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PROGRAMMING MODEL FOR BANK PORTFOLIO SELECTIONS 
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ABSTRACT 

In this paper, a concave-convex fractional programming model for bank portfolio selections is 

formulated. We have transformed the model into a concave quadratic programming problem 

and developed a technique for its solution. A real life application of the model is performed 

with twelve banks in Nigeria. The optimal solution determined by the proportion of 

investment to be made by an investor in each bank in order to maximize the expected returns 

at minimum risk is highlighted. However, the computational results show that the proposed 

model can generate a favourable portfolio strategy according to the investor’s satisfactory 

degree.  The trade-off curve also indicates the amount of risk that is commensurate with a 

particular expected return.   

Key words: concave-convex, fractional programming problem, optimization, transformation 

 

1.1 INTRODUCTION 

The effectiveness/workability of a system is most times characterised by a ratio of technical 

and economic problems. Maximizing system efficiency gives rise to fractional programs. The 

frequently occurring objectives are maximization of productivity, maximization of return on 

investment, maximization of return/risk, minimization of cost/time and maximization of 

output/input. Other non-economic applications arise from information theory, applied 

mathematics and physics among others (Schaible (2000)). Most of these applications are on 

linear fractional programming where both the numerator and denominator of the objective 

function are linear. In real life situations linear fractional models arise in decision making 

such as construction planning, economic and commercial planning, production planning, 

financial and corporate planning, health care and hospital planning, bank balance sheet 

management, water resources management. Thus, mathematical models taking objective 

function as a ratio of two linear functions have many applications in financial planning. 

Indeed, in such situations, it is often a question of optimizing a ratio: debt/equity, 

output/employee, actual cost/standard cost, profit/cost, inventory/sales, risk asset/capital, 

student/cost, doctor/patient and so on subject to some constraints. If the constraints are linear, 

we obtain the linear fractional programming problem (LFPP) Pandian et al. (2013), Mehrjerdi 

(2010). Therefore, Linear Fractional programming problem deals with that class of 

mathematical programming problem in which the relation between the variables in the 

problem are linear, the constraint relation are in linear form and the objective function to be 

optimized is a ratio of two linear functions. Narayanamoorthy and Kalyani (2015).  In the 

literature several methods have been recommended for the solution of LFPP. LFPP has drawn 

the interest of many researchers since it is widely applied in many important fields. In recent 
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times, much has been done with respect to propounding optimal solution to fractional 

programming problems. Optimization of fractional programming problem involves several 

methods of transforming the problem to a linear or quadratic form in diverse areas of the 

application. This has been done using various techniques and by different researchers which 

include: Harvey (1968), Bitran and Novaes (1972), Charnes and Cooper (1973), Schaible 

(1981), Hasan and Acharjee (2011), Narayanamoorthy and Kalyani (2015), Schaible (1980), 

Singh (1981), Verna et al. (1990), Tantawy (2008), Xiao (2010), Penclaim and Jayalakshmi 

(2013), Lokhande et al (2013).  

 

1.2 Non- linear fractional programming 

In linear programming the aim is to maximize or minimize a linear function subject to linear 

constraints. In many interesting maximization and minimization problems the objective 

function may not be a linear function and some of the constraints may not be linear 

constraints. Such an optimization problem is called a Non-linear programming problem (NLP) 

Winston(1994). Literature on nonlinear fractional programming include the following: 

Sulaiman (2013), Abdulrahim (2014), Frag et al (2009), Shen et al. (2009),  

Bisoi et al (2011), Sharma et.al. (2011),  Abdulrahim (2014). In this work, we intend to look 

at the Non-linear fractional programming problem where the objective function is a rational 

function in which the numerator is linear and the denominator is quadratic with linear 

constraint. Portfolio selection application of maximization of return on risk which is expected 

to yield a global optimal solution is used. 

 

2.0 GENERAL FRACTIONAL PROGRAMMING MODEL 

 

The general fractional programming problem is of the form: 

𝑀𝑎𝑥 𝑍 =
𝑓(𝑥)

𝑔(𝑥)
 , 𝑥 ∈ 𝑠        (1) 

𝑤ℎ𝑒𝑟𝑒 

 𝑆 =  {𝑥 ∈  𝑅𝑛 ∶  ℎ𝑥 ≤ 𝑏;   𝑏 ⊂ 𝑅𝑛}  ,  

𝑔(𝑥)  ≥ 0 
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3.0   Formulation of the Model for Bank Portfolio Selections 

3.1    Definition of variables and parameters  

Let 

=ix  Proportion of investment made in each bank; i = 1, 2, . . . , 12 

=iL Liquidity of the 𝑖𝑡ℎ bank  

=iE  Earnings per shares of the 𝑖𝑡ℎ bank  

=iR Return on investment in the 𝑖𝑡ℎ bank  

=L The lowest acceptable expected Liquidity per unit money invested in the        

entire portfolio.  

=E  The lowest acceptable earnings per share per unit money invested in the entire portfolio    

=i  Expected return on investment in the ith bank 

=ij  Covariance of the expected returns on security i and j 

=pR  Return for the portfolio 

 

3.2 Formulation of the objective function 

 The return for the portfolio (𝑅𝑝) is given by 


=

=
12

1i

iit xRR

                (2)

 

Taking expectations of both sides of equation (2) we obtain  

    ii

i

i xRERE 
=

=
12

1

 

This may be rewritten as 


=

=
12

1i

iiRt x   
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( ) 
=

=
12

1i

ii xxf 
         (3) 

Where 

𝑓(𝑥) = Ε[𝑅]  𝑎𝑛𝑑 𝜇𝑖 = Ε[𝑅𝑖] 

The risk of the portfolio as measured by variance of the total returns is given by 

( ) ( ) ( )ji

i j

ji

i

ii RRCovxxRVarxRVar ,
12

1

12

1

12

1

2 
= ==

+=      (4) 

This may be written in an expanded form as 
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Therefore, the objective function of the portfolio selection model is formulated thus: 

 Z =
𝑓(𝑥)

𝑔(𝑥)
         (5) 

This objective function is to be maximized. 

3.3 Formulation of the constraint 

The constraints are liquidity, earnings per shares and total assets and are formulated thus: 

The liquidity constraint is 
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LxL
i

ii 
=

12

1

                (6) 

 

The earnings per share constraint is 

ExE
i

ii 
=

12

1

                                      (7) 

The total asset constraint is given by 

1
12

1

=
=i

ix
                (8) 

 

Non-negativity constraints are 

𝑥𝑖 ≥ 0,   𝑖 = 1,2, … ,12              (9) 

The proportion must be nonnegative 

3.4 The complete model 

Max Z =
𝑓(𝑥)

𝑔(𝑥)
                                         (10) 

Subject to: 

LxL
i

ii 
=

12

1

                                                              (11) 

ExE
i

ii 
=

12

1

                                        (12) 

1
12

1

=
=i

ix                                         (13) 

  𝑥𝑖 ≥ 0,   𝑖 = 1,2, … ,12 

3.5 The model excluding the liquidity and earnings per share constraints 

Max Z =
𝑓(𝑥)

𝑔(𝑥)
                                                   (14) 

Subject to: 

1
12

1

=
=i

ix         

  𝑥𝑖 ≥ 0,   
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3.6 The conventional portfolio selection model 

( )xgMinZ =                                         (15) 

Subject to: 

 =
=

12

1i

ii x          

1
12

1

=
=i

ix         

  𝑥𝑖 ≥ 0 

4.0  Model Solution 

Lemma 1:     

 𝑀𝑎𝑥 {
𝑓(𝑥)

𝑔(𝑥)
} ≅ − 𝑀𝑎𝑥 {

−𝑔(𝑥)

𝑓(𝑥)
} 

Proof:   

 𝑀𝑎𝑥 {
1

𝑝(𝑥)
} ≅ 𝑀𝑖𝑛{𝑝(𝑥)} ≅  −𝑀𝑎𝑥{−𝑝(𝑥)} 

Now letting   𝑝(𝑥) =  
𝑔(𝑥)

𝑓(𝑥)
 

we obtain 

 𝑀𝑎𝑥 {
𝑓(𝑥)

𝑔(𝑥)
}  ≅  −𝑀𝑎𝑥 {

−𝑔(𝑥)

𝑓(𝑥)
} 

Lemma 2: If   𝑔(𝑥) is convex, then √𝑔(𝑥) is also convex and vice versa. 

Lemma 3:  If   𝑔(𝑥) is convex, then −𝑔(𝑥)is concave. 

Theorem 1: If f(x) is concave and g(x) is convex, then the concave-convex fractional 

programming model can be transformed to a concave programming model. 

Proof: 

By lemma (1), the concave-convex programming model (10-13) is equivalent to 
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  Max Z =
−𝑔(𝑥)

𝑓(𝑥)
                            (16) 

Subject to: 

LxL
i

ii 
=

12

1

 

1
12

1

=
=i

ix  

 

 𝑥𝑖 ≥ 0,   𝑖 = 1,2, … ,12
 

By lemma 2, equation (10) is equivalent to 

 −𝑀𝑎𝑥 {  𝑍 =
−√𝑔(𝑥)

𝑓(𝑥)
   }        (17) 

 

Subject to: 

 

LxL
i

ii 
=

12

1

 

ExE
i

ii 
=

12

1  

1
12

1

=
=i

ix  

 

𝑥𝑖 ≥ 0,   𝑖 = 1,2, … ,12 

Let  ( ) txxf
j

jj ==
=

12

1

  

( ) 
= =

=
12

1

12

1i j

jiij xxqxg  
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Then the model becomes 
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12,...,2,1,0 = jy j                                        (23)
 

 

Finally, by Lemma (3), the model becomes: 
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1
12

1

=
=j

jj y

                             (28)

 

 

12,...,2,1,0 = jy j                                        (29)
 

 

 

Equation (24) – (29) is a concave quadratic programming model. 

 

4.3   The transformed model excluding the liquidity and earnings per share constraints 


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1
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=
=j

jj y

        

 

 

12,...,2,1,0 = jy j       
 

 

4.4 Solving the Model with real data 

4.4.1  Data 

Based on the data collected from the Nigerian Stock Exchange on the annual financial 

statement of twelve banks, the mean, variance, covariance, Hessian matrix are determined. 

Optimal solution of the concave-convex fractional programming model, the transformed 

model and the conventional portfolio selection model is obtained. Tables and graph are used 

for the respective interpretations and are subsequently discussed. 

The transformed portfolio selection model to concave quadratic programming problem is 

given by 
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The transformed model excluding the liquidity and earnings per share constraint is given by 
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Subject to: 

 

0.0209𝑥1  +  0.0080𝑥2  +  0.0170𝑥3  + 0.0097𝑥4 + 0.010𝑥5  + 0.0036 𝑥6 + 0.0046𝑥7

+ 0.0390𝑥8 + 0.0092𝑥9 + 0.0474𝑥10   + 0.0068 𝑥11  + 0.0241𝑥12 

𝑥1   +   𝑥2  +  𝑥3 +  𝑥4  +  𝑥5  + 𝑥6  +  𝑥7 +  𝑥8 + 𝑥9  +  𝑥10  +  𝑥11 +  𝑥12 = 1 

 

𝑥𝑖 ≥ 0 , 𝑖 = 1, 2,   .  .  .  , 12 

 

The result of the transformed model to quadratic program is as shown in table 1 

 

TABLE 1 

 

Optimal feasible solution to the transformed model 

 

Banks 
1y  Z   r  

1 18.2234205 250.7913 45.7221903 

2 0   

3 0   

4 0   

5 0   

6 0.18957332   

7 0   

8 11.1721626   

9 13.6730391   

10 0.14176062   

11 0.33199689   

12 1.9902372   
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TABLE 2 

 

Optimal feasible solution to the original formulated portfolio selection model 

 

Banks 
1x  ( )xf  ( )xg  ( )

( )xg

xf
Z =  

1 0.398568 0.021871 0.001199 18.24103 

2 0    

3 0    

4 0    

5 0    

6 0.004146    

7 0    

8 0.244349    

9 0.299046    

10 0.0031    

11 0.007261    

12 0.043529    

 1    

 

 

TABLE 3 

 

Optimal feasible solution to the transformed model excluding the liquidity and earnings 

per share constraint. 

 

Banks 
1y  Z   r  

1 18.22622 250.7913 45.72383 

2 0   

3 0   

4 0   

5 0   

6 0.18992   

7 0   

8 11.17278   

9 13.66782   

10 0.141884   

11 0.338548   

12 1.986665   
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TABLE 4 

Optimal feasible solution to the original model excluding the liquidity and earnings per 

share constraints 

 

Banks 
1x  ( )xf  ( )xg  ( )

( )xg

xf
Z =  

1 0.398615 0.02187 0.001199 18.2402 

2 0    

3 0    

4 0    

5 0    

6 0.004154    

7 0    

8 0.244353    

9 0.298921    

10 0.003103    

11 0.007404    

12 0.043449    

 1    

 

TABLE 5 

Table of values for the trade-off curve method 

Return Risk 

 

0.013 

0.02 

0.022 

0.025 

0.028 

0.03 

0.035 

0.037 

0.04 

 

0.0013 

0.002 

0.0024 

0.003219 

0.004282 

0.0052 

0.009375 

0.012223 

0.034 
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FIGURE 1: Trade off curve of risks versus returns 

 

5.0   Conclusion 

The portfolio selection model was formulated as a concave-convex fractional programming 

problem as shown in equation (10).The model was transformed into a concave quadratic 

programming problem and solved by the Frank Wolfe’s modified algorithm in excel solver. 

The optimal solution as shown in Table 2 determines the proportion of investments to be 

made by an investor in each bank in order to maximize the expected return at minimum risk. 

The second model without the liquidity and earnings per share constraint as shown in equation 

(30), indicated the same result in the analysis as the first model which shows that those two 

constraints are redundant. The trade-off curve as shown in fig 1, indicates the amount of risk 

to be taken for a particular expected return. Based on the solution of the analysis as shown in 

table 2 and table 4, it is seen that  075432 ===== xxxxx , which implies that it is risky to 

invests in those Banks. It is safe for the investors to invest in each portfolio in the following 

proportion respectively: Bank A 39.86%, Bank F 0.44%, Bank H 24.44%, Bank I 29.91%, 

0
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Bank J 0.31%, BANK K 0.73% and Bank L 4.35%. The computational results show that the 

proposed model can generate a favourite portfolio strategy according to the investor’s 

satisfactory degree. The trade-off curve also indicates the amount of risk that is commensurate 

with a particular expected return. 
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