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Abstract 

In this research work, we study the global stability of the SIR model which describes the 

dynamics of infectious disease with two classes of infected stages and varying total population 

size. The incidence used in the mathematical modeling was the mass-action incidence. The 

basic reproduction number R0 is computed. If the basic reproduction number is less than one, 

then the disease-free equilibrium point is locally and globally asymptotically stable. Existence 

and uniqueness of the endemic equilibrium is established when the basic reproduction number 

is greater than one and locally stable. We prove that global stability of the disease free 

equilibrium point using Lyapunov function. Numerical simulations have been carried out 

applying mat lab. Our result show that if the basic reproduction number R0 is below one the 

disease free equilibrium point is locally and globally stable in the feasible region, so that the 

disease dies out. If the basic reproduction number R0 is greater than one a unique endemic 

equilibrium point is locally asymptotically stable and the disease free equilibrium point is 

unstable in the interior of the feasible region and the disease will persist at the endemic 

equilibrium point if it is initially present. 
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 INTRODUCTION 

Back ground of the study 

In the mid-fourteenth century, the Black Death, a plague epidemic, killed roughly one-third of 

Europe’s population. More recently, in 1918, an outbreak of the flu killed an estimated 20 

million people, more people than died in all of World War I. In our own times, the acquired 

immune deficiency syndrome (AIDS) pandemic has brought untold personal suffering and 

social losses. The Centers for Disease Control (CDC) estimates that, from 1981 to 2001, 

approximately 21 million people died from AIDS worldwide. Millions of people all over the 

world are currently infected with the human immunodeficiency syndrome virus (HIV), about 

95% of them in developing countries [6]. 

Although political, social, and economic factors play a large role in setting public health 

policies, understanding the dynamics of contagion is an important step. The worldwide 

eradication of smallpox, through a carefully developed vaccination campaign initiated by the 

World Health Organization in 1967, is a remarkable example of what can be achieved with a 

well-designed plan. 

Mathematical models have become important tools in analyzing the spread and control of 

infectious diseases. The model formulation process clarifies assumptions, variables, and 

parameters; moreover, models provide conceptual results such as thresholds, basic 

reproduction numbers, contact numbers, and replacement numbers. Understanding the 

transmission characteristics of infectious diseases in communities, regions, and countries can 

lead to better approaches to decreasing the transmission of these diseases. Mathematical 

models are used in comparing, planning, implementing, evaluating, and optimizing various 

detection, prevention, therapy, and control programs. The mathematical modeling of the 

dynamics of infectious disease, though often inexact, has enormous potential to help improve 

human lives. Biologists use mathematical models to understand the dynamics of interaction 

between populations. We further develop the idea of mathematical model to explore the 

dynamics of infectious disease [8]. 

 

Transmission of a disease is carried out by different agents. A disease transmitted by a virus, 

such as HIV, influenza, measles, chickenpox, mumps, or polio, generally confers immunity 

against re-infection while diseases caused by bacteria, such as tuberculosis, typhoid or 

gonorrhea, offer no immunity. Another form of transmission is due to vectors, which are 

agents infected by humans which then transfer the disease to another human. A common 
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example of a vector is the mosquito, which spreads malaria and filariasis. Other disease 

carrying agents include protozoa, helminthes (worms), and the recently discovered prions, 

which are thought to cause infections such as mad cow disease.   

Epidemiology is the branch of science which essentially deals with the mathematical 

modeling of spread of diseases. The interest here lies in formulating a mathematical model 

which will explain the population dynamics of disease causing agents, and can then be 

analyzed with a view to controlling or eradicating the spread of those agents. The formulation 

of a model is a process which includes statement of the relevant assumptions, relationship 

among variables, and parameters and relations governing their behaviors. Of course, the 

choice of these factors is critical to the model and depends largely on the particular disease to 

be modeled and the intended purpose of that model. Simple models, by its nature, simplifies 

the situation by making many assumptions but may still describe qualitative behavior to a 

reasonable extent, while a more detailed model may provide quantitative predictions, but are 

usually impossible to solve analytically. The transmission dynamics of a disease could be 

studied from different perspectives, such as at various levels of a spatial, temporal, or 

organizational scale. One of the important aspects of the modeling process is how much 

organizational detail like population structure, immunity, and genetic variability will be 

included in the model. Then the model builder decides strategy to model these details to 

effectively describe the disease spread [5] 

 Mathematical modeling of the epidemic dynamics is an important method of studying the 

spread of infectious disease qualitatively and quantitatively. It is based on the specific 

property of population growth, the spread rules of infectious diseases, and the related social 

factors, etc. To construct a mathematical model which reflects the dynamical properties of 

infectious diseases and to analyze the dynamical behavior of the disease it is of paramount 

important to understand the biology of the infectious disease [4].When it is realized that an 

epidemic has begun, individuals are likely to modify their behavior by avoiding crowds to 

reduce their contacts and by being more careful about hygiene to reduce the risk that a contact 

will produce infection. 

We formulate our descriptions as compartmental models, with the population under study 

being divided into compartments and with assumptions about the nature and time rate of 

transfer from one compartment to another. In most cases the population is divided into three 

classes denotes as S, I, and R. where: 
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❖ S (t) denotes the number of individuals who are susceptible to the disease at any time t 

, 

❖  I (t) denotes the number of infected individuals, assumed infectious and able to spread 

the disease by contact with susceptible, 

❖  R (t) denotes the number of individuals who have been infected and then removed 

from the possibility of being infected again or of spreading infection. Removal is carried 

out either through isolation from the rest of the population, or through recovery from the 

disease with full immunity against re infection. 

The rates of transfer between compartments are expressed mathematically using differential 

equations. Ross (1910) devised ordinary differential equations (ODEs) models to understand 

the mechanisms of how disease spread. For instance Ross developed transmission models for 

malaria and derived the first threshold theorem that identified a critical mosquito density 

required for malaria epidemics. He also introduced the mass action idea in continuous time in 

his study of the transmission of malaria [2]. 

The Kermack-McKendrick model is a compartmental model based on relatively simple 

assumptions on the rates of flow between different classes of members of the population. In 

order to model an epidemic disease; the population is divided into various classes. In some 

cases the population is divided into three senior classes: the class of the susceptible 

individuals, denoted by S, and the class of the infected individuals, denoted by I. Sometimes, 

the class of the infected can be split into several classes which allow highlighting the state of 

the disease, and the classes of individuals recovered from the class I and have permanent 

immunity denoted by R. In our case, the infected are divided into two categories, denoted I1 

and I2, with I1 the first stage of the disease and I2 the worsened case. 

 

DESIGN AND METHODOLOGY 

This section includes design of the study instruments and data analysis. We use system 

nonlinear ordinary differential equations to describe the dynamics of infectious disease with 

two stages of infected I1 and I2. The analysis of the mathematical model which describes the 

dynamics of infectious disease transmission will be done. The next generation matrix was 

used to find the basic reproduction   number. Jacobean matrix was used to show local stability 

of the equilibrium points of the model equation. The Lyapunov functions were used to show 
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global stability of the equilibrium points. The analytical solution of the model equations was 

supplemented by the numerical simulations using MATLAB and Mathematica. 

Model Formulation and Analysis 

The model Formulation 

The SIR models are well known in the dynamic of infectious population. In this section, we 

present the SIR model used in research work. We consider two stages of infected population. 

The population of size N is divided into subclasses of individuals, who are susceptible, 

infected into the first stage of the disease and infected into the second stage, and recover with 

sizes denoted by S, I1 and I2and R. 

To build our model we make the following assumptions: 

▪ In the models there are births and deaths, so that the total population size is not constant, 

▪ Transmission of the disease occurs following adequate contacts between a susceptible 

individual and infectious in respectively the compartments I1and I2. The standard mass 

balance incidence expressions  β1I1
S

N
 andβ2I1

S  

N 
are used to indicate successful 

transmission of disease, with β1 and β2denote the per capita contact rate of the infectious 

in the respective compartments I1 and I2.Thus, the new infection is given by(  β1I1  +

β2I2)
S

N
. 

▪ Natural death rate, μ, is constant across all the classes; 

▪ The transition rate (denoted γ) from the first stage of infection I1 to the second stage I2 is 

different from the rate of disease-induced death (denoted d). 

So, the rate of change of infected population in the first stage is given by: 

dI1

dt
= (β1I1 + β2I2)

S

N
− γI1 − μI1 − αI1 , and, 

The rate of change of infected population in the second stage is given by  

dI2

dt
= γI1 − μI2 − dI2 − αI2 

Hence, the system of differential equation which describes the dynamics of the transmission 

of the infection is in SI1I2R model with disease-induced and natural death is 

 

{
  
 

  
 

dS

dt
= bN − (β1I1 + β2I2)

S

N
− μS           

dI1

dt
= (β1I1 + β2I2)

S

N
− γI1 − μI1 − αI1

dI2

dt
= γI1 − μI2 − dI2 − αI2                      

dR

dt
= αI1 + αI2 − μR                                

                          (1) 
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where N = S + I1 + I2+R is the total population size, b represent the per capita birth rate, μ is 

the per capita natural death rate of the population, β1 and β2 are respectively the per capita 

transmission rate of the compartments I1 and I2, γ is the per capita rate of transfer of infected 

individuals from the infected stage 1 to stage 2, d is the disease induced death rate, and α is 

the recovery rate of infected individuals. 

Properties of the model 

Since system of equation (1) describes the evolution of a human population, it is important to 

prove the individual's number in each compartment should remain non negative and bounded. 

So, we establish, in this section, the invariant region of solutions of model and the positivity 

of non-dimensionalized of system of equation (1). 

Invariant Region  

The feasible solution shows the region in which the solutions of the equations of the system 

are biologically meaningful and the solution of the system is non-negative in this region.  

Let the total population size N satisfies the equation: 

 
dN

dt
= (b − μ)N − dI2 

Let  bN = Α, and constant, then; 

     
dN

dt
= A − μN− dI2 

         ≤ A − μN 

 Integrating and rearranging we have N ≤
A

μ
 

Hence, the feasible region for the system of equations (1) is given as: 

 Γ = {(S, I1, I2, R) ϵ ℝ
4: S + I1 + I2 + R ≤

A

μ
} 

Using proportions: s =
S

N
 , i1 =

I1

N
 , i2 =

I2

N
 , and  w =

R

N
we can non-dimensionalized the 

system of equations (1) as follows: 

 
ds

dt
= b − bs − (β

1
i1 + β

2
i2)s + dsi2 

In the same way:   i1 =
I1 

N
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di1

dt
= (β

1
i1 + β

2
i2)s − (b + γ+ α)i1 + di1i2 

Similarly for i2; we have i2 =
I2

N
 

di2

dt
= γi1 − (b + d + α)i2 + di2

2, and; 

 
dw

dt
= (i1 + i2)α − wb − dwi2 

Thus, the non-dimensionalized system of differential equation is 

{
  
 

  
 

ds

dt
= b(1 − s) − (β

1
i1 + β

2
i2)s + dsi2        

di1

dt
= (β

1
i1 + β

2
i2)s − (b + γ + α)i1 + di1i2

di2

dt
= γi1 − (b + d + α)i2 + di2

2                      

dw

dt
= (i1 + i2)α−wb − dwi2                          

                    (2) 

2. Positivity of Solutions 

We proved that all the variables in the model equations are non-negative. 

Lemma: If the initial data set be(s, i1, i2, w) (0) ≥ 0 ∈ Ω , then the solution set (s, i1, i2, w) (t) 

of the equations in system (2) is positive for all t > 0. 

Proof: From equation (1) if it is assumed that: 

      
ds

dt
≤ b − bs 

Integrating and rearranging we have: s(t) ≤ b2  + ce−bt 

Applying initial conditions when t=0, s (t) =s (0) we get  

   s(0) = b2  + c ⇒ c = s(0) − b2 

    s(t) ≤ b2  + (s(0) − b2)e−bt , but  b2  + (s(0) − b2)e−bt > 0 

It then follows that; 

     s(t) ≥ 0 , ∀t ≥ 0  

From equation (2) of the system of equation (2) 

      
di1

dt
= (β

1
i1 + β

2
i2)s + di1i2 − (b + γ + α)i1 

If it is assumed that:
di1

dt
> −(b + γ + α)i1 
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Integrating and rearranging we have: i1(t) > ℮−(b+γ+α))t+c 

Applying initial conditions that when t=0,i1(t) = i1 (0)  we get 

     i1(t) > i1(0)℮
−(b+γ+α))t  , hence i1(0)℮

−(b+γ+α))t ≥ 0 

It follows that; 

      i1(t) ≥ 0 , ∀t ≥ 0  

From equation (3) of the system of equations (2) 

      
di2

dt
= γi1 + di2

2 − (b + d + α)i2 

If it is assumed that:    
di2

dt
> −(b + d + α)i2 

Integrating and rearranging we have: i2(t)) > ℮−(b+d+α)t+c 

Applying initial conditions that when t=0,i2(t) = i2 (0)  we get 

i2(t)) > i2(0)℮
−(b+d+α)t   , but  i2(0)℮

−(b+d+α)t > 0. 

Hence i2(t) ≥ 0 , ∀t ≥ 0 

From equation (4) of the system of equations (2) we have  

     
dw

dt
= (i1 + i2)α −w(b + di2) 

If it is assumed that;   
dw

dt
≥ −wb, then 

Integrating and rearranging we have:w(t) ≥ ℮−bt+c 

Applying initial conditions that when t=0, w(t) = w (0)  we get 

     w(t) ≥ w (0)℮−bt , but w (0)℮−bt ≥ 0, ∀ t ≥ 0 

      w(t) ≥ 0 , ∀t ≥ 0 

Therefore it is true that 

    s(t) ≥ 0 , i1(t) ≥ 0,   i2(t) ≥ 0 and  w(t) ≥ 0, for all t ≥ 0. 

Equilibrium Points 

Equilibrium points are found by setting the right hand sides of system (2) equal to zero. This 

gives two equilibrium points in the feasible region, the disease-free equilibrium point E1 = (1, 

0, 0, 0) and the unique endemic equilibrium point  
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E2= (s*, i1*, i2*, w*). The unique endemic equilibrium point E2for the system (2) assuming 

that b≥ d, where b and d represent the birth and the disease induced rate respectively. 

Proposition If R0> 1 the endemic equilibrium point exists and is unique. 

Proof: From the third equation of system (2) we have:   

i1
∗ =

b+d+α

γ
i2
∗ −

d

γ
i2
∗2                              (3) 

Substituting i1 in the second equation of system (2) we obtain i1
∗  

(β
1
(b + d + α) − β

1
di2
∗ + β

2
γ)s∗ − (b + γ+ α)(b + d + α) + 

      d(b + d + α)i2
∗ +  d(b + d + α)i2

∗ − d2i2
∗2 = 0           (4)                                                       

Also, in (4) we replace s∗ by its expression given by:      

              S∗ = 1 − i1
∗ − i2

∗  

   Then,  s∗ = 1 −
b+d+α

γ
i2
∗ −

d

γ
i2
∗2 − i2

∗  

Solution of the polynomial:   

 P(i2
∗) = A(i2

∗)3 + B(i2
∗)2 + C(i2

∗) + D = 0 

where A = −β1
d2

γ
 ,       B = 2β1d

b+d+α

γ
+ β1d + β2d − d

2 

  

C = −β1d
(b + d + α)2

γ
− β1(b + d + α) − β1d − β2(b + d + α) − β2γ +  d(b + γ + α)

+  d(b + d + α) 

             = −R0(b + d + α)(b + γ + α) (1 +
b+d+α

γ
) 4 − β1d + d(2(b + α) + d + γ) 

D = β1(b + d + α) + β2γ − (b + d + α)(b + γ + α) 

             = (b + d + α)(b + γ + α)(R0 − 1). 

Using the fact that R0> 1, A < 0, B > 0, C < 0, and D > 0. 

 We have P (i2
*) = 0 ⇔ Q (i2

*) = R0, where Q is the polynomial given by 

Q(i2
∗) = −

A

k
(i2
∗)3 −

B

k
(i2
∗)2 −

C

k
i2
∗ + 1, and k = (b + d + α)(b + γ + α) 

 

We have: 𝑄(0) = 1 

     Q(1) =
β1(b

2+bγ+dγ)+γ[b(b−d+γ)+β2(b+γ)]

k
 

Also 

 Q(1) − R0 = b
β1b+β2γ+bγ+γ2−dγ

kγ
 , 
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This is positive if and only if 

      β1b + β2γ + bγ + γ
2 > 𝑑𝛾 .                               (5) 

The relation (5) is satisfied using to the assumption b ≥ d. Thus,  

1 = Q (0) < R0< Q (1).  Let us localize exactly the domain of i2
∗. We have  

      i1
∗ + i2

∗ < 1                                                             (6) 

And since, by the relation (3),i1
∗ =

b+d+α

γ
i2
∗ −

d

γ
i2
∗2 we   deduce that i2

∗ must verify the 

following inequality:  

       R(i2
∗) = −di2

∗2 + (b + d + γ)i2
∗ − γ < 0.                           

The discriminate of the polynomial R is 

      ∆R= (b + d + γ)2 − 4dγ = b2 + 2b(d + γ) + (d − γ)2 > 0 . 

The roots of R are: r1 =
(b+d+γ−√∆R)

2d
 and r2 =

(b+d+γ+√∆R)

2d
 . 

We have:r1 <
γ

2d
< r2,and with the assumption b ≥ d we have r2> 1; 𝑖2

∗mustsatisfy  

 0 <i2 
∗ < min {r1, 1} ≤ min {

γ

2d
 , 1}, that is  i2

∗  must belong to the interval 

 I = (0, min {r1, 1}) ⊂ (0, min {
𝛾

2𝑑
, 1}).  

On the other hand, we have 

       Q(r) − R0 = (
1

2k
) [b(b + d + γ +√∆R] > 0. 

Since Q (0) = 1 < R0, Q (r1) > R0, and Q (1) > R0, the graph of Q intersects the horizontal line 

y = R0 at least one time in I. 

Now let us show that there is exactly one intersection in I. The derivative of Q is: 

        
dQ

di2
∗ = −(

1

k
) (3Ai2

∗2 + 2Bi2
∗ + C). 

Note that by Descartes rules of signs there is no negative root; on the other hand, the 

discriminate of   
dQ

di2
∗ is∆= B

2 − 3AC,we then have two cases: 

▪ If ∆ ≤ 0,  
dQ

di2
∗  is positive on R(the set of real numbers) 

▪ If ∆ > 0, we have two roots x1 and x2, and  x1 + x2 = −(
2B

3A
).                      However 

−
2B

3A
=

4

3

b+d

d
+
2

3
{
γ

d
+

β2γ

β1d
−

γ

β1
} 

        =
2

3

b+d

d
+
2

3
{
b+d

d
+

γ

d
+

β2γ

β1d
−

γ

β1
} 

        =  
2

3

b+d

d
+

2

3β1d
{β1(b + d) + β2γ + β1γ − dγ} 
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        =  
2

3

b+d

d
+

2

3β1d
{(b + d)(b + γ)R0 + β1γ − dγ} 

Thus 

   −
2B

3A
=

2

3

b+d

d
+

2

3β1d
{b(b + γ)R0 + bdR0 + β

1
γ + dγ(R0 − 1)} 

We know thatb(b + γ)R0 = β1b +
β2bγ

b+d
.Since b ≥ d we have −

2B

3A
= 2. 

Thus there is at least one root of  
dQ

di2
∗   larger than one. 

   All these observations show that the graph of Q intersects the line y = R0 only once.     

i1
∗  is deduced by i1

∗ =
b+d+α

γ
i2
∗ −

d

γ
i2
∗2 , s∗ = 1 −

b+d+γ

γ
i2
∗ −

d

γ
i2
∗2 , and 

 w∗  =
[(b+d+α)i2

∗−di2
∗2+γi2

∗ ]α

γ(b+di2
∗ )

 

 Then, the endemic equilibrium exists and is unique. 

The basic reproduction number (R0) 

Basic reproduction number, denoted by R0, represents the average number of secondary 

infectious infected by an individual of infective during whose whole course of disease in the 

case that all the members of the population are susceptible. According to this meaning, it is 

easy to understand that if R0< 1 then the infective will decrease so that the disease will go to 

extinction; if R0>1 then the infective will increase so that the disease cannot be eliminated and 

usually develop into an endemic. From the mathematical point of view, usually when R0< 1, 

the model has only disease free equilibrium E1(1, 0, 0) and E1is globally asymptotically 

stable; when 

R0> 1, the equilibrium becomes unstable and usually a positive equilibrium point 

E2= (s*, i1*, i2*, w*) appears.E2is called an endemic equilibrium and in this case it is stable. 

Hence, if all the members of a population are susceptible in the beginning, then Ro = 1 is 

usually a threshold whether the disease go to extinction or go to an endemic. 

We determine the basic reproduction number (R0) using next generation matrix by 

linearization about the disease-free equilibriumE1(1, 0, 0,0). 

Let 𝓕j(s, i1, i2) the rate of appearance of new infections in compartment j, and 

by Ѵj(s, i1, i2)the rate of transfer of individuals in and out the compartment j by all other 

means. The difference between ℱj(s, i1, i2) and Ѵj(s, i1, i2)gives the rate changes of 

compartment j. The crucial point which we have to notice here is that 𝓕i should include only 
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infections that are newly arising, but does not include terms which describe the transfer of 

infectious individuals from one infected compartment to another; i.e. 

 ℱ = [

0
(β1i1 + β2i2)s

0
0

]  , andѴ =

[
 
 
 
 b(1 − s) − (β1i1 + β2i2)s + dsi2

−(b + γ + α)i1 + di1i2
γi1 − (b + d + α)i2 + di2

2

(i1 + i2)α−wb − dwi2 ]
 
 
 

 

 F = 𝒟ℱ(E1) = (
0 0 0
0 β1 β2
0 0 0

)   and   

   V = 𝒟V(E1) = (

−b −β1 −β2 + d
0 −(b + γ + α) 0

0 γ −(b + d + α)
) 

|Ѵ| = |

−b −β1 −β2 + d
0 −(b + γ + α) 0

0 γ −(b + d + α)
| = −b(b + γ + α)(b + d + α)   , and  

adjѴ = 

(

(b + γ + α)(b + d + α) −β1(b + d + α) + (−β2 + d)γ (−β2 + d)(b + γ + α)
0 b(b + d + α) 0
0 bγ b(b + γ + α)

) 

 

Then     

  Ѵ−1 =
1

|Ѵ|
adjѴ =

(

 
 

−1

b

−β1(b+d+α)+(−β2+d)γ

b(b+γ+α)(b+d+α)

−β2+d

b(b+d+α)

0
−1

(b+γ+α)
0

0
−r

(b+γ+α)(b+d+α)

−1

b+d+α )

 
 

 

The next generation matrix is given asℱѴ−1 

     ℱѴ−1 = (

0 0 0

0
−β1

b+γ+α
−

β2γ

(b+γ+α)(b+d+α)

−β2

b+d+α

0 0 0

) 

The Basic Reproduction Number is the Eigen values of largest magnitude, or spectral radius 

of the next generation matrix, that is, the number of all new infectious host types in the next 

generation. 

            R0 = ρ(−ℱѴ
−1) 

 Thus,  R0 =
β1

b+γ+α
+

β2γ

(b+γ+α)(b+d+α)
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Stability Analysis 

Local Stability at Equilibrium Point  

Local Stability at Disease Free Equilibrium Point 

Theorem If 𝑅0< 1, then the disease-free equilibrium point is locally asymptotically stable. 

Proof: The Jacobean matrix of the linearized system of equations (2) at the disease free 

equilibrium point  (1, 0, 0, 0) is: 

       J(1,0,0,0) =   (

−b −β
1
− β

2
+ d 0

  0 β
1
− (b + γ + α)β

2
0

  0 γ − (b + d + α) 0
       0                         αα − b

) 

The determinant of J (E1) is given by: 

  det(J(E2)) = ||

−b −β
1
− β

2
+ d 0

  0 β
1
− (b + γ + α)β

2
0

  0 γ − (b + d + α) 0
       0                         αα − b

|| 

 

         = −b |
β
1
− (b + γ + α) β

2
0

γ −(b + d + α) 0
α α −b

| 

          = −b [(β
1
− (b + γ +   α)) (b + d + α)b +  β

2
γ b] 

                      = −b2[β
1
(b + d + α) + β

2
γ b − (b + γ + α)(b + d + α)] 

                       = −b2[(b + γ + α)(b + d + α)[R0 − 1],  

det(J(E2))>0, since R0 < 1 

The determinant is positive furthermore the trace is negative, because it is givenby: 

trJ(E2) = −(2b − β
1
) − (b + γ + α) − (b + d + α) < 0 

Thus, the disease-free equilibrium is locally stable using Routh-Hurwitz conditions. 

Local Stability of the Endemic Equilibrium point 

With the assumption b ≥ d we have the following result: 

Theorem The endemic equilibrium point is locally asymptotically stable if R0> 1. 

Proof: Since s + i1 + i2 + w = 1, we can eliminate s in system of equations (2). Therefore, we 

get the following system: 

{

di1

dt
= (β1i1 + β2i2)(1 − i1 − i2 +w) − (b + γ + α)i1 + di1i2

di2

dt
= γi1 − (b + d + α)i2 + di2

2                                                   
          (7)                         
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   The Jacobean of system of equations (7) at the endemic equilibrium E2(i1
∗ , i2

∗) is: 

J(E2)

= (
β1 + β1w

∗ − 2β1i1
∗ − β1i2

∗ − β2i2
∗ − (b + γ+ α) + di2

∗ β2 − 2β2i2
∗ − β2i1

∗ − β1i1
∗ − β2w

∗ + di1
∗

γ −(b + d + α) + 2di2
∗ ) 

At the endemic equilibrium point we have: 

β1 − 2β1i1
∗ − β1i2

∗ − β2i2
∗ − (b + γ + α) + di2

∗ + β1w
∗ = −β2i2

∗
1 − i2

∗ − w∗

i1
∗ − β1i1

∗  

The determinant of J (E2) is given by: 

det(J(E2)) = β
2
(b + d + α)i2

∗
1 − i2

∗ − w∗

i1
∗ + β

1
(b + d + α)i1

∗ − 2β
2
di2
∗2
1 − i2

∗ − w∗

i1
∗

− 2β
1
di1
∗ i2
∗ − β

2
γ + 2β

2
γi2
∗ + β

2
γi1
∗ + β

1
γi1
∗ − dγi1

∗ + β2w
∗γ 

                  = β2(b + d + α)i2
∗
1 − i2

∗ − w∗

i1
∗ + (β1(b + d + α) + β2γ)i1

∗

+ 2β2i2
∗ (γ −  di2

∗
1 − i2

∗ −w∗

i1
∗ ) −  2β1di1

∗ i2
∗ − β2γ + β1γi1

∗ − dγi1
∗ + β2w

∗γ 

In the first term of the determinant, we replace (b + d + α)i2
∗  by γi1

∗ + di2
∗2and we get:          

 det(J(E2)) = β2(γi1
∗ + di2

∗2)
1−i2

∗−w∗

i1
∗ + (b + d + α)(b + γ + α)R0i1

∗ + 

  2β2
i2
∗

i1
∗ ( γi1

∗ − di2
∗ + di2

∗2 + di2w
∗) − 2β1di1

∗ i2
∗ − β2γ + β1γi1

∗ −  dγi1
∗+β2w

∗γ 

We replace again γi1
∗ − di2

∗ + di2
∗2by (b + α)i2

∗and bydeveloping the first term of the 

determinant, we get: 

det(J(E2)) = β2γ − β2γi2
∗ − β2γw

∗ + β2di2
∗2
1 − i2

∗

i1
∗ + (b + d + α)(b + γ + α)R0i1

∗ + 

2β2(b + α)
i2
∗2

i1
∗ + β2d

i2
∗2w∗

i1
∗ − 2β1di1

∗ i2
∗ − β2γ + β1γi1

∗ − dγi1
∗ + β2w

∗γ 

 det(J(E2)) = β2i2
∗ (−γ + di2

∗
1 − i2

∗

i1
∗ + (b + α)

i2
∗

i1
∗) + (b + d + α)(b + γ + α)R0i1

∗

+ β2(b + α)
i2
∗2

i1
∗ + β2d

i2
∗2w∗

i1
∗ − 2β1di1

∗ i2
∗ + β1γi1

∗ − dγi1
∗  

det(J(E2)) = β2
i2
∗

i1
∗ (−γi1

∗ + (b + d + α)i2
∗ − di2

∗2) + [(b + d + α)(b + γ + α)R0 − dγ]i1
∗

+ β2(b + α + dw
∗)
i2
∗2

i1
∗ − 2β1di1

∗ i2
∗ + β1γi1

∗  
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Thus 

det(J(E2)) = [(b + d + α)(b + γ + α)R0 − dγ]i1
∗

+ β2
i2
∗

i1
∗ [2(b + α)i2

∗ − γi1
∗ + (1 − i2

∗ + w∗)di2
∗ ] + β1i1

∗(γ − 2di2
∗) 

The determinant is positive because i2
∗ ∈  (0,

γ

2d
)furthermore the trace is negative, because it is 

givenby: 

trJ(E2) = −β2i2
∗
1 − i2

∗ − w∗

i1
∗ − β1i1

∗ − (b + d + α) + 2di2
∗  

Then the endemic equilibrium point is asymptotically stable using Routh-Hurwitz conditions. 

Global Stability of the Disease Free Equilibrium Point 

Theorem3.3. If R0< 1, the disease free equilibrium point is globally asymptotically stable.     

We consider the following Lyapunov function 

 V = s − ln s + i1 + (
b+γ+α

γ
−
β1

γ
) i2. 

We obtain 

   
∂V

∂t
  =

∂V

∂s

ds

dt
+

∂V

∂i1

di1

dt
 +   

∂V

∂i2

di2

dt
 

          = (1 −
1

s
)
ds

dt
+ 

di1

dt
 +   (

b+γ+α

γ
−

β1

γ
) 
di2

dt
 

          = (1 −
1

s
) (b − bs − (β1i1 + β2i2)s + dsi2) + ((β1i1 + β2i2)s −   (b + γ + α)i1 +

  di1i2)  + (
b+γ+α

γ
−
β1

γ
) (γi1 − (b + d + α)i2 + di2

2) 

  = (b + bs) (1 −
1

s
) − (β1i1 + β2i2)s + (β1i1 + β2i2) + dsi2 − di2 + (β1i1 + β2i2)s

− (b + γ + α)i1 +  di1i2 + (b + γ + α)i1 −
(b + γ + α)(b + d + α)

γ
i2

+ 
d(b + γ + α)

γ
i2
2 − β1i1 + β1

b + d + α

γ
i2 − β1

d

γ
i2
2 

We get 

∂V

∂t
  = −

b

s
(1 − s)2 + β

2
i2 + di2(s + i1 − 1) −

(b + γ + α)(b + d + α)

γ
i2 +

bd

γ
i2
2   

+ di2
2 + β1

b + 𝑑 + α

γ
i2 − β1

d

γ
i2
2 

We have the followings equalities: 

      
b

s
(1 − s)2 =

b

s
(i1 + i2 +w)

2 and di2(s + i1 − 1) = −di2 (i2 +w) 
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Then V becomes: 

∂V

∂t
= −

b

s
(i1 + i2 +w)

2 + β2i2 −
(b+γ+α)(b+d+α)

γ
i2 +

bd

γ
i2
2+ β1

b+𝑑+α

γ
i2 − β1

d

γ
i2
2 − di2w  

  = −
b

s
(i1 + i2 +w)

2 +
(b + γ+ α)(b + d + α)

γ
(R0 − 1)i2 +

bd

γ
i2
2– β

1

d

γ
i2
2 − di2w 

= −
b

s
(i1 + i2 +w)

2 −
(b + γ+ α)(b + d + α)

γ
(1 − R0)i2– β

1

d

γ
i2
2 +

bd

γ
i2
2 − di2w 

As
1

s
≥ 1 and i2 ≥ i2

2  since s < 1, i2 < 1 , & − (i1 + i2)
2 ≥ −(i1 + i2 +w)

2 we have 

 
∂V

∂t
≤ −b(i1 + i2)

2 −
(b+γ+α)(b+d+α)

γ
(1 − R0)i2

2– β
1

d

γ
i2
2 +

bd

γ
i2
2 − di2w 

 ≤ −bi1
2 − 2bi1i2 − bi2

2 − di2w−
(b + γ+ α)(b + d + α)

γ
(1 − R0)i2

2– β
1

d

γ
i2
2 +

bd

γ
i2
2 

   ≤ −bi1
2 − 2bi1i2 − di2w−

i2
2

γ
[bγ + (b + γ + α)(b + d + α)(1 − R0) + β1d − bd] 

LetD = bγ + (b + γ + α)(b + d + α)(1 − R0) + β1d − bd , then 

    
∂V

∂t
≤ −bi1

2 − 2bi1i2 − di2w− D
i2
2

γ
 

Therefore, 
∂V

∂t
≤ 0  if D ≥ 0.  

 We rewrite D in the following form: 

 D = bγ + (b + γ + α)(b + d + α) − β1(b + d + α) − β2γ + β1d + β1α − bd 

  = bγ + b2 + bd + bγ + dγ + bα + γα + bα − β1b − β1d − β1α − β2γ +  β1d − bd 

   = b2 + 2bγ + dγ + 2bα + γα − β1b − β2γ 

   = b(b + 2α − β1) + γ(2b + d + α − β2) 

Since R0< 1 then R0 =
β1

b+γ+α
+

β1(b+γ+α) +β2γ

(b+γ+α)(b+d+α)
< 1,  

Thus,  β1b + β2γ < b2 + 2αb + 2bγ + γd + γα , and, b > β1we get D ≥ 0. Therefore we 

conclude that V ≤ 0. So the disease free equilibrium is globally asymptotically stable. 

Since s + i1 + i2 +w = 1, we can reduce the system of equations (2) toa planar system and 

investigate the global attraction of the endemic equilibrium point when  

R0 > 1. To this end, let us consider the following system: 

{

ds

dt
= b(1 − s) − (β1i1 + β2(1 − i1 − s))s + ds(1 − i1 − s)

di1

dt
= (β1i1 + β2(1 − i1 − s))s − (b + γ)i1 + di1(1 − i1 − s)

                       (8) 

Defined on the set Ω = {0 ≤ s ≤ 1, 0 ≤ i1 ≤1, w ≤ 1, s + i1 ≤ 1}. We establish by the Jacobian 

matrix if R0> 1, disease free equilibrium is unstable. 
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Proposition When the endemic equilibrium E2exists and is globally asymptotically stable on 

Ω (i.e., if  R0 > 1), the infection-free equilibrium E1 is an unstable.  

Proof: If R0> 1, the Jacobean matrix of system of (8) at the point (1, 0) given as;  

J(1,0) = (
−b + β2 − d −β1 + β2 − d

−β2 β1 − β2 − (b + γ + α)
) =A 

The eigenvalues of the Jacobean matrix at the disease free equilibrium point are the solution 

of the characteristic equation  

λ2 − (β1 − 2b − γ − d)λ + (b + d + α)(b + γ + α) [1 −
β1

b + γ + α
−

β2γ

(b + d + α)(b + γ + α)
] 

= λ2 − (β1 − 2b − γ − d)λ + (b + d + α)(b + γ + α)[1 − R0] = 0.  

Thus  

 λ1,2 = (β1 − 2b − γ − d) ± √(β1 − 2b − γ − d)2 − 4(b + d + α)(b + γ + α)(1 − R0) 

One of the two eigenvalues is positive, which gives that the disease free equilibrium is not 

stable. The ω−limit set of the system (8) on Ω−Γ is reduced to the endemic equilibrium point. 

Because of the local stability of the endemic equilibrium point for R0>1, the endemic 

equilibrium point is globally asymptotically stable. 

 

Numerical Simulations  

Numerical Simulations of Model 

In this section, we present numerical simulations to illustrate the various theoretical results 

previously obtained. Thus, we draw first the curves of system (2) for parameters verifying 

R0less than 1, and we shall do the same for parameters verifying R0 upper to 1. 

We take the value of the parameters as: β1 = 0.0001, β2 = 0.0015, 𝛾 = 0.02, b = 0.4,  

d = 0.015and α=0.0000003 which corresponds to R0 = 0.0004102. We have theoretically 

proved that, in this case, R0< 1, the disease free equilibrium is globally asymptotically stable. 

From figure (1), we see that the curves of the infected i1 and i2 towards zero. Thus the disease 

disappears in the host population. 
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a) Curve of s   

 

b) Curve of i1

 

 

  c) Curve of i2 

 

    d) Curve of w  

Figure 1: The curves of the system (2) for different initial conditions when R0<1 

In the second case, we take the value of the parameters as:β1 = 0.3, β2 = 0.8,  
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𝛾 = 0.5, b = 0.4, d = 0.1 and α = 0.00003 which corresponds to R0 = 1.222. 

We have theoretically proved that, in this case, R0 >1 the endemic equilibrium is locally 

asymptotically stable. From this figure (2), we see that the curves of the infected i1 and i2 

converge to positive and finite limit, which is the endemic equilibrium. Therefore, the disease 

will persist in the host population irrespective of the initial conditions. It is thus important to 

reduce the reproduction number to below unit in order to control the epidemic. 

 

a) Curve of s 

 

b) Curve of i1
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c)  Curve of i2
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d) Curve of w* 

Figure 2: The curves of the system (2) for different initial conditions when R0>1 

 DISCUSSION AND CONCLUSION 

DISCUSSION 

Mathematical modeling of the epidemic dynamics is an important method of studying the 

spread of infectious disease qualitatively and quantitatively. It is based on the specific 

property of population growth, the spread rules of infectious diseases, and the related social 

factors, etc. To construct a mathematical model which reflects the dynamical properties of 

infectious diseases and to analyze the dynamical behavior of the disease it is of paramount 

important to understand the biology of the infectious disease. 

The main study of this thesis is to develop a mathematical model which describes the 

dynamics of the transmission of infectious disease. 

The SIR models are well known in the dynamic of infectious population. We consider two 

stages of infected population. The population of size N is divided into subclasses of 

individuals, who are susceptible, infected into the first stage of the disease and infected into 

the second stage, and recover with sizes denoted by S, I1, I2 and R. In the models there are 

births and deaths, so that the total population size is not constant. 

There are two equilibrium points are exist in the feasible region, the disease-free equilibrium 

point and the unique endemic equilibrium point. 

The basic reproduction number depends on the rate of contact between individuals, the 

probability of transmission given contact, and the time for which an infected remains able to 

transmit the infection. These components are all the subject of disease control methods: 

isolating those with the infection from the rest of the community, for example in hospital or at 

home, reduces their rate of contact with others; hygiene measures reduce either the contact 

rate or the probability of transmission given contact. 
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Our result show that if the basic reproduction number R0 is below one the disease free 

equilibrium point is locally and globally stable in the feasible region, so that the disease  dies 

out. If the basic reproduction number R0 is greater than one a unique endemic equilibrium 

point is locally asymptotically stable and the disease free equilibrium point is unstable in the 

interior of the feasible region and the disease will persist at the endemic equilibrium point if it 

is initially present.  

We applied numerical simulations to illustrate the various theoretical results obtained. Thus, 

from graph of system (2) for parameters verifying R0 less than 1 and we do the same for 

parameters verifying R0 upper to 1. 

We have theoretically proved that, in the case, R0< 1, the disease free equilibrium is globally 

asymptotically stable. From figure1, we see that the curves of the infected i1 and i2 towards 

zero. Thus the disease disappears in the host population. 

In the case R0>1 the endemic equilibrium is locally asymptotically stable. From figure2, we 

see that the curves of the infected i1 and i2 converge to positive and finite limit, which is the 

endemic equilibrium. Therefore, the disease will persist in the host population irrespective of 

the initial conditions. It is thus important to reduce the reproduction number to below unit in 

order to control the epidemic. 
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CONCLUSION 

The model SIR is one of the most important epidemiological models. This study work gives a 

qualitative analysis of the stability of the model with a non-linear incidence. The model allows 

for two classes of infected stages and with varying total population size. This model was 

studied theoretically, and it was found that the dynamic behavior of the model can be 

determined by its basic reproduction number R0.When the basic reproduction number R0 is 

less than one, then the disease free equilibrium is locally and globally asymptotically stable in 

the feasible region. Using a Lyapunov function, we have proved that global stability of the 

disease free equilibrium point. The global stability of the disease free equilibrium state 

implies that for any initial condition, the disease will eventually dies out. If the basic 

reproduction number R0 is greater than one a unique endemic equilibrium point is locally 

asymptotically stable and the disease free equilibrium point is unstable in the interior of the 

feasible region and the disease will persist at the endemic equilibrium point if it is initially 

present.  

It is thus important to reduce the reproduction number below 1 in order to control the 

epidemic. Numerical simulations were carried out using theoretical set of parameter to 

illustrate the analytical results. It would be interesting to generalize the work to study the 

system with arbitrary n infected stages.  
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