+
+

≥








+
+

+  

( ) ( )
( )[ ]

( )**

2**

**
** ,

,1

,2
, yxd

yxd

yxd
yxd γ

α
≥

+
+⇒  

( ) ( )[ ] ( ) ( ) ( )[ ]3******3**** ,,,2,, yxdyxdyxdyxdyxd γγα +≥++⇒  

( ) ( ) ( ) ( )[ ]3**** ,1,21 yxdyxd −≥−+⇒ γγα  

( ) ( )**
3

1

** ,
1

21
, yxdyxd 








−

−+
≤

γ
γα
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This is true only when ( ) 0, ** =xxd .Similarly ( ) 0, ** =xyd  .Hence ( ) ( ) 0,, **** == xydyxd  and 

so 
** yx = .Hence, T has a unique fixed point in X . 

Theorem 2.2: Let ( )dX ,  be a complete dislocated metric space and T a sujective mapping satisfying the 

condition (2.1) for all y ,, ≠∈ xXyx , where 0,, ≥γβα  are real constants and

αγαγβ +>+>+ 1 , 21 . Then, T  has a fixed point in X . 

Proof : Choose Xx ∈0 to be arbitrary , and define the iterative sequence { }
Nnnx ∈  as follows : 

1−= nn xTx for ,......3,2,1=n  Then , using (2.1) , we obtain , sequence { }
Nnnx ∈  is a Cauchy sequence in 

X .But X is a complete dislocated metric space ; hence { }
Nnnx ∈  is a d-converges. Call the d-limit 

Xx ∈*
 . Then, 

*xxn →  as ∞→n . 

Existence of fixed point  

Since T  is a surjective map, so there exists a point y in X  , such that Tyx = .Consider  

( ) ( )TyTxdxxd nn ,, 1+=  
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Taking ∞→n , we get  

( ) ( ) ( )
( ) ( )

( ) ( )[ ]
( )

( )yxd
yxd

xydxxd

xydxxd

xydxxd
xxd ,

,1

,1,

,.,1

,,
, γβα +

+
+

+








+
+

−≥  

( ) ( )yxdyxd ,,0 γα +−≥
                                                                                                                        (2.8)

 

( ) ( ) 0, ≤−⇒ yxdαγ  

( ) αγ >=⇒   as  0, yxd  

Similarly, ( ) 0, =xyd .Hence ( ) ( ) 0,, == xydyxd  

 This implies yx =  and so xTx = , that is x is fixed point ofT . 

Uniqueness  

       Let 
*y  be another fixed point of T in X , then 

** yTy =  and
** xTx = . Now,  
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This implies that  
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This is true only when ( ) 0, ** =yxd . Similarly, ( ) 0, ** =xyd . Hence ( ) ( ) 0,, **** == xydyxd  and 

so 
** yx =  . Hence T has a unique fixed point in X . 

The proof is completed. 
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