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Abstract 

In this expository paper, a comprehensive study of multiset orderings, nested multiset orderings and multiset 

path orderings is presented. In particular, it is illustrated how multiset path orderings admit the use of relatively 

simple and intuitive termination functions that lead to termination of  a class of term rewriting systems. 

1.  Introduction  

Termination is one of the most important properties of term rewriting systems (trss, for short) which, in general, 

is known to be undecidable (Huet and Lankford, 1978; Dershowitz, 1987). In the recent years, some powerful 

methods have been developed to prove termination of a large class of  trss. Broadly, these methods can be 

divided into direct and transformational methods (Zankl,  2006). The direct methods are further classified into 

syntactical and semantical fragments. The recursive path orders (rpos), such as lexicographic path orders (lpos) 

and multiset path orders (mpos), are purely syntactical; while Polynomial orders and Knuth-Bendix order (kbo) 

are semantical. In transformational method, termination proof of a given trs is accomplished by reducing it to an 

appropriate equivalent form for which proving termination is relatively easier. Some examples of this class are 

the dependency pair method, semantic labeling and freezing (Terese, 2003; Singh et al. 2012a).                                                                                                                     

More often than not, designing an appropriate reduction order and termination function for trss is found quite an 

involved problem. The main objective of this paper is to demonstrate how the application of  mpos permits the 

use of relatively simple and intuitive termination functions that help achieving termination of a class of  trss. 

2. Preliminaries 

In what follows, abstracting from various expositions on trss, specially from (Ohlebusch, 2002; Dershowitz, 

1982), we describe some basic concepts in order to make the paper self-contained.   

Let   or    denote a signature (a finite set of function symbols with natural numbers as their arities) and   a 

countably infinite set of variables with        .  A constant is a function symbol having no arguments. A 

term is formed from function symbols, constants and variables. A term without variables is called a ground or 

closed term and, the set of ground terms is denoted by      . Also, let         denote the set of all terms built 

over   and   . It is assumed that   contains at least one constant. The set of variables occurring in a term   is 

denoted by        . Terms are usually denoted by                , possibly extended by subscripts. Occasionally, 

we write    to denote a sequence of terms                   and,    to denote a sequence of function symbols 

                 . The size of a term   , denoted by | |, represents the number of symbols in  . A trs is called 

length preserving if  |    |  |    |  for all rules     and all ground substitutions   .  It is not difficult to 

prove that any length preserving trs is simply terminating.                                                                            

A rewrite rule is an ordered pair       of terms   and   such that     and the variables which occur in the right- 

hand side  , also occur in the left-hand side   . A rewrite rule       is usually written as     . A term rewriting 

system is a pair       consisting of a signature   and a set   of rewrite rules between terms in         . A trs 

is often presented as a set of rewrite rules, without explicitly mentioning its signature, assuming that the 

signature consists of the function symbols occurring in the rewrite rules. We assume that   is finite, unless stated 

otherwise. Also,             , where   is a substitution. A subterm is successively replaced by an 

equal term until no further rewriting is possible.            

Essentially, the main objective of the method of term rewriting is to apply a set of rewrite rules to terms to 

reduce them to their simplest forms. Formally, a trs     is called terminating if there is no infinite rewriting 
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sequence                     . In other words, a trs is terminating if and only if all terms   have only rewrite 

sequences of finite length. A rewrite relation that is also a partial order is called a rewrite order. A well-founded 

rewrite order is called a reduction order.  More explicitly, a reduction order is an order which is well founded, 

monotonic, and stable (closed under contexts and substitution). A trs       and a partial order     on        

are said to be compatible if    is contained in   ; that is,     for every rewrite rule     of   . The rewrite 

relation induced by a rewrite system   is denoted by      and, its transitive closure by   
 . It is easy to see 

that a trs is terminating if and only if it is compatible with a reduction order. The classical approach to prove 

termination of a particular trs consists in constructing a reduction order    such that      for each rewrite 

step      .  

                                                                                                                                            
Definition 1.  

A partial ordering   is a simplification ordering for a set of terms   if it possesses the following three 

properties: 

(i)      implies                                                                  .  .  . (replacement) 

(ii)                                                                                         .  .  . (subterm) 

(iii)                                                                                             . . . (deletion) 

where                                                                     belong to  .  

Definition 2.  

A partial ordering   is called monotonic if it possesses the subterm property                           , and the 

deletion property                                                   , for  all terms in   . 

A well-founded monotonic order satisfying the subterm property is called a simplification ordering. By iterating 

the subterm property, it is easy to see that every term is also greater than any (not necessarily immediate) of its 

subterms. The deletion condition implies that deleting subterms of an operator of variable arity reduces the size 

of the term in the ordering; if an operator   is of fixed arity, the deletion condition is superfluous. Further, 

simultaneously holding of these conditions imply that syntactically simpler terms are smaller in the ordering 

(Dershowitz, 1982; Singh et al. 2012b).                                                                                                                                                                                                                                                                                        

A trs over a finite signature is called simply terminating if is compatible with a simplification order.  

Definition 3.                                                                                                                                        Let   be a set 

of variables. The homeomorphic embedding      , a binary relation on        , is defined as follows:                                                                                                                

         if and only if one of                                 : 

1.       for a variable     . 

2.                      and                          for a function symbol       , and 

                             . 

3.                      for a function symbol       , and          for some          

For example, 

      (         )                                                                                                       

Definition 4.  

An infinite sequence                  of terms        is self-embedding if there exist       such that  

        .                                                                                                             Homeomorphic embedding       

could also be defined as the reduction relation      

  induced by the rewrite system 

            {                     |                 . 

Since      is obviously terminating, this shows that      

        is a well-founded partial order. In fact, in 

view of Kruskal’s Tree Theorem (Kruskal, 1960),       satisfies a stronger property called well partial order 
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(Baader and Nipkow, 1998 ) for finite    and  .                                           Simplification orderings cannot be 

used to prove termination of self- embedding systems (Dershowitz, 1987).   

Lemma 1 

Let   be a simplification ordering on a set of terms       , and           . Then         implies     . 

Proof                                                                                                                                       Assume that 

       . We consider the three cases in the definition of      , and prove     by induction on | |.                                                                                                                                             
(i) If       then    , because   is reflexive.                                                                                (ii) Assume 

that                        and                      for a function symbol        and                        , 
         . By induction, we obtain                            . Since   is a rewrite order, we have  

                                      .                                                                      (iii) Assume that 

                      for a function symbol        and          for some        . By induction, we 

obtain      . In addition, the subterm property of    yields     , and thus    .                                                                                                                     

 

Lemma 2                                                                                                                                                       

Let   be a trs over a finite signature   . Then every simplification order is a reduction order.  

Proof.    

                                                                                                                                                        By definition of 

simplification orders, it remains to be shown that every simplification order is well-founded. Assume that   is a 

simplification order on        , and                   is an infinite chain in        .                                                                                                           

First, we show by contradiction that                                 holds. Assume that there exists a 

variable                     . Define a substitution   {      such that on one hand,          (since 

  does not occur in     ) and               (since   is a rewrite order). On the other hand, since     is a 

subterm of         , it follows from the subterm property that            . If we combine the two inequalities, 

we obtain      , which is a contradiction.    The first part of the proof shows that, for the finite set    
       , all terms in the sequence                   belong to       . Since   and   are finite, Kruskal’s Theorem 

implies that this sequence is good. i.e., there exist      such that         . Now, Lemma 1 yields       , 

which is a contradiction since we know that                   .                                                   

A direct consequence of  Kruskal’s theorem (Kruskal, 1960)  is that any simplification order over  a finite 

signature is well-founded as shown  above.   

Theorem 1.  

Simplification orders are well-founded on terms over finite signature   .  

Proof follows by Kruskal’s Tree Theorem and Lemma 2 above. 

3. The Recursive Path Ordering  

              An important syntactical technique to prove termination of term rewriting is by using the recursive path ordering 

(rpo) defined by Dershowitz (Dershowitz, 1987). For defining rpo, there underlies a well-founded ordering on 

the set of function symbols. At the first step, two terms are compared by comparing their root symbols, and then 

recursively, the collections of their immediate subterms are compared. These collections can be seen as 

unordered multisets (giving rise to the notion of multiset path order), introduced by Dershowitz (1982), or as 

ordered tuples (giving rise to the notion of lexicographic path order), introduced by Kamin and Levy (1980), or 

one can employ a combination of the two (giving rise to a recursive path order with status). In this work, we 

confine ourselves to the case where the arguments are compared as multisets.  

              In order to determine if a term   is greater than a term   using rpo, the outmost operators of the two terms are 

compared first. If the outermost operators happen to be equal, then those (immediate) subterms of   that are not 

also subterms of   must each be smaller(recursively in the term ordering) than some subterm of  . If the outmost 

operator of   is greater than that of   , then   must be greater than each subterm of   ; while if the outmost 
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operator of   is neither equal to nor greater than that of  ,then some subterm of    must be greater than or equal 

to  . 

              Formally, rpo can be defined as follows:  

Definition 5.   

Let   be a signature and   be a strict ordering (precedence) on  . Then the rpo,       on the set        of 

terms over   is defined recursively as follows: 

                                                 , 

if and only if  

(i)      and {                    {                 , or 

 (ii)      and  {       {                , or 

(iii)     and {                    {  . 

In other words,        if either, 

  (i)   equals   but the tuple           accompanying   in   is bigger than the one accompanying   in   (i.e., 

          , or 

(ii)   is bigger than all the immediate subterms    of    when     , or 

(iii) when the outmost operator of   is neither equal to nor greater than that of  , then some subterm    of    must 

be bigger than or equal to  . 

Example . 

For the set of operators   {         with                           and the precedence    given 

by       , we have: 

(i)                  because               (this is because   is a subterm of          ), and  

     . 

(ii)                           . 

On one hand,                 , because   is a subterm of              and                     

(because       and                 ). 

On the other hand, we have,              
           . 

           The mpo method for proving termination is based on the following: 

3.1 Multiset Orderings 

Multiset ordering was invented in the ‘70s to prove termination of programs (Dershowitz and Manna, 1979). It 

has been used in devising termination techniques like mpo, rpo and recently, in combination with the size-

change principle of Lee et al. (2001), in the form of SCNP (SCT in NP) reduction pairs. 

A multiset (mset, for short)    over a set   can be defined as a function from   into  , the set of natural numbers 

including zero. Let      denote the number of occurrences of an object   of    in   called the multiplicity of   

in   . If        for finitely many   in   , then   is called a finite mset.                                                                                                                                                    

Let       denote the set of all finite msets built on   . The additive union (or sum) denoted   of two msets    

and    is defined as follows: 

                      , for all     . 
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The difference of    and    is defined as follows:  

                           {              , for all     . 

Following (Dershowitz and Manna, 1979), a partial ordering   on a set   may be extended to a partial ordering 

     on finite multisets of elements of  . In this extended ordering,         , for two finite multisets    

and    over  , if    can be obtained from    by replacing one or more elements in    by any (finite) number 

of elements taken from  , each of which is smaller than one of the replaced elements. They also proved that 

every well-founded relation on a set   induces a well-founded relation on      . Note that well-foundedness is 

an essential property of orderings for proving termination of TRSs. Formally, given a partially ordered set  

     , the multiset ordering      is defined on       as follows: 

             , 

if             , where         ,                

and for all    ,        such that     . 

Thus, if    is an ordering, we have           if we can obtain     from     by either (i) removing some 

(possibly duplicated) elements     , or (ii) replacing some elements      by new but smaller elements   
 . 

For example, 

{        {        , {            {     ,{            {                  , 

{            {             , {            {  , etc. 

Theorem 2. 

If    is irreflexive and transitive, then      is also irreflexive and transitive. 

Proof. 

To show irreflexivity, we must show that there can be no multiset   such that        . 

Suppose that       , then there would be some nonempty finite multiset  , such that       and 

                   In other words, for every element of   there would be a distinct elements of    

greater than it, which is impossible for a finite     

To show transitivity of      , consider the following irreflexive relation     
  on multisets in        

{      
     if              In other words, a finite multiset is reduced in the relation     

  by 

replacing a single element with zero or more smaller elements. Note that the multiset ordering      is the 

transitive closure of the relation     
   i.e.,          if and only if    can be obtained from   by replacing 

elements in   one by one. It follows that      is transitive.                                                                                                                                    

 

The following theorem implies that multiset orderings yield much simpler proof of termination of trss.  

Theorem 3. 

The multiset ordering             over (S     is well-founded if and only if (     is well-founded. 

Proof. 

(a) “only if” part. Suppose  (      is not well-founded, then there exists an infinite decreasing sequence  

                            of elements in  . The corresponding sequence of singletons 
{       {       {                forms an infinite decreasing sequence of elements in       and thus 

            is not well-founded. 
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(b) “if” part. Assume that       is not well-founded. We first extend   by adding to it an element  , and extend 

the ordering   on   to make   the least element i.e., for every element     in  ,      Thus, clearly   remains 

well-founded.  

Now, suppose that             is not well-founded. Thus, there exists an infinite decreasing sequence 

                           of multisets from       We derive a contradiction by constructing the 

following tree. Each node in the tree is labelled with some element of    and at each stage of the construction; 

the set of all terminal nodes in the tree forms a multiset in       

Let us begin with a root node with children corresponding to each element of   . 

Then, since           , there must exist multisets      , such that               are not empty, 

and                 . Then for each    , add a “son” labelled   to the corresponding node. In 

addition, grow a child   from each of the elements of  . Since   is nonempty, growing   ensures that even if   

is empty, at least one node is added to the tree. Since   is finite, the nodes corresponding to   each have a finite 

number of sons. Repeat the process for                     , and so on. 

Since at least one node is added to the tree for each multiset   , in the sequence, were the sequence infinite, the 

tree corresponding to the sequence would also be infinite. But, by Konig’s Infinity Lemma, an infinite tree with a 

finite number of children for each node must have an infinite path. On the other hand, by our construction, all 

paths in the tree are descending in the well-founded ordering   on    , and must be finite. Thus, we have derived 

a contradiction, implying there cannot be an infinite sequence of multisets                     satisfying 

                                                                                                                                  

Definition 6.  

Given a quasi-ordered set     , the multiset quasi-ordering      on      is defined as follows:            

if and only if, for some multisets    and           ,            , and for all      there is an 

    such that    , where the two multisets are considered equivalent if the equivalence classes of their 

elements (under  ) are the same. 

Remark 1. 

An ordering   over a set   can be extended to an ordering      on tuples in    (for some     ) as follows: 

                                                           if   {                          {                         . 

 If  (      is totally ordered, then for any two multisets           , one may decide whether           

by first sorting the elements of both    and     in descending order (with respect to the relation    ) and then 

comparing the two sorted sequences lexicographically. 

 For example, in order to compare the multisets {         and {            , one may compare the sorted 

sequences           and              . Since           is lexicographically greater than              , it 

follows that {             {            . 

 Multisets ordering enjoys the following minimality property: 

Theorem 4 (Lescanne and Jouannaud, 1982): 

 For a given partial ordering   on a set   , any partial ordering     
  on      that satisfies the property 

                                  implies  {                        
 {                       

is contained in the multiset ordering     . 

Remark 2. 

 If (     is of order type    , then the multiset ordering (             over (       is of order type   .This 

follows from the fact that there exists a mapping    from       onto     that is one-to-one and order-

preserving, i.e., if         for          ) ,then the ordinal       is greater than       . Such a 
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mapping   can be defined        ∑       
     where   denotes the natural (commutative) sum of ordinals, 

and   is the one-to-one order-preserving map from   onto    

Remark 3. 

 Let us consider the special case where there is a bound k on the number of  replacement elements i.e.,  | |    . 

Any termination proof using this bounded multiset ordering over   may be translated into a proof using       . 

This may be done using the order-preserving function 

     ∑   

   

 

which maps multisets over the natural numbers into the natural numbers by summing the number    for every 

natural number    in a multiset  . Two special cases of interest are the following: 

(i) If  | |  | |  i.e., the size of the multiset is not increased, then the simpler function 

                                                         ∑   | |      

is order-preserving. 

(ii) If  | |  | |  i.e., the size of the multiset is constant, then 

     ∑  

   

 

is order-preserving. 

3.2 Nested Multiset Ordering 

By a nested multiset, we mean that the elements of the multiset may be elements of the ground set   , or may be 

multisets of elements of  ,  or may be multisets containing both elements of   and multisets of elements of  ,  

and so on.  

For example,  

          {{     {{      }     is a nested multiset. 

Further, given a partially ordered set     ), a nested multiset over   is either an element of    or else it is a finite 

multiset of nested multisets over   . Let       denote the set of nested multisets over   . 

Nested multiset ordering     
  on        which is a recursive version of the standard multiset ordering, is 

defined as follows:  

Definition 7 (Dershowitz and Manna, 1979):  

For any two elements           ,        
     if 

                and       i.e., two elements of the base set are compared using  ,  or 

          and      i.e., a multiset is greater than an element of the base set, or 

            , and for some              where     ,        and        

and                        
   . 

For example, 
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{{     {{      }    is greater than  {{         {{      }  }   since {     is greater than both {         and   , 

and also  {{     {{      }     is greater than { {{       {            since  {{      } is greater than each of the 

three elements {{}, 1, 2} , {5, 5, 2} and 5 . 

Remark 4. 

Let       denote the set of all nested multisets of depth  . In other words, 

        and          contains the multisets whose elements are taken from                             

, with at least one element taken from       . Thus, the set       is the infinite union of the disjoint sets 

                                   The following property holds: 

Theorem 5   

For nested multisets   and    , if the depth of M  is greater than the depth of     , then      
    . That is, 

the elements of         are all greater than the elements of         for any     . 

Proof. 

The proof follows by induction on depth. It trivially holds for   of depth   . For the inductive step, let us assume 

that the nested multisets of depth   are greater than the nested multisets of depth less than  . That is, we need to 

show that a nested multiset    of depth   is greater than any nested multiset     of lesser depth. If the depth of 

    is 0, then       while     , and therefore       
    , as desired. If the depth of     is less than   but 

greater than 0 , then each of the elements in     is of depth less than    . The nested multiset    , on the other 

hand, is of depth     and must therefore contain some element of depth  , which by the inductive hypothesis, 

must be greater than each of the elements in    . It follows that      
   .                                                                                                                                        

It is easy to see that the partial ordering     
  is irreflexive and transitive. The proof that it is well-founded is 

the following theorem: 

Theorem 6   

The nested multiset ordering             
    over         is well-founded if and only if        is well-

founded. 

Proof. 

(a) “only if” part. If         is not well-founded, then there exists an infinite decreasing sequence          
           of elements in    . This sequence is also an infinite decreasing sequence of elements in        u n d e r  

    
  , a n d             

    is therefore not well-founded. 

(b) “if” part. In order to show that            
   is well-founded, it suffices to show that each        is itself 

well-founded under      
  . If        were not well-founded, then there would exist an infinite decreasing 

sequence of nested multisets        
       

             . By theorem 5 above, it follows that the depth of any 

nested multiset       in the sequence cannot be greater than the depth of its predecessor     . Since the sequence 

is infinite, it must have an infinite subsequence of nested multisets all of the same depth    , which contradicts the 

well-foundedness of        . 

We prove that each             
    is well-founded by induction on    : The ordering      

  on          is 

simply the ordering     on     and hence it follows that            
    is  well-founded. For the inductive step, 

assume that each             
         is well-founded (note that each of the elements of         is a member 

of the union of                                    . By the induction hypothesis, each of these        is well-

founded under      
 .Therefore their union under      

  also is well-founded. Furthermore, the ordering  

    
  on a pair of nested multisets from        is exactly the standard multiset ordering over their union and 

since the union is well-founded,       is well-founded.    
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Remark 5. 

We have seen earlier that for       of order type   , the multiset ordering              is of order type       
In a similar manner, it can be shown that the order type of             

   is 

                

  

 
 
 

  }
 
 

 
 

        , 

the limit of which is the ordinal    , provided   is less than    . Consequently, if       is of order type less than 

   , then            
    is of order type    (Dershowitz, 1982).  

Definition 8.  

Let                            and                                 be terms   , then   and   are said to be  equivalent up to a 

permutation of arguments if both   and   are variables, or if  

(i) the top-level function symbols of    and   are identitical, and 

(ii) there is a one- to – one correspondence between the multisets {                        and {                          such that if  

   and     correspond to each other, then    and     are equivalent up to a permutation of arguments.                                                                                                                               

We write       if    and   are identical up to a permutation of arguments. 

For example,                  and                  are equivalent up to a permutation of arguments.  

Remark 6. 

It is observed that  the  multiset ordering, nested multiset ordering (Dershowitz and Manna, 1979), and the 

simple path ordering (Plaisted ,1978a) can be considered as a special case of the recursive path ordering, in 

which the multiset constructor {         is greater than all other operators involved. The nested multiset ordering is 

a recursive path ordering on all terms constructed from one varyadic operator and with just that one operator of 

the order type    . It was pointed out in (Dershowitz, 1987 and Paulson, 1984) that the nested multiset ordering 

has all the properties of simplification orderings.  

3.3 Multiset Path Ordering 

Plaisted (1978b) introduced a syntactic order on terms which consists in comparing terms by first comparing 

their root symbols according to a given precedence, and, in case of equality, recursively comparing the multisets 

of their immediate subterms. As these multisets ignore the positions of the subterms, this order is not sensitive to 

permutations of subterms. Multiset path ordering (mpo) is a binary relation on the first order terms. It was first 

introduced by Dershowitz (Dershowitz, 1982) for proving termination of rewriting systems. The mpo is a 

simplification ordering which is transitive and irreflexive, closed both under context application and substitution, 

and as well possesses the subterm property. Moreover, the subterm property contains homeomorphic embedding. 

Definition 9. 

 If a term   is of the form                    then   is called the root symbol of   . Also, {                 are called 

the top-level subterms of   . 

Definition 10.   

A path is a sequence of operators, beginning with outmost one of the whole terms (say, the root, on  viewing 

terms as trees) and taking subterms until a constant (leaf) is reached. In other words, if   is a ground term of the 

form                     , then a path in   is a sequence beginning with   and followed by a path from some top-

level subterm of   . A path of subterms of    is the sequence consisting of   itself followed by a path of subterms 

for    for some   ,      . If   is a variable, then   itself is the only path of subterms for   Thus, a path of 

subterms for             is the sequence            ,        and  . Also, a path of subterms of the term 
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            is the sequence             ,        and  .  A path order is a well-founded relation on a set of 

terms; for example, mpo and  lpo. 

Definition 11.  

A TRS         is called strict mpo-terminating if and only if there exists a strict precedence   such that 

        for all       . 

Lemma 3.  

Whenever    is a strict precedence on a signature    then       is a simplification order. 

Definition 12.   

Let   be a strict precedence and            . If       then                       and                  
   .The mpo,          is defined if one of the following holds: 

(i)     and        , for a    {              ,    or  

(ii)     and        , for all   {              , or 

(iii)      and {                    
   {                 

where     
    stands for multiset extension of      . 

3.4 Application of mpo in Proving Termination of TRSs 

In what follows, a number of illustrations are provided to emphasize that mpo are amongst the simplest recursive 

path orderings developed so far for proving termination of trss. 

Example 1. Consider the trs 

                                                                  

                                                                      . 

 It is immediate to see that lpo with precedence           cannot orient the last rule and mpo with precedence 

        orients all rules from left to right. We have 

                               {           
   {    . 

Example 2. The trs  , consisting of the rule  

                                     , 

is mpo-terminating, but not lpo-terminating.  

Since neither              nor                , both (i) and (ii) of definition 14 do not hold, we conclude 

that                     is not lpo-terminating. Since the root symbols are equal case (iii) might apply and 

the arguments of the two terms could be compared lexicographically, but as   and   are incomparable, it does 

not lead to termination. For mpo, (iii) applies and {{       }     
   {{      is satisfied because    {     a  

  {      such that        . That is,             , (rule (ii)). 

Example 3. Consider the set    of arithmetic expressions constructed from some set of symbols and the single 

operator   . The trs 

                               

over  , contains just one rewrite rule which reparenthesizes a sum by associating to the right. For example, the 

expression       (       ) becomes either      (       )  or                 , both 

of which become      (       ) . Since the size of the expression remains constant when the rule is 

applied, some other measure is required to prove termination. This is as follows (Dershowitz and Mann, 1979):  
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Let us consider the multiset ordering over the natural numbers,            . Let the termination function 

          return the multiset of the sizes | | of all the subexpressions of the form      in the expression 

(  . i.e.,  

               {| |          . 

For example,  

  (      (       ))  {        , since the left operands of the operator   are          and      .  

Also,       (  (       ))  {        . 

The value of the termination function   decreases with each application of the rewrite rule, 

i.e.,          (       )                .   

Thus, the system terminates. 

Example 4. Determine if          , where terms are denoted as trees (Dershowitz, 1982 ),  

we have 

             

                                                                                                                                                               

                                                                                                            …                                                                                                                                                          

 

 

This is an rpo over set of terms of natural numbers,     , with the operators ordered by   . Since the two terms 

have the same outermost operator, using the definition of       , we only need to compare the multisets of their 

subterms, viz:   

                                                                                                               

 

                                                                              . 

 

Since 2 > 1, in order that the former be greater than the latter, we must have: 

                         

                                                                     

                          

  

   

…...

. 

   

t 

2 

0 

 S     

3333

333 

1 

3 

0 3 

0 

                                          

1 

3 

  2 2 

3 

0 

3 

0 

3 0 

0 

2 

0 

  3 1 

0 3 

0 

and 

1 

3 

  2 2 

0 

3 

0 

3 0 

0 

2 

 

 

 

 

0 

  3 1

    
0 3 

0 

3 

 

 

 

 

  2 2 

0 

3 

0 

    3 

 

 

0, 

0 
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Since 2 = 2, we must now compare  

    

 

 

in the multiset ordering       .  

Finally, since  

     

 

 

is greater than both  

 

we indeed have       .  

For ordering operators, we take    to be greater than all other operators, as shown below.   

Example 5 (Dershowitz and Manna, 1979).   

The following rewrite rules symbolically differentiates an expression with respect to  .  

     

                                                                  

                                                                 

                                                                             

                                                                    

                                                                     

                                                     ⁄                       ⁄⁄  

                                                                                   ⁄                                                            

        (   (  (       )))  ((        )      )  

To prove termination, we use the multiset over sequences of natural numbers. The termination function is 

       {                          is an occurrence of a symbol in   ,where       is the number of operators 

between   and the  th position enclosing  . 

For example, consider the expression   

                        (             )   or            (             ) 

 with the      numbered (for expository purposes) in tree form: 

 

0 and , 
  3 

0

1 

3 

0 

0 

  1 

0 

    0 3 
, 

0 

    3 
    0 , 

0 

    3 

0 

    3 
, 

0 

    3 

with and 
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There are three atoms     and  , which constitutes three paths. The leftmost atom   contributes the element 

        to the multiset. This is because there are no operators between     and   , there are two operators 

between    and  , and there are three operators between    and  . Similarly, the other two remaining atoms    

and   contribute elements        and            respectively to the multiset. Thus,  

     {                        ,                                                  or, 

                  {                                                 .                  

Applying the rewrite rule  

                                                         

to   ,  yields 

       (               )                      

 with the labeling of the      retained, and thereby,   

 

     
{                                                                                          
                

or,        {                                          . 

  

D1 

 

 

z1 

D2 

x 

D3 

y 

+ 

y D4 

D5 

x 
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Representing in the form of a tree, we have 

 

 

 

 

 

 

  

         
      can be seen as follows: 

                                                           
              

                                                    
                    

                                                          
                         

               

                                                           
                 

                                                    
                        

Remark 7. 

The mpo defined here is only for strict precedences. This is because in multiset difference for quasi-precedences, 

equivalent terms have to be removed. This is known to be problematic because when the constraints for mpo are 

encoded in propositional logic, the equivalence relation on terms is still unknown. A foreseable way out would 

be to encode all possible multiset differences (exponential number) if that is computationally feasible which is an 

open question at the moment (Zankl, 2006). 

4. Concluding remarks and some further research directions 

The paper illustrates that, for a class of trss, mpos are easy to handle and amenable to mechanization (Leclerc, 

1995, for details). However, an mpo, being a simplification ordering, can handle only simply terminating systems 

(Borralleras and Rubio, 2001). Several techniques have been developed for overcoming this weakness of rpos. A 

very recent such technique is the monotonic semantic path ordering (mspo), a simple and easily automatable 

ordering which generalizes other simplification methods (Borralleras and Rubio, 2001). Application of the 

techniques of size-change to mpos is another promising area of research. The Size-change principle when 

compared with classical simplification orders can simulate a certain form of lexicographic and multiset 

comparison. Hence, the size-change principle in connection with mpo can often prove termination of  trss where 

one would otherwise need more complex orders (Lee, Jone and Ben-Amram, 2001). 

It is known (Hofbauer, 1992 ) that termination proofs using multiset path orderings yield a primitive recursive 

upper bound on the length of derivations measured in the size of the starting term. This is as well true for many 

other path orderings as long as status is restricted to multiset status only. In general, the use of mpo or 

simplification orders is critically limited as shown by the analysis of induced derivational complexity (Hofbauer, 

1992). In recent years, a less restricted variant of mpo has been developed (Avanzini and Moser, 2008). It has 

been shown in (Avanzini and Moser, 2008) that Polynomial path order (    ) on terms induces polynomial 

derivation height for innermost rewriting.      is closely related to the light multiset path order (lmpo, for 

short) introduced by Marion (Marion,  2003). Besides, greater challenges lie in the area of automation of 

termination techniques. The current direction of research is largely concerned with resolving problems related to 

automation of termination analysis for trss and developing thereby competing termination tools. The increasing 

interest in automated termination analysis of trss has led to an annual International Competition of Termination 

Tools initiated in 2004 (March ́ and Zantema, 2007, for details). It aims at identifying most talented competitors 

y 

D3 

D2 

x 

D5 

D4 y 

  

 

y 

D3 
D2 

  

 

  

 

D1 

y 

  

 

  

 

y 

D5 

D4 
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who could obtain an assigned task by applying appropriate choices of termination proving techniques within a 

time limit of    seconds. Using automata techniques is a relatively new and elegant approach of automatically 

proving the termination of rewrite systems. Initially proposed for string rewriting by Geser, Hofbauer, and 

Waldmann (2004), the method has recently been extended to left-linear trss. Variations and improvements are in 

progress (Endrullis, 2006; Geser, Hofbauer, and Waldmann, 2004, for details). The fact that the method has been 

implemented in several different termination provers (Waldmann, 2004; Zantema, 2005) is a clear indication of 

the success of the approach. 

References 

Avanzini, M. & Moser, G. (2008), “Complexity Analysis by Rewriting”, Technical Report, University of 

Innsbruck. 

Baader, F. & Nipkow, T. (1998). Term Rewriting and All That, Cambridge University press. 

Borralleras, C. & Rubio, A. (2001), “A Monotonic Higher-order Semantic Path Ordering”, Proceedings of  

LPAR, 531-547. 

Dershowitz, N. (1982), “Ordering for Term Rewriting Systems”, Journal of Theoretical Computer Science, 

17(3): 279-301. 

Dershowitz, N. (1987), “Termination of Term Rewriting”, Journal of Symbolic Computations, 3(1&2): 69-115. 

Dershowitz, N. & Manna, Z. (1979), “Proving termination with multiset orderings”, Comm. ACM, 22(8): 465-

476. 

 Endrullis, J. (2006), Jambox: Automated Termination Proofs for String/ Term Rewriting, Available: http: 

//joerg.endrullis.de /, 2006. 

 Geser, A., Hofbauer, D., & Waldmann, J. (2004), Match-bounded string rewriting systems, AAECC, 15(3-

4):149-171.  

[9] Hofbauer, D. (1992), “Termination of Proofs by Multiset Path Orderings imply primitive Recursive 

Derivation Lengths”, Theoretical Computer Science, 105, 129 -140. 

Huet, G. & Lankford, D.S. (1978), “On the uniform halting problem for Term Rewriting Systems”, Technical 

Report 283, IRIA.  

Kamin, S., & Levy, J.J. (1980), “Two Generalizations of the Recursive Path Ordering”, Dept. of Computer 

Science, University of Illinois, USA. 

Kruskal’s, J.B. (1960), “Well-quasi ordering, the tree theorem, and Vazsonyi’s Conjecture”, Transactions, AMS, 

95, 210-225.     

Leclerc, F. (1995), “Termination Proof of Term Rewriting System with Multiset Path Ordering, A Complete 

Development in the System Coq”, Proceedings of Second International Conference on Typed Lambda Calculi 

and Applications,TLCA ’95, LNCS 902, Springer, 312-327. 

Lee, C.S, Jone, N.D & Ben-Amram, A.M (2001),  “The size-Change Principle for Program termination”, Proc. 

POPL, 81-92. 

Lescanne, P. & Jouannaud, J.P. (1982),  “On Multiset Orderings”, Information Processing Letters, 16(2): 57-62. 

March ́, C. & Zantema, H. (2007), “The Termination Competition”, Franz Baader (ed.), Proceedings of the 18
th

 

International Conference on Rewriting Techniques and Applications, LNCS 4533, Springer Verlag, 303-313. 

Marion, J. (2003), “Analysing the implicit complexity of programs”, Inform. and Comput. 183, 2-18. 

Ohlebusch, E. (2002), “Advanced Topics in Term Rewriting”, Springer- Verlag.  

Paulson, L.C. (1984), “Constructing Recursion Operations in Intuitionistic Type Theory”,Technical Report 57, 

Computer Laboratory, University of Cambridge, UK. 



Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.5, 2013 

 

111 

Plaisted, D.A. (1978a), “Well- founded Ordering for Proving Termination of Systems of Rewrite Rules”, Report 

R-78-932, Department of Computer Science, University of Illinois, USA. 

Plaisted, D.A. (1978b), “A Recursively Defined Ordering for Proving Termination of Term Rewriting Systems”, 

Report R-78-943, Department of Computer Science, University of Illinois, USA. 

Singh, D., Shuaibu, M.A. & Ibrahim, M.A. (2012a),  “An Overview of Term Rewriting Systems”, African 

Journal of Mathematics and Computer Science Research, 5(9):153-157. 

Singh, D., Shuaibu, M.A. & Ibrahim, M.A. (2012b), “Transformation Method: Making Termination Easier”, 

IOSR Journal of Mathematics, 1(5): 25-30. 

Terese (2003), Term Rewriting Systems, In: M. Bezem, J. W. Klop & R. Vrijer (eds.), Vol.55 of Cambridge 

Tracts in Theoretical Computer Science, Cambridge University Press,. 

Waldmann, J. (2004), “Matchbox: A Tool for Match-bounded String Rewriting”, Proceedings, 15
th

 RTA, LNCS, 

Volume 3091, 85-94. 

 Zankl, H. (2006), “BDD and SAT Techniques for Precedences Based Orders”, Master Thesis, University of 

Innsbruck.  

Zantema, H. (2005), “Termination of Rewriting proved Automatically”, JAR, 34, 105-139.  

 


