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Abstract 

In this study, the efficacy of the ARIMAX model and SARIMA model in forecasting the Currency in Circulation 

in Ghana was compared. Both models appear to be adequate for forecasting the Currency in Circulation. 

Diagnostic tests of both models with the Ljung-Box test and ARCH-LM test revealed that both models were free 

from higher-order serial correlation and conditional heteroscedasticity respectively. The Diebold-Mariano test 

revealed that there is no significant difference in the forecasting performance of the two models. Hence, both 

models were proposed for predicting the Currency in Circulation. However, we recommend that continues 

monitoring of the forecasting performance of these models, review of market conditions and necessary 

adjustments are vital to make the use of these models more realistic. 
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1. Introduction 

The Currency in Circulation is one of the autonomous factors that propel money market liquidity. The variations 

in Currency in Circulation are vital indicators for monetisation and demonitisation of the economy. The share of 

the Currency in Circulation in money supply and its ratio to nominal Gross Domestic Product reveals its relative 

importance in any economy (Luguterah et al., 2013; Simwaka, 2006; Stavreski, 1998). 

Several researches on Currency in Circulation have been done in both developed and developing countries. Balli 

and Elsamadisy (2011) modelled both daily and weekly Currency in Circulation for the state of Qatar using both 

regression and ARIMA models. Cabrero et al., (2002) modelled the daily series of bank notes in circulation in 

the context of managing the European monetary system. Also, Dheerasinghe (2006) modelled the currency in 

demand in Sri-Lanka with monthly, weekly and daily data set using time series models. Luguterah et al., (2013) 

modelled monthly Currency in Circulation in Ghana using SARIMA model. In another study, Luguterah et al., 

(2013) studied the effect of each month on the volume of monthly Currency in Circulation in Ghana. 

Thus in this study, the forecasting accuracy of the ARIMAX model and the SARIMA model in predicting 

monthly Currency in Circulation in Ghana was compared. 

  

2. Materials and Methods 

This study was carried out in Ghana using data on reserve money growth, from January, 2000 to December 2011. 

The data was obtained from the website of the Bank of Ghana. The data was model using Seasonal 

Autoregressive Integrated Moving Average (SARIMA) model and ARIMAX model. Before modelling the data, 

preliminary tests were performed to determine evidence of seasonality and the order of non-stationarity of the 

data. 

2.1 Regression Analysis   

To investigate the evidence of seasonality in the Currency in Circulation, the data was logarithmically 

transformed and first differenced; before regressing on full set of periodic dummies. This was done to avoid 

spurious regression. The regression model is given by; 

∆ ln ���� = � 	
�


�


��
+ ��                                                       (1) 

  

where �
 is a dummy variable taking a value of one for month i and zero otherwise (where i=1, 2,…,12), 	
 are 

parameters to be estimated, and ��  is the error term. The hypothesis tested is ��: 	� = 	 = ⋯ = 	� = 0  

against the alternative not all 	
 are equal to zero. If the null hypothesis is rejected, then the data exhibit month-

of-the-year seasonality. 

2.2 Augmented Dickey-Fuller Test 

The order of integration of data was investigated using the Augmented Dickey-Fuller (ADF) test. The regression 

model employed by Dickey and Fuller (1979) is given   by; 
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∆�� = 	 + �� + ����� + � �
∆���


 


��
+ ��                      (2)  

where 	 is a constant, � the coefficient on time trend series, ∑ �
∆���

 

��  is the sum of the lagged values of the 

dependent variable  ∆�� and p is the lag order of the autoregressive process. The parameter of interest in the ADF 

test is � . For � = 0 , the series contains unit root and hence non-stationary. The choice of the starting 

augmentation order depends on; data periodicity, significance of �
 estimates and white noise residuals. The test 

statistic for the ADF test is given by 

#$% = �&
SE(�&)                                                                           (3)         

where SE(�&) is the standard error of the least square estimate of �&. The null hypothesis is rejected if the test 

statistic is greater than the critical value. 

2.3 Diebold-Mariano Test  

The Diebold-Mariano test was used to assess whether the differences in the mean square errors of competing 

forecasts are statistically significant. The test statistic is given by; 

S� =      *V,-d/01
��
 d/                                                                         (4)          

where d/ is the mean of the coefficient of d3, which is the difference between the sets of squared forecast errors 

from two competing models, d3 = e�3 − e3  and V,-d/0 is an estimate of the variance of d/. 

 

2.4 SARIMA Model 

The SARIMA model denoted by ARIMA(:, <, =) × (?, $, @)A  can be expressed using the lag operator as 

(Halim and Bisono, 2008); 

ϕ(B)Φ(BA)(1 − B)C(1 − BA)D�� = θ(B)Θ(BA)��                               (5)                
ϕ(B) = 1 − F�B − FB−. . . −F B                                                                      

Φ(BA) = 1 − H�BA − HBA−. . . −HIBIA                                                                
θ(B) = 1 − J�B − JB−. . . −JKBK                                                                          
Θ(BA) = 1 − L�BA − LBA−. . . −LMBMA                                                                   

where 

BN�� = ���N 
p, d, q are the orders of non-seasonal AR, differencing and MA respectively 

P, D, Q are the orders of seasonal AR, differencing and MA respectively 

�� represent the time series data at period t  

The estimation of the model involves three steps, namely: identification, estimation of parameters and 

diagnostics. The identification step involves the use of the Autocorrelation Function (ACF) and Partial 

Autocorrelation Function (PACF) to identify the tentative orders of both the non-seasonal and seasonal 

components of the model. The second step involves estimation of the parameters of the tentative models that 

have been selected. In this study, the model with the minimum values of Akaike Information Criterion (AIC), 

modified Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC) is adjudged the best 

model. The last stage which is the diagnostic stage involves checking whether the selected model adequately 

represents the Currency in Circulation. An overall check of the model adequacy was made at this stage using the 

Ljung-Box test and ARCH-LM test. These tests were performed to check for higher order autocorrelation and 

homoscedasticity respectively. 

 

2.5 ARIMAX Model   

The ARIMAX model is simply an ARIMA model with additional or input variables. The model is an integration 

of a regression model with an ARIMA model. The result of this model covers the advantages of both models. 

The regression method describes the explanatory relationship while the ARIMA method takes care of the 

autocorrelation in the residuals of the regression model. The model is given by; 

�� = �� + ��O� + �O+. . . +�NON + θ(B)Θ(BA)
ϕ(B)Φ(BA)(1 − B)C(1 − BA)D ��      (6) 

where Xi represents the additional variable. 

 

3. Results and Discussion 

To confirm proper ordering of differencing filter, a unit root test was performed using ADF test. The ADF test 

confirms the existence of unit root under the situation where either a constant or constant with linear trend were 

included in the test. The results of the ADF test are shown in Table 1. 
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The evidence of seasonality was investigated by regressing the first differenced, logarithmically transformed 

data on full set of periodic dummies. The regression model was significant with an F- statistic of 15.7664 and a 

p-value of 0.0000. The results as depicted in Table 2 revealed that there is pronounced month-of-the-year 

seasonality.  

Estimating the SARIMA Model 

The logarithmically transformed data was both seasonally and non-seasonally differenced to make the data 

stationary. The ADF test in Table 3 affirms that the transformed seasonal and non-seasonal differenced Currency 

in Circulation is stationary. 

After obtaining the order of integration of the Currency in Circulation, the order of the Autoregressive and 

Moving Average for both seasonal and non-seasonal components was determined. This was obtained from the 

ACF and PACF plots based on the Box-Jenkins (1976) approach. From Figure 1, the ACF plot have significant 

spike at the non-seasonal lag 1 and seasonal lag 12, with significant spikes at other non-seasonal lags. The PACF 

plot also has significant spikes at the non-seasonal lags 1 and 2 and seasonal lags 12 and 24. The PACF plot also 

has significant spike at other non-seasonal lags.  

Using the lower significant lags of both the ACF and PACF and their respective seasonal lags, tentative models 

were identified for the Currency in Circulation (Table 4). Among these possible models presented in Table 4, 

ARIMA (0, 1, 1)(0, 1, 1)12  was chosen as the appropriate model that fit the data well because it has the 

minimum values of AIC, AICc and BIC compared to other models. 

Using the method of maximum likelihood, the estimated parameters of the derived model are shown in Table 5. 

Observing the p-values of the parameters of the model, it can be seen that both the non-seasonal and seasonal 

Moving Average components are highly significant at the 5% level. 

To ensure the adequacy of the estimated model, the ARIMA (0, 1, 1)(0, 1, 1)12 was diagnosed. As shown in 

Figure 2, the standardised residuals revealed that almost all the residuals have zero mean and constant variance. 

Also, the ACF of the residuals depict that the autocorrelation of the residuals are all zero that is they are 

uncorrelated. Finally, in the third panel, the Ljung-Box statistic indicates that there is no significant departure 

from white noise for the residuals as the p-values of the test statistic clearly exceeds the 5% significant level for 

all lag orders.  

To buttress the information depicted in Figure 2, the ARCH-LM test and t-test were employed to test for 

constant variance and zero mean assumption respectively. The ARCH-LM test result shown in Table 6, failed to 

reject the null hypothesis of no ARCH effect in the residuals of the selected model. Also, the t-test gave a test 

statistic of -1.3281 and a p-value of 0.1865 which is greater than the 5% significance level. Thus, we fail to 

reject the null hypothesis that the mean of the residuals is approximately equal to zero. Hence, the selected 

model satisfies all the assumptions and it can be concluded that ARIMA (0, 1, 1)(0, 1, 1)12 model provides 

adequate representation of the Currency in Circulation. 

Estimating the ARIMAX Model 

Dropping the insignificant variables at the 5% level of significance in Table 2, a new regression model was fitted 

with the transformed, non-seasonal, first differenced series. As shown in Table 7, all the variables were 

significant. The R-squared for this model is about 59.8% and the Durbin-Watson statistic of 2.5103 indicated 

that the model was free from first order serial correlation.  

An examination of the ACF and PACF plot of the residuals shown in Figure 3 revealed that the model residuals 

were not free from higher order serial correlation but were stationary. 

An appropriate ARIMA (p, 0, q) model was therefore developed for the residuals using lower significant lags of 

the ACF and PACF. As shown in Table 8, ARIMA (0, 0, 1) model appears to be the best model for the residuals 

as it has the least AIC, AICc and BIC values. 

Since the best model has been identified for the residuals, the next step was to concatenate the regression model 

with the ARIMA (0, 0, 1) model for the residuals. As shown in Table 9, all the parameters of the integrated 

model were significant.  

To ensure the adequacy of the model, the ARIMAX model was diagnosed. From the diagnostic plot shown in 

Figure 4, the residuals of the model can be said to have zero mean and constant variance. In addition, the ACF 

plot of the residuals showed that the residuals are uncorrelated. Finally, the Ljung-Box statistic shown in the 

third panel depicts that there is no significant departure from white noise for the residuals as the p-values of the 

test statistic clearly exceeds the 5% significance level for all lag orders. 

The ARCH-LM test and t-test were employed to test for constant variance and zero mean assumptions 

respectively. As shown in Table 10, the ARCH-LM test failed to reject the null hypothesis of no ARCH effect in 

the residuals of the model. Also, the t-test gave a test statistic of 1.9588 with p-value of 0.0521 which is greater 

than the 5% level of significance. Hence, the null hypothesis of zero mean of the residuals was not rejected. The 

model satisfies all the important assumptions of modelling and therefore can be said to be an adequate 

representation of the Currency in Circulation. 
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Comparative Analysis of Models 

Since both models developed were adequate for representing the data, the Diebold-Mariano test, was used to 

compare the predictive accuracy from both models. From the results (Table 11), the test revealed that there was 

no significant difference in the forecast accuracy of the two models as all the p-values for the test statistics were 

larger than the 0.05 significance level. Hence, we fail to reject the null hypothesis that the two models have the 

same forecast accuracy.  

 

4. Conclusion 

In this study, the forecasting accuracy of the ARIMAX model and SARIMA model for forecasting Currency in 

Circulation in Ghana was compared. The Diebold-Mariano test indicated that there was no significant difference 

in the forecasting accuracy of the two models. Thus, we proposed both the ARIMAX model and SARIMA 

model for forecasting Currency in Circulation in Ghana. However, since Currency in Circulation is volatile and 

subject to several unobservable development in the economy, sole reliance on these forecasting models to predict 

the Currency in Circulation for the purpose of liquidity management by the Bank of Ghana is not advisable. 

Therefore continues monitoring of the forecasting performance of these models, review of market conditions and 

necessary adjustments are required to make the use of these models more realistic. 
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Table 1: ADF test of Currency in Circulation in level form 

Test   Constant    Constant+ Trend   

  Test Statistic P-value Test Statistic   P-value 

ADF 5.4972   1.0000 5.2189   1.0000 

 

Table 2: Regression parameters of the transformed first differenced series 

Variable Coefficient Standard error T-statistic P-value 

January -0.0777 0.0187 -4.1648 0.0001
* 

February -0.0516 0.0178 -2.9040 0.0043
* 

March -0.0021 0.1780 -0.1186 0.9058 

April 0.0196 0.0179 1.0989 0.2738 

May 0.0129 0.0179 0.7216 0.4718 

June 0.0015 0.0180 0.0857 0.9318 

July 0.0340 0.0180 1.8890 0.0611 

August 0.0050 0.0181 0.2785 0.7811 

September 0.0300 0.0181 1.6567 0.1000 

October 0.1243 0.0182 6.8391 0.0000
* 

November 0.0380 0.0182 2.0860 0.0389
* 

December 0.1706 0.0183 9.3292 0.0000
* 

*: Means significant at the 5% level of significance 

 

Table 3: ADF test of seasonal and non-seasonal differenced series 

Test   Constant   Constant+ Trend   

  Test Statistic P-value Test Statistic   P-value 

ADF -5.0165   0.0000 -4.9081   0.0001 

 

Table 4: Tentative SARIMA models 

Model AIC AICc BIC 

ARIMA (1, 1, 1)(1, 1, 1)12 -368.92 -368.44 -354.54 

ARIMA (1, 1, 1)(2, 1, 1)12 -367.05 -366.37 -349.80 

ARIMA (2, 1, 1)(1, 1, 1)12 -366.92 -366.25 -349.67 

ARIMA (1, 1, 0)(1, 1, 0)12 -353.80 -353.62 -345.18 

ARIMA (0, 1, 1)(0, 1, 1)12 -372.16
* 

-371.97
* 

-363.53
* 

*: Means best based on the selection criteria 

Table 5: Estimates of parameters for ARIMA (0, 1, 1)(0, 1, 1)12 

Variable Coefficient Standard error z-statistic P-value 

θ� 0.3809 0.0786 4.8400 0.0000
* 

 L1 0.7109 0.0849 8.3570 0.0000
* 

*: Means significant at the 5% level of significance 
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Table 6: ARCH-LM test of residuals of ARIMA (0, 1, 1)(0, 1, 1)12 

Lag Test statistic df P-value 

12 2.8814 12 0.9963 

24 4.7132 24 1.0000 

36 6.3775 36 1.0000 

Table 7: Parameters of regression model on selected periodic dummies 

Variable Coefficient Standard error T-statistic P-value 

January -0.0810 0.0168 -4.8342 0.0000
* 

February -0.0547 0.0160 -3.4079 0.0009
* 

October 0.1209 0.0160 7.5383 0.0000
* 

November 0.0346 0.0160 2.1554 0.0329
* 

December 0.1671 0.0160 10.4173 0.0000
* 

*: Means significant at the 5% level of significance 

Table 8: Tentative models for the residuals 

Model AIC AICc BIC 

ARIMA (1, 0, 1) -416.0500 -414.9800 -392.2900 

ARIMA (1, 0, 0) -415.4200 -414.5900 -394.6300 

ARIMA (0, 0, 1) -417.3900
* 

-416.5700
* 

-396.6000
* 

*: Means best based on the selection criteria 

Table 9: Parameters of the ARIMAX model 

Variable Coefficient standard error z-statistic P-value 

θ� 0.3174 0.0813 3.9024 0.0001
* 

January -0.0808 0.0164 -4.9178 0.0000
* 

February -0.0543 0.0151 -3.6041 0.0003
* 

October 0.1306 0.0154 8.4684 0.0000
* 

November 0.0346 0.0159 2.1807 0.0292
* 

December 0.1671 0.0159 10.5396 0.0000
* 

  AIC=-417.39 AICc=-416.57 BIC=-396.6 

*: Means significant at the 5% level of significance 

 

Table 10: ARCH-LM test of the ARIMAX model 

Lag Test statistic df P-value 

12 5.2238 12 0.9501 

24 7.2102 24 0.9996 

36 11.1008 36 1.0000 
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Table 11: Diebold-Mariano test 

Forecast horizon Test statistics P-value 

1 -1.2050 0.2282 

2 -0.9675 0.3333 

3 -0.8653 0.3869 

4 -0.8033 0.4218 

5 -0.7501 0.4532 

  

 
Figure 1: ACF and PACF plot of differenced series 
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Figure 2: Diagnostic plot of ARIMA (0, 1, 1)(0, 1, 1)12 

 
Figure 3: ACF and PACF plot of model residuals 
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Figure 4: Diagnostic plot of the ARIMAX model 
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