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Abstract

We constructed a 0-finite difference method to get the numerical solution for nonlinear couple system of
hyperbolic partial differential equations. Von-Neumann stability analysis was enforced to explain the
stability of the present method. Toward the end, one illustrative example has been introduced to
comparing the numerical and exact solutions to the problem. The results obtained indicate that the
proposed method is very effective and highly accurate for such treatment problems.
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1. Introduction

The finite difference method (FDM) is a numerical method has widely used for solving differential equations. It
has been used to solve many problems such as linear and non-linear partial differential equations. This method
can be applied to problems with different boundary shapes, different types of boundary conditions, and for a
region containing a number of different materials [2], [12], [8]. The hyperbolic partial differential equations are
one of these problems that attract many scientists, especially mathematicians and physics scientists, where the
hyperbolic partial differential equations occur in many applications. Many authors in servable fields such as
biological, physics, fluid flows, electrical networks, viscoelasticity, try to modeling of these phenomena as a
coupled system [1], [7], [9], [6]. ©-method is one of finite difference methods. 8-method was used to get
numerical solution for many partial differential equations, such as wave equation, burger’s equation. For more
details see [13], [15], [11]. In this work, we develop a numerical method using 0-finite difference method for the
solution of non-linear coupled system of hyperbolic partial differential equation.

1
U — Uyy — — Uy — VU, = f(x,t),t €[0,T],x € [a,b],
X
(1.1)
1
Vet = Vpr T Vx T UV = g(x,t),t €[0,T],x € [a,b],
with initial and boundary conditions:

u(x’ 0) = fl(x) U(x, 0) = 91(x):x S [a,b],

1 (x,0) = f,(x) v:(x,0) = go(x), x € [a,b], (1.2)

u(al t) = f3(t) u(bl t) = f4(t)1x € [a' b]' (1 3)

v(a,t) = gs(t) v(b,t) = g,(t),x € [a, b], ’
where u(x, t), v(x, t) are unknown functions. Laplace decomposition method [5] was listed to solve the proposed
problem.

2. The Method for Nonlinear Coupled Systems

In this section, we apply the 6-method to solve Eq. (1.1). Let’s consider that the solution domain of our problem
is0<x<1,0<t<1 isdivided into intervals having equal lengths h in the x direction and having equal time
intervals k in time t such that x; = jh,t, = nk, j = 0,1,..., M and uj is given by u(x]-,tn) and the finite
differences approximations for terms uy, uy, uyy, Uy are defined as follows:
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ul™t — 2y + ultt?
_ J j
utt(xj, tn) = INT , (2.1a)
17 — 2v + v
v (), t,) = N ) (2.1b)
u 2u +u
uxx(xp n) - sz (2.1C)
v Zv +v
Ve (X, tn) = sz , (2.1d)
ul , —uit,
ux(xj,tn) = HZTx]' (2.1e)
o —ph
_ Jj+1 j-1
vx(xj, tn) =T o Ax (2.11)
ultt —
_ j
ut(xj, tn) —A—t, (21g)
n+l _ gm
_ Y J
Ut(Xj, tn) = T, (Zlh)

Firstly, to linearize the nonlinear term uu, we use the following equation, for more details see [14]
(u )P = v (W)} + v W) - vt )]
e )T = w1 + T )] — T ) (2.2)
Now let us defined the well-known 6-method with second-order central differencing to E.q (1.1) such
as:
Uge(xj, ty) = OH + (1 — O)H], (2.3a)
Ve (x5, t,) = O + (1 - 01, (2.3b)
Where

1
Hj"(x]-, tn) = Uex(%), tn) + ;ux(x]-, tn) + v (x tn)ux (%, tn) = £ (%), tnsr),

1
I'(x, ) = e (%7, 1) + ;vx(xj, tn) + ul(x;, t)ve (x5, tn) — 9(%j, tnsr)-
Then after substituting Egs. (2.1a)-(2.1h) in Eq. 1.1 and using the formula of 8-method (2.3a) and
(2.3b) respectively then we get:
uftt = 2ul +uf Tt -0
1

A t2 [A > ( n+1 2un+1 + un+1) + TN (ujn_:-ll n+1) + (qu)n+1
— £ (5 tne)]
=(1—0)At2[AX2(u}n_ —2u +u+1)+ (1+1 uiL 1)+(vux)1—f(x], n)] (2.4)
and
vt =20 + vt -6
A t2 [ = ( n+1 n+1 + v]n++11) + N (v}1+1 — 17}1—1) + (uvx)}?

by simplifying above equation we get:
y]— ]n+11 + y] ! n+1 + y+ }n++11

t2
= Brut, + Bt + But, — (1 = xu}l_l(u}ff —ul) + 0 A (X, teq)
+ 1A —-0)A?f(x;,t,) — uft, (2.6)
and

20


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) iy
\ol.10, No.6, 2020 I E

- n+1 n+1 + n+1
S e T e

Atz

=NV 0y v, — (1 - v (vl = vfe) + 60 A 2 g(xg the)
+(1—-0) At?g(x;t,) — v —1, (2.7)
Where
Y = (—r1 +r, + rzu}’-l)e yjc =1+ (21"1 -1, (uj’-ﬂr1 - u]’-l_l)) o,
yi = (- —1rp — rzuj’-l)e B = (7‘1 -1y — rz(u}’-l_l)) 1-6)+n (uj’-l)e (2.8)
pr =2+ (—2r +n(ult —us)) A - 0),
B = (rl +1,+ rz(u}l_l)) (1-6)- rz(u]’-l)e,
G=(n+n+ rzu}l)e =1+ (Zrl — 1y (unU+Y — uj’-l_l)) 0,
(= (- —1— rzu}l)O ny = (rl -7 =7 (u}l_l)) 1-0)+ rz(u}l)B,
né =2+ (—27‘1 + (e —ut )(1 —-0),
nf = (r1 +7, + rz(u}l_l)) (1-6) —ry(u])s,
At? At
AxZ 2T xAx
Now, we determine Egs. (2.6) and (2.7) atj = 1 and j = N — 1 respectively
y1u1+1 + ]/1 n+1
= Biutl + BT + Bl uy —y1 g1 (" + 1) + Brgi(¢™) + 0 A t?f(xq, tpyr) + (1 —6)
ACPF(E2f(xty) —ul  + Wit —ugd )1 —0), (2.9)
(1 U1 n+1 + 51 n+1
=0l +0fvy — g1 (" + D +n7g1(tM) + 0 At2g(xy, tnyr) + (1 —6)

=

At?g(x,,ty) — v+ W =i (1 - 9), (2.10)
YN-1UNTS + V-1 UuRt
= By-1UN-2 + BN-1UN-1 — VA - 192(tn + 1)+ By-192 (™) + 0 A t? f(xn_1, trs1)
+ (1 —6)At*flxy_1,ty) —upy_i + @i —uRZz)(A - 0), (2.11)
YN-1VN3 + i1 viia
= NN-1VN-2 + N—1UN-1 — {N- 192(tn + 1D+ 19, (M) + 0 At f(xy_q, i)
+(1—-0) At f(xy_1, ) —VRZT + (T = vRZH(A - 6). (2.12)

To start the method, we needs to compute u}‘“ and v]-n+1 atj=1,n = 0, respectively and this leads to calculate
terms u; ™, v, to do this we can uses central difference to second initial conditions in (1.2) such as:

u un 1

]T fz(x], n) (21361)
-1

vt — vt

— 57— = 92(xt),  (2.13b)

atn=0
it =ul = (A)LE) or, w=ut+ (A)fAK),  (2.14a)
vit=vl — (A t)g,(x) or, v} =vl+(At2)gy(x) (2.14b)

By combining Eqgs. (2.6),(2.7) and (2.9),(2.12) also (2.14a),(2.14b) respectively we obtain the following system:
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[eNelole]

And
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[eNeloNe]

cooYy vyl

cocoYy vyl

n+1

00 0 o]
&0 o0 0||vht?
c + 0 0 0
¥
0 ¢ & € vNts
0 o ¢ ¢t
¢ nt 0 0 O 0 vl
n~ n° nt 0 0 o || vz
o n= n¢ n* O off O
0o 0 n- pc " 0N O
0 0 o n= n° 7N ||vNn-2
L0 O 0 o0 n- n°llvy_,
[ —yi (" + 1) + By f3(t™) + 6 A t?f(xq, tneq)
+(1—=0) At*f(xq,t,)
0
+ 0 +
Va1 fa( + 1)+ By 1 fu (™) + 0 At? f(xy_1,trs1)
i +(1—0) At?f(xy_1,tn)
00 0 oO]wptt
¢ 0 o0 0 ||vht?
& C"’ 0 0 0
ot oo,
0 ¢ ¢ C vNTs
0 o ¢ ¢ lvpi
m° nt 0 0 0 0 vl
n” nc nt 0 O 0” vy
o n= n° 0t O 0l ©
0o 0 n- pc 7t 0N O
0 0 0 n- n° M UN-2
L0 0 0 o n° nllvy,
[ Y1 gs(t"+ 1)+ Brgs(t™) + 0 At?g(xy, tni1)
+(1—-0) At?g(xy,ty)
0
+ 0 +
“VYN-19a(t" + 1) + BY_19.(t") + 0 At?g(Xy_1,tni1)
| +(1—06) At2g(xy_1,tn)
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3. Stability Analysis

In numerical analysis, one of the most important tasks is to guarantee the convergence of the sequence of the
numerical solutions. Generally, consistency in itself is not enough for convergence. To guarantee this property
we introduce the notion of stability.

In this section, we prove the stability estimates of the approximation obtained by the present scheme, we will use
the (Von-Neumann ) stability. Which this method of stability has widely uses in numerical analysis for more
details see [3], [4], [10]. In which the growth factor of a typical Fourier mode is defined as:

ujn — eanAt+iklimjAx (3_1)

n anAt+ik2mjex (3'2)

V]':e

wherei = v—1 investigate the stability of the numerical scheme, the non- linear term uu, and vv, in the pde

have been linearized by making the quantities ((uu,)** = u**(u ) + u (u)** — u (u} and (v )P+t =

vj“‘“l(vx)]n + vi“(vx)]?“r1 — vj'(v,)j* a local constants. Thus the nonlinear terms in the equations converts into Giuy

and v, then Eq.(1.1) becomes:

n+1 __ n n—1 __
U; 2uj +u; 2]

1
2 +1 +1 +1
At [ — (W — 20" + ) +

— f(x]-,tn+1)]

+1 +1 N +1
2% A X(ujn+1 - ujn—l ) + (uux)jn

=(1-96)
1 1
A t? [A p (u}l_1 —2ul' + u}lﬂ) N (W, — u}‘_l) + (Qu,)} — f(x;, tn)], (3.3)

n+1 _ n n—-1 __
v; 2v;" + v; (7]

pitl vJTI_+11) + (v ) - g(x;, tn+1)]

1
2 n+1 n+1 n+1
At [sz(vj_1 - 207 i) + o —— (v

=(1-96)
2 1 n n n 1 n n o n
At N (vj_lzvj + vj+1) = N (vj+1 - vj_l) + (vvx)j - g(xj, tn) , (3.4)

The generalized m™ row for Egs. (3.3), (3.4) takes the forms:

0L w + 01ful*! + 01w,
= 025U, + O2ful + O2ful; + 0 A t2f(x),tpeq) + (1 — 0) A% f(x;, )

—url, (35)
Iiyut + Tt + T ol

=T27uly +T25u! +T2fuly; + 0 At?g(x),tyeq) + (1 —0) At?g(xj,t,) —ut™, (3.6)

J -1 J
Where
017 = (-1 +71,+7r30)0  O1f =1+ (2r,)8 O1F = (-1, —1, — 13 )6,
@2 =(rn—1r,—r3W)(1—-0) 02f=2-(2r)(1-6),
. A A t? At?
®2j=(rl+r2+r3u)(1_9)rl=A_x2 TZ:zxAx'
And

My =(rn+nrn+r3w)d Tlf=1+Q2nr)8 I'lf =(r —r,—1r3 1),
2y = —nrn—-r30)(1-60) I2; =2-02r)(1-90),
2f =@ +r,+r3a)(1-6) 3.7)
Substituting Egs. (3.1) and (3.2) into the last equations respectively then we get:
(02} +©2}) cos ¢y + ©2f) + i At3(1 - 6)(02] — 02} ) singy,

g =
! ((01] +©}) cosd, +O1F) —i A26(01] - ©1) sing,

and
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((r2j +12}) cos ¢y + 125 ) +i A 21— 0)(I2f — T2} ) singyy
g1 =

((r1] +1}) cos¢, +T1F) —i At26(I'1f —T'1;)sin,
The stability condition for the method is |g,;| < 1 and |g,| < 1 so after take
1 4
Yy = (E-FE) %, = (4cosp? + 4cos p? + 4) x; = (4 cos p? — 8 cos p? + 16)
1
and

~

1 v
Y, = (h_xl+ﬁ) X, = (4cos P2 + 4 cos p? + 4) x; = (4 cos p? — 8 cos p3 + 16)

And some arithmetic operations we find thet |x — 1] < [x]] and |x,]| < |x3] SO

At*(1 — 0)? At*(1 — 0)?
%(9& +yP) #(xl +y3)
= <1, = <1
ol = [ TEEwr R NP
Axi AT Axi 2Tz

For (0.5 < 6 < 1). There for the suggested method is unconditionally stable.

4. The Numerical Result
To illustrate the efficiency of the 8-finite difference method, we investigate the following example,
consider the coupled system of hyperbolic partial differential equation.
1
Ute = Uy = 2 Uy = Vil = —x2sin(t) — 2x3 sin(t) cos(t) — 4 sin(¢t), t € [0,1], x € [0,1],
1
Vie = Vi — Ve T UV = —x? cos(t) — 2x3 sin(t) cos(t) — 4 cos(t), t e [0,1], x € [0,1],

with initial and boundary conditions:

u(x,0) =0 v(x,0) = x2?, x € [0,1],

u,(x,0) = x? v,(x,0) =0, x €[0,1].
u(0,t) =0 u(1,t) =sin(t), x € [0,1],
v(0,t) =0 v(1,t) = cos(t), x € [0,1] (4.1)

and exact solution is u(x,t) = x?sin(t), v(x,t) = x? cos(t). We solve Eq. (4.1) by the 0-finite difference
scheme, with step size h = 0.1,k = 0.001 and different values of Theta (6 = 0.5), (6 = 1) and (6 = 0.75). The
results of exact and numerical solutions with approximations errors are shown in Table (1) and Figs. (1), (2).

u(x, t) valuesforh = 0.1, k = 0.001

Implicit method Crack-Nicolson Theta=0.75 method  Exact solution
method

Xy 6®=1) (6=0.5) (6 =0.75)

0 0 0 0 0

0.1 0.0010 0.0010 0.0010 0.0010
0.2 0.0040 0.0040 0.0040 0.0040
0.3 0.0090 0.0090 0.0090 0.0090
0.4 0.0160 0.0160 0.0160 0.0160
0.5 0.0249 0.0250 0.0250 0.0250
0.6 0.0359 0.0359 0.0359 0.0359
0.7 0.0489 0.0489 0.0489 0.0489
0.8 0.0639 0.0639 0.0639 0.0639
0.9 0.0808 0.0809 0.0809 0.0809
1 0.0998 0.0998 0.0998 0.0998
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v(x,t) valuesforh = 0.1, k = 0.001

Implicit method Crack-Nicolson Theta=0.75 method  Exact solution
method

X4 =1 (6 =0.5) (6 =0.75)

0 0 0 0 0

0.1 0.0100 0.0100 0.0100 0.0100
0.2 0.0398 0.0336 0.0398 0.0398
0.3 0.0896 0.0896 0.0896 0.0896
0.4 0.1593 0.1345 0.1592 0.1592
0.5 0.2489 0.2489 0.2488 0.2488
0.6 0.3584 0.3584 0.3582 0.3582
0.7 0.4878 0.4878 0.4876 0.4876
0.8 0.6371 0.6371 0.6368 0.6368
0.9 0.8062 0.8062 0.8060 0.8060
1 0.9950 0.9950 0.9950 0.9950

Table 1. Comparison between the exact solution and 8-method for some values of 6.

By using numerical results in Table (1), We have compared implicit, Crank-Nicholson finite difference
methods by the 6-method for arbitrary value between 0.5 < 6 < 1) such as (8 = 0.75), Figs. 1, 2 shows
a comparison between numerical and u(x, t), v(x, t) at different values of 6 with approximation errors.
We conclude that the numerical solution using 6-finite difference is in a good agreement exact solution.

Numerical Solution By Theta-Method

(a) numerical solution with 6 = 1. (8) numerical solution with 6 = 0.5.

(c) numerical solution with 6 = 0.75. (0) Exact solution.
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(e) Approximation error 6 = 1. (f) Approximation error 6 = 0.5.

(g) Approximation error 6 = 0.75.
Figurel. Graphs of the example for u(x, t)

AoprTe. 33hA0n W K
ASETON. 334000 Vin A

t-anem lasms

(a) numerical solution with 6 = 1. (8) numerical solution with 6 = 0.5.

Arore
Exact sokston

(c) numerical solution with 6 = 0.75 . (o) Exact solution.
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(e) Approximation error 6 = 1. (f) Approximation error 6 = 0.5.

(g) Approximation error 6 = 0.75.

Figure 2. Graphs of example for v(x,t)
5. Conclusions
We proposed a 0-finite difference method for the solution of non-linear coupled system of hyperbolic
partial differential equations. We applied the 6-method for different values of 6, (6 = 1,6 = 0.5,6 =
0.75). The (Von-Neumann) stability showed that the 8- method is unconditionally stable. To verifying
its validity, we considered a numerical example for different values of 6. Numerical results showed
that the 6- method gives accurate results compared with exact solution of the proposed problem.
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