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Abstract 

Host-vector transmission is challenging to model, due to human and environmental factors influence complexity. 

The effect of human mobility on the dispersion of vector-borne diseases is studied here. The effect of human 

mobility among two-patches will be investigated through a host-vector model with a standard incidence rate and 

constant mobility rate of humans between both patches. If all hosts could migrate between patches, this model 

gives us a disease-free equilibrium and a co-endemic equilibrium. The basic reproduction number, R0 carried out 

as a threshold classifying the dynamics of the models when all hosts could migrate. We also consider a scenario if 

only unidirectional of infected host occurs which shows up a trans-critical bifurcation. The infected migration rate 

becomes an important parameter to change the co-endemic behavior to be a disease-free condition. Another 

scenario implement was a migration of healthy host only which shows that the basic reproduction ratio, 𝑅0 not the 

only threshold for co-endemic equilibria existence. The analytical results also show that increasing healthy host 

migration from patch 𝑖 to 𝑗 may be a helpful control strategy for disease management in patch 𝑖. The host 

migration can also turn out to be one of the driving forces to the disease dispersal for some specific conditions.  
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1. Introduction 

The vector-borne disease which includes long-established scourges, i.e. malaria, dengue, and chikungunya, has 

emerged as an international public health problem (WHO, 2009). The maintenance and resurgence of vector-borne 

diseases are related to ecological changes that favor increased vector densities or vector-host interactions, among 

other factors. There have been profound increases in the magnitude of vector-borne disease problems as a result of 

urbanization, deforestation, globalization, economic development, among other factors (Gratz, 1999). Experts 

recognize mobility as one of the most important drivers of global change and predict that rapid increases in urban 

populations throughout the world will have major implications for human health in general and vector-borne 

diseases specifically (Sutherst, 2004). 

Reasons for the resurgence of vector-borne in the tropics and subtropics are complex and include population 

growth factors like urbanization with substandard living conditions, inadequate public health, sanitation 

infrastructure, lack of vector control, international travels, and virus evolution (Gubler, 1998; Annelies & Gubler, 

2008). Of all these factors, urbanization has probably had the most impact on the amplification of vector-borne 

disease within a country, and travel has had the most impact on the spread of infection from country to country and 

continent to continent. Epidemics of vector-borne disease, their seasonality, and oscillations over time are reflected 

by the epidemiology of vector-borne in travelers (Annelies & Gubler, 2008). 

Travel and transport have also contributed to the spread of vector-borne diseases. There are many reasons to 

believe that the spatial movement of humans may be important for the epidemiology of vector-borne diseases 

(Ostroff, 2012; Chen & Wilson, 2008; Gratz, 1999; Gushulak & MacPherson, 2004; Stoddard, et al., 2009; 

Annelies & Gubler, 2008). As an example, Martens (2000) found out that one of the factors contributing to the re-

emergence of malaria is human migration. Some empirical studies also by Domarle (2006) and Ronald (2006) 

supporting the idea that travel outside urban areas is an important factor in maintaining malaria in urban areas 

where transmission is low. Mosquitoes borne diseases like dengue and malaria do not have an avian intermediary. 

Humans are the only hosts that amplifying these viruses within the body and effectively moving these viruses from 

place to place (Cavrini, et al., 2009; Annelies & Gubler, 2008; Rezza, et al., 2007). 

Okubo and Levin (2001) are using both continuous reaction-diffusion systems and discrete patchy models to 

study spatial heterogeneity. The reaction-diffusion system is suitable for random spatial dispersal, while patchy 
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models are used to describe directed movement among patches. Modeling the spread of infectious diseases in 

spatially heterogeneous host populations by directed movement is to captured migration or among countries and 

regions or travel among cities. Arino (2006) formulated n-city SIS epidemic models to investigate the 

propagation of disease in a population of individuals who travel between n cities. The mobility component is 

represented as a directed graph with cities as vertex and arcs determined by outgoing travel. Wang (2004) 

studied an n-patch SIS model with bilinear incidence and the same dispersal rate of susceptible and infectious 

individuals on each patch. With the same assumption, Jin (2005) showed that the n patch SIS model can be 

reduced to a monotone system and used the theory of monotone dynamical systems to prove the uniqueness and 

global stability of endemic equilibrium. Li (2009) utilizes the graph-theoretical approach to construct the global 

Lyapunov function for the SIR epidemic model with a bilinear incidence in a patchy environment, while Salmani 

(2006) used standard incidence. Differ with Li (2009), Ma  (2008) proposed a similar n-patch model without 

global stability analysis. The proposed model by Li (2009) is a generalization of two patch SIS model of Wang 

(2004). A two patch SIRS model in Brauer (2008) also becomes a special case of model in Li (2009) if we 

assume that the disease has permanent immunity. 

Until now, only a few studies discuss the effect of mobility on the spread of host-vector disease in general and 

specifically their diseases. Pongsumpun (2004) describes the transmission of dengue fever (DF) in an endemic 

region and focus on the number of travelers who become infected. Cosner (2009) develop spatial models of 

vector-borne disease dynamics on a network of patches to examine how the movement of humans in 

heterogeneous environments affects transmission. They show that the movement of humans between patches can 

to maintain disease persistence in patches with zero transmission. Cai (2010) analyzed a vector-host epidemic 

model with direct transmission by SIS and SIRS model. 

We proposed the transmission model of vector-borne diseases in the presence of human mobility as an important 

factor of disease spread. Since vector flight limited capability, this model assumes in the absence of vector 

mobility. Different from Iddi (2011), which proposed a mathematical model that just involved the inflow rate of 

infected immigrants entering one host population, we introduced a complex model with host migration between 

two patches. Further, some strategies also applied to illustrate the effect of host migration on disease spreading. 

Numerical simulation will be given to illustrate the analytic results for the two patches model.  

 

2. Mathematical Model 

A two-patch host-vector transmission model is introducing to explore host migration roles on vector-borne 

disease transmission. In this section, we will particularly discuss a two-patch model following the SIR-SI model 

with a standard incidence rate. The compartment diagram for the two-patch model illustrated in Figure 1. This 

model included two-patches that we called by Patch 1 and Patch 2. The index 𝑖 in the next discussion will refer 

to 1 and 2 as the identity name of the patch. 

The total host population of patch 𝑖, 𝑁ℎ𝑖 is divided into three compartments: the susceptible hosts 𝑆ℎ𝑖 , the 

infected hosts 𝐼ℎ𝑖 , and the recovered hosts 𝑅ℎ𝑖. Total vector population in patch 𝑖, 𝑁𝑣𝑖 also divided into the 

susceptible vector, 𝑆𝑣𝑖  and infected vector, 𝐼𝑣𝑖 .  The new-born birth rate of a host in patch 𝑖 occurs at constant rate 

Λℎ𝑖 , while the recruitment rate of a host in patch 𝑖 denoted by Λ𝑣𝑖 . All newborns are assumed to become a 

susceptible sub-population. The natural death rate of humans and vector in patch 𝑖 denoted by 𝜇ℎ𝑖  and 𝜇𝑣𝑖, 
respectively, and there is no disease-induced death.  
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Figure 1. Transmission Diagram Host-Vector in Two Patch 

 

A susceptible host in patch 𝑖 can get infected through contacts at the per capita rate bℎ𝑖  per infected vectors in 

patch 𝑖. Moreover, a susceptible vector in patch 𝑖 can get infected through contacts at the per capita rate 𝑏𝑣𝑖  per 

infected host from patch 𝑖. Then we apply the standard incidence rate at which humans and vectors get infected, 

𝑏ℎ𝑖𝑆ℎ𝐼𝑣/𝑁ℎ𝑖  and 𝑏𝑣𝑖𝑆𝑣𝐼ℎ/𝑁ℎ𝑖 , respectively. It is different from Mishra (2018) that used mass incidence rate 

which not reliable since the total host population might change over time due to host migration. The infective 

host in patch 𝑖 recover at a constant rate 𝛾𝑖  and will become immune to reinfection within a certain period. 

The effect of host mobility in host-vector transmission dynamics shows using different migration rate of healthy 

host and infected ones. Healthy host, i.e. 𝑆ℎ𝑖  and 𝑅ℎ𝑖 can cross the border between patches with migration rate 

α𝑖𝑗 , 𝑖 ≠ 𝑗. Infected host, 𝐼ℎ𝑖  also can transfer to another patch with migration rate 𝛽𝑖𝑗𝐼ℎ𝑖 , 𝑖 ≠ 𝑗 per unit time. 

Disease infection during transport is negligible. Moreover, the vector population does not relocate between patch 

due to their short flight distance ability. The Aedes aegypti mosquitoes usually fly an average of 400 meters 

(WHO, 2009). This short flight distance makes human rapidly move the virus within and between communities 

and places, rather than mosquitoes.  

Based on this, we get the dynamical system as shown in system (1) below. 

𝑑𝑆ℎ1
𝑑𝑡

 = Λℎ1 − μℎ1𝑆ℎ1 − α12𝑆ℎ1 + α21𝑆ℎ2 −
𝑏ℎ1𝐼𝑣1𝑆ℎ1
𝑁ℎ1

 

(1) 

𝑑𝐼ℎ1
𝑑𝑡

 = μℎ1𝐼ℎ1 − β12𝐼ℎ1 + β21𝐼ℎ2 +
𝑏ℎ1𝐼𝑣1𝑆ℎ1
𝑁ℎ1

− γ1𝐼ℎ1 

𝑑𝑅ℎ1
𝑑𝑡

 = γ1𝐼ℎ1 − α12𝑅ℎ1 − μℎ1𝑅ℎ1 + α21𝑅ℎ2 

𝑑𝑆𝑣1
𝑑𝑡

 = Λ𝑣1 −
𝑏𝑣1𝑆𝑣1𝐼ℎ1
𝑁ℎ1

− μ𝑣1𝑆𝑣1 

𝑑𝐼𝑣1
𝑑𝑡

 =
𝑏𝑣1𝑆𝑣1𝐼ℎ1
𝑁ℎ1

− μ𝑣1𝐼𝑣1 

𝑑𝑆ℎ2
𝑑𝑡

 = Λℎ2 − μℎ2𝑆ℎ2 − α21𝑆ℎ2 + α12𝑆ℎ1 −
𝑏ℎ2𝐼𝑣2𝑆ℎ2
𝑁ℎ2

 

𝑑𝐼ℎ2
𝑑𝑡

 =
𝑏ℎ2𝐼𝑣2𝑆ℎ2
𝑁ℎ2

− γ2𝐼ℎ2  −  μℎ2𝐼ℎ2 − β21𝐼ℎ2 + β12𝐼ℎ1 

𝑑𝑅ℎ2
𝑑𝑡

 = γ2𝐼ℎ2 + α12𝑅ℎ1 − α21𝑅ℎ2 − μℎ2𝑅ℎ2 

𝑑𝑆𝑣2
𝑑𝑡

 = Λ𝑣2 −
𝑏𝑣2𝑆𝑣2𝐼ℎ2
𝑁ℎ2

− μ𝑣2𝑆𝑣2 

𝑑𝐼𝑣2
𝑑𝑡

 =
𝑏𝑣2𝑆𝑣2𝐼ℎ2
𝑁ℎ2

− 𝜇𝑣2𝐼𝑣2 

The non-negative initial conditions are given by  

𝑆ℎ𝑖(0), 𝑆𝑣𝑖(0) > 0, 𝐼ℎ𝑖(0), 𝐼𝑣𝑖(0), 𝑅ℎ𝑖(0) ≥ 0, and 𝐼ℎ1(0) + 𝐼ℎ2(0) > 0. (2) 

Λℎ1 Λℎ2 

Λ𝑣2 Λ𝑣1 
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Noted that 𝑁ℎ𝑖 = 𝑆ℎ𝑖(𝑡) + 𝐼ℎ𝑖(𝑡) + 𝑅ℎ𝑖(𝑡) and 𝑁𝑣𝑖 = 𝑆𝑣𝑖(𝑡) + 𝐼𝑣𝑖(𝑡) for 𝑖 = 1,2 as the total population of 

humans and mosquitos in patch 𝑖 respectively. 

When both patches are isolated, i.e. 𝛼𝑖𝑗 = 𝛽𝑖𝑗 = 0, 𝑖 ≠ 𝑗, the long behavior of the host population in patch 𝑖 tends 

to recruitment rate of human in patch 𝑖 during host lifetime, 𝐴ℎ𝑖/µℎ𝑖.  Let μℎ
∗ = 𝑚𝑖𝑛{ μℎ1, μℎ2}. If migration 

between patches occurs, i.e. 𝛼𝑖𝑗 ≠ 0, 𝛽𝑖𝑗 ≠ 0, for 𝑖 ≠ 𝑗, the total host population dynamics are given by 

𝑑

𝑑𝑡
∑𝑁ℎ𝑖

2

𝑖=1

= Λℎ1 + Λℎ2 − μℎ1𝑁ℎ1 − μℎ2𝑁ℎ2 ≤ Λℎ1 + Λℎ2 − μℎ
∗ ∑𝑁ℎ𝑖

2

𝑖=1

 (3) 

The initial conditions (2) make sure that ∑ 𝑁ℎ𝑖(0) ≥ 0
2
𝑖=1 . Thus, the total populations of host ∑ 𝑁ℎ𝑖

2
𝑖=1  remain 

positive and bounded for all finite time 𝑡 > 0.  

3. Dynamical Analysis 

Direct calculation shows that system (1) has a disease-free equilibrium point given by  

𝐸0 = (𝑁ℎ1
∗ , 0,0,

Λ𝑣1

μ𝑣
, 0, 𝑁ℎ2

∗ , 0,0,
Λ𝑣2

μ𝑣
, 0), 

where 𝑁ℎ1
∗ =

Λℎ1α21+Λℎ1μℎ2+Λℎ2α21

α12μℎ2+α21μℎ1+μℎ1μℎ2
 and 𝑁ℎ2

∗ =
Λℎ1α12+Λℎ2μℎ1+Λℎ2α12

α12μℎ2+α21μℎ1+μℎ1μℎ2
. 

 

Let construct transmission matrix 𝐅 and transition matrix 𝐕 as follows  

𝐅 =

(

  
 

0 0 𝑏ℎ1 0
0 0 0 𝑏ℎ2

𝑏𝑣1Λ𝑣1

𝑁ℎ1
∗ 𝜇𝑣1

0 0 0

0
𝑏𝑣2Λ𝑣2

𝑁ℎ2
∗ 𝜇𝑣1

0 0
)

  
 

 and  𝐕 = (

μℎ1 + γ1 + β12 −β21 0 0
−β12 μℎ2 + γ2 + β21 0 0
0 0 μ𝑣1 0
0 0 0 μ𝑣2

). 

 

Defined 𝑅0
(𝑖) =

𝑏ℎ𝑏𝑣Λ𝑣𝑖

𝜇𝑣
2𝑁ℎ𝑖

∗ (𝜇ℎ+𝛾)
 and η𝑖 =

𝛽𝑗𝑖+𝜇ℎ+𝛾

𝛽𝑖𝑗+𝛽𝑗𝑖+𝜇ℎ+𝛾
, 𝑗 ≠ 𝑖. Using the Next Generation Method by  (Driessche & 

Watmough, 2002), we obtain the quantity 𝑅0 as follows: 

𝑅0 = ρ(𝐅𝐕
−1) =

1

2
(𝑅0

(1)η1 + 𝑅0
(2)η2 + √(𝑅0

(1)η1 − 𝑅0
(2)η2)

2
+ 4

𝑅0
(1)𝑅0

(2)𝛽12𝛽21
(𝛽12 + 𝛽21 + 𝜇ℎ + 𝛾)

2
) (4) 

The threshold 𝑅0 called the basic reproduction number which represents an average number of secondary cases 

produced by a single infective individual which is introduced into an entirely susceptible population. For 

classical epidemics models, it is common that 𝑅0 is a threshold in a sense that if 𝑅0 < 1, on average each 

infected individual infects fewer than one individual, and the disease dies out. If 𝑅0 > 1, on average each 

infected individual infects more than on individuals, so the diseases are expected to spread. When there is no 

migration between two patches, i.e. 𝛼𝑖𝑗 = 0 and 𝛽𝑖𝑗 = 0, the 𝑅0 for host-vector in (Driessche & Watmough, 

2002) is resolved as 𝑅0 of each patch of our results.  
 

Theorem 1. If 𝑅0 ≤ 1 the disease-free equilibrium 𝐸0 is globally asymptotically stable in  

Ω = {(Sh1, Ih1, Rh1, Sv1, Iv1, Sh2, Ih2, Rh2, Sv2, Iv2)| ∑ 𝑁ℎ𝑖
2
𝑖=1 ≤

Λℎ1+Λℎ2

μℎ
∗  𝑎𝑛𝑑 𝑁𝑣𝑖 ≤

Λ𝑣𝑖

𝜇𝑣
, 𝑖 = 1,2}. 

Proof. Let 𝐅 and 𝐕 as define before. Since all off-diagonal entries of 𝐕 are non-positive and the sum of the 

entries in each column of 𝐕 positive, and thus 𝐕 is a non-singular matrix. 𝐕−𝟏  is also irreducible. By Perron-

Frobenius Theorem (Horn & Johnson, 2013), nonnegative irreducible matrix 𝐕−𝟏𝐅 has a positive left eigenvector 

𝐰 = (𝑤1 , 𝑤2, 𝑤3, 𝑤4) corresponding to eigenvalue ρ(𝐕−𝟏𝐅). Since 𝐅 is block matrix with diagonal sub-matrices, 

then ρ(V
-1

F)=ρ(FV
-1

)=𝑅0. Consequently, we have 𝐰𝐕−𝟏𝐅 = 𝑅0𝐰  and thus 
1

𝑅0
𝐰 = 𝐰𝐅−𝟏𝐕 (5) 

Let 𝐜 = 𝐰𝐅−𝟏 = (
𝑤3

𝑏ℎ1
,
𝑤4

𝑏ℎ2
,
𝑤1S̅ℎ1

𝑏𝑣1S̅𝑣1
,
𝑤2S̅ℎ2

𝑏𝑣2S̅𝑣2
) and 𝐈𝐡 = (𝐼ℎ1, 𝐼ℎ2, 𝐼𝑣1, 𝐼𝑣2)

𝑇. Set 𝐿 = ∑ 𝑐𝑖
𝑛
𝑖=1 𝐼𝑖

ℎ. Differentiating 𝐿 along 

system (1) and using identity  (5), we obtain 
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𝑑𝐿

𝑑𝑡
= 𝐜 (

d

dt
𝐈𝐡) = 𝐜

(

 
 
 
 
 
 
−(μℎ1 + γ1 + β12) β21

𝑏ℎ1𝑆ℎ1
𝑁ℎ1
∗ 0

β12 −(μℎ2 + γ2 + β21) 0
𝑏ℎ2𝑆ℎ2
𝑁ℎ2
∗

𝑏𝑣1𝑆𝑣1
𝑁ℎ1
∗ 0 −μ𝑣1 0

0
𝑏𝑣2𝑆𝑣2
𝑁ℎ2
∗ 0 −μ𝑣2

)

 
 
 
 
 
 

(

𝐼ℎ1
𝐼ℎ2
𝐼𝑣1
𝐼𝑣2

) 

𝑑𝐿

𝑑𝑡
≤ 𝐜(𝐅 − 𝐕)𝐈𝐡 = 𝐰𝐅−𝟏(𝐅 − 𝐕)𝐈𝐡 = (𝐰 −𝐰𝐅−𝟏𝐕)𝐈𝐡 

Substitute identity (5) in above equation obtained that  
𝑑𝐿

𝑑𝑡
≤ 𝐰(1 −

1

𝑅0
) 𝐈𝐡 ≤ 0, if 𝑅0 ≤ 1. Therefore, 𝐿 is a 

Lyapunov function for system (1). Since all element 𝐜 are positive, 
𝑑𝐿

𝑑𝑡
= 0 when 𝐼ℎ𝑖 = 0 and 𝐼𝑣𝑖 = 0 for 𝑖 = 1,2. 

This condition implied that the only invariant subset of the set  

{(Shi, Ihi, Rhi, Svi, Ivi, i = 1,2) ∈ Ω| Ihi = 0, Ivi = 0, 𝑖 = 1,2} 

 is the singleton 𝐸0. Therefore, 𝐸0 is globally asymptotically stable in Ω. ∎ 
 

From Eq.(4), if 𝑅0
(1)𝑅0

(2) ≥ (1 +
𝜇ℎ+𝛾+𝛽12

𝛽21
) (1 +

𝜇ℎ+𝛾+𝛽12

𝛽21
) then it easily deduce that 𝑅0 > 1 holds for any 

(𝑅0
(1), 𝑅0

(2)) ∈ ℝ+
2 .  Let either β12 = 0 or β21 = 0, then 𝑅0 = �̅�0 = max(𝑅0

(1)η1, 𝑅0
(2)η2). If  β12 > 0 and β21 >

0 then 𝑅0 > �̅�0. This means that the infected host migration increasing value of 𝑅0. In the next discussion, we 

used a same value of  𝑏ℎ = 𝑏ℎ1 = 𝑏ℎ2, 𝑏𝑣 = 𝑏𝑣1 = 𝑏𝑣2, μℎ = μℎ1 = μℎ2, and μ𝑣 = μ𝑣1 = μ𝑣2 since the value is 

not significant different between two patch. 
 

Recalling that 𝑁ℎ𝑖 = 𝑆ℎ𝑖 + 𝐼ℎ𝑖 + 𝑅ℎ𝑖 and 𝑁𝑣𝑖 = 𝑆𝑣𝑖 + 𝐼𝑣𝑖 , we achieve the following limit system of (1) as follows 

𝑑𝑆ℎ1
𝑑𝑡

= Λℎ1 −
𝑏ℎ𝐼𝑣1𝑆ℎ1
𝑁ℎ1
∗ − (μℎ + α12)𝑆ℎ1 + α21𝑆ℎ2 

𝑑𝐼ℎ1
𝑑𝑡

=
𝑏ℎ𝐼𝑣1𝑆ℎ1
𝑁ℎ1
∗ − (μℎ + β12 + γ)𝐼ℎ1 + β21𝐼ℎ2 

𝑑𝐼𝑣1
𝑑𝑡

=
𝑏𝑣(Λ𝑣1/𝜇𝑣 − 𝐼𝑣1)𝐼ℎ1

𝑁ℎ1
∗ − μ𝑣𝐼𝑣1 

𝑑𝑆ℎ2
𝑑𝑡

= Λℎ2 −
𝑏ℎ𝐼𝑣2𝑆ℎ2
𝑁ℎ2
∗ − (μℎ + α21)𝑆ℎ2 + α12𝑆ℎ1 

𝑑𝐼ℎ2
𝑑𝑡

=
𝑏ℎ𝐼𝑣2𝑆ℎ2
𝑁ℎ2
∗ − (μℎ + β21 + γ)𝐼ℎ2 + β12𝐼ℎ1 

𝑑𝐼𝑣2
𝑑𝑡

=
𝑏𝑣(Λ𝑣2/𝜇𝑣 − 𝐼𝑣2)𝐼ℎ2

𝑁ℎ2
∗ − 𝜇𝑣𝐼𝑣2 

(6) 

The dynamical behaviors of 𝑆ℎ𝑖 , 𝐼ℎ𝑖 , and 𝐼𝑣𝑖 , 𝑖 = 1,2 in (1) is asymptotically same as in (6) by the theory of 

asymptotically autonomous systems  (Chavez & Thieme, 1995). The disease-free equilibrium point of system (1) 

still being a disease-free equilibrium point of system (6) with reduced dimension, i.e. 𝐸0 = (𝑁ℎ1
∗ , 0,0, 𝑁ℎ2

∗ , 0,0). 
Therefore, in what following, we study system (6) to see the infective population instead. 

3.1 Existence of equilibria 

System (6) has a disease-free equilibrium, E0 and a co-endemic equilibrium of the form 𝐸∗ =
(𝑆ℎ1
∗ , 𝐼ℎ1

∗ , 𝐼𝑣1
∗ , 𝑆ℎ2

∗ , 𝐼ℎ2
∗ , 𝐼𝑣2

∗ ) , i.e. 𝐼ℎ1
∗ ≠ 0 and 𝐼ℎ2

∗ ≠ 0 corresponding to disease persistent in both patches. The co-

endemic population in the form of 𝐼ℎ2
∗  is given by 

𝑆ℎ1
∗ =

−𝑐2(𝐼ℎ2
∗ )2 + 𝑐1𝐼ℎ2

∗ + 𝑐0
𝑁ℎ2
∗ μℎξ1(α12 + α21 + μℎ)

;  𝐼𝑣2
∗ =

𝐼ℎ2
∗ 𝑏𝑣Λ𝑣2/𝜇𝑣

𝐼ℎ2
∗ 𝑏𝑣 + 𝑁ℎ2

∗ μ𝑣
;  𝐼𝑣1

∗ =
𝐼ℎ1
∗ 𝑏𝑣Λ𝑣1/𝜇𝑣

𝐼ℎ1
∗ 𝑏𝑣 +𝑁ℎ1

∗ μ𝑣
 

 

 (7) 
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𝑆ℎ2
∗ =

(γ+μℎ)(γ+β12+β21+μℎ)(𝐼ℎ2
∗ 𝑏𝑣+𝑁ℎ2

∗ μ𝑣)

(α12+α21+μℎ)μℎ𝜉1
(−𝐼ℎ2

∗ α12 +
μℎβ12𝑁ℎ2

∗ (α12+α21+μℎ)

(𝛾+𝜇ℎ)(𝛾+𝛽12+𝛽21+𝜇ℎ)
) ; and 

𝐼ℎ1
∗ =

𝐼ℎ2
∗

ξ1
(
ξ2μvR0

(2)(μh + γ)

α12 + α21 + μh
+ 𝑏𝑣(γ + β21 + μℎ))(𝐼ℎ2

∗ −
𝑁ℎ2
∗ μ𝑣(α12 + α21 + μℎ) (𝑅0

(2)(μℎ + γ) − (β21 + μℎ + γ))

ξ2(μℎ + γ)μ𝑣𝑅0
(2)
+ 𝑏𝑣(α12 + α21 + μℎ)(β21 + μℎ + γ)

) 

where 𝑐1 ∈ ℝ,   

ξ1 = 𝑁ℎ2
∗ β12μ𝑣 + (𝑏𝑣 +

𝑅0
(2)μ𝑣(μℎ + γ)

𝛼12 + α21 + μℎ
)(β12 −

α12𝑅0
(2)(μℎ + γ)

2μ𝑣

μℎ(𝑏𝑣(α12 + α21 + μℎ) + 𝑅0
(2)(μℎ + γ)μ𝑣)

) 𝐼ℎ2
∗ , 

ξ2 =
γα12
μℎ

+ γ + α12 + β21 + μℎ 

𝑐2 = 𝑏𝑣(γ + μℎ)(𝛾 + 𝛽12 + 𝛽21 + 𝜇ℎ)(𝑏𝑣Λ𝑣2/𝜇𝑣 + (α21 + μℎ)𝑁ℎ2
∗ ) 

𝑐0 = (𝑁ℎ2
∗ )2β12μℎμ𝑣𝑁ℎ1

∗ (α12 + α21 + μℎ). 
 

The 𝐼ℎ2
∗  is a root of a polynomial third order below 

δ(𝐼ℎ2) = 𝑎3(𝐼ℎ2)
3 + 𝑎2(𝐼ℎ2)

2 + 𝑎1𝐼ℎ2 + 𝑎0,    where 𝑎3 > 0, 𝑎2, 𝑎1 ∈ ℝ (8) 

and 𝑎0 = 𝑁ℎ1
∗ (𝑁ℎ2

∗ )2β12μℎ
2μ𝑣(μℎ + α12 + α21)

2 (1 − (𝑅0
(1)η1 + 𝑅0

(2)η2) +
𝑅0
(1)
𝑅0
(2)(γ+μℎ)

γ+μℎ+β12+β21
).  

Theorem 2. If 𝑅0 > 1  then  Equation (8) has minimal one positive root, 𝐼ℎ2
∗ . 

Proof. Formula 𝑅0 in Eq. (4) also can be written as follows  

𝑅0 =
1

2
(𝑅0

(1)η1 + 𝑅0
(2)η2 + √(𝑅0

(1)η1 + 𝑅0
(2)η2)

2
− 4

𝑅0
(1)
𝑅0
(2)(𝜇ℎ+𝛾)

(𝛽12+𝛽21+𝜇ℎ+𝛾)
). 

The other forms of 𝑅0 > 1 based on the above formula is  

−
𝑅0
(1)
𝑅0
(2)(𝜇ℎ+𝛾)

(𝛽12+𝛽21+𝜇ℎ+𝛾)
> 1 − (𝑅0

(1)η1 + 𝑅0
(2)η2). 

Condition 𝑅0 > 1 equivalent with 𝑎0 < 0. This means that 𝑅0 > 1  becomes the sufficient condition for the 

existence of a minimal positive root, 𝐼ℎ2
∗  of the polynomial (8). ∎ 

 

Let 𝑓(𝑅01) =
𝑁ℎ2
∗ (−Λℎ1/𝜇ℎ(γ+β21+μℎ)𝑅01+𝑁ℎ1

∗ (γ+β12+β21+μℎ))

Λℎ2/𝜇ℎ(−Λℎ1/𝜇ℎ(μℎ+γ)𝑅01+𝑁ℎ1
∗ (μℎ+γ+β12))

, for 𝑅01 ∈ [0,
𝑁ℎ1
∗

𝑁ℎ1

γ+β12+β21+μℎ

μℎ+γ+β21
]. The level set of 𝑅0 

using parameters as shown in Table 1 can be seen in Figure 2(a). Along with the white curve, 𝑅0 equal one, or 

𝑓(𝑅01). This curve becomes a boundary for diseases dies out or disease persistence in both patches. Figure 2 (b) 

shows the behavior of 𝐼ℎ1 and 𝐼ℎ2 using the same set migration parameter and confirms the dynamical results that 

𝑅0 becomes the only threshold for determining the long term behavior of the system (6). 
 

Using the set mobility parameter as above, the region in 𝑅01 ∈ [0,1] and 𝑅02 ∈ [0.52,1]  will make the disease 

persist in both patches even though if no migration occurs disease dies out in both patches. On the contrary, in 

region 𝑅01 ∈ [1,1.5] and 𝑅02 ∈ [0,1] migration make the disease vanish in both patched even though if no 

migration occurs the disease persists in Patch 2.  This means that host migration can be a control strategy for 

disease eradication but also can be a driven force for disease spread out. The migration parameter must be chosen 

very wisely for this goal. 

Table 1. Parameters Values 

Notation Parameter Description Value Ref 

𝑏𝑣 Transmission probability from host to vector 0.05  

(Esteva & 

Vargas, 

1998) 

𝑏ℎ transmission probability from vector to host 0.5 x 0.75 

𝛾 the recovery rate of an infected host 1/7 

𝜇𝑣 The natural death rate of vector 1/14 

𝜇ℎ The natural death rate of host 1/(65x365) 

Λℎ1 The recruitment rate of a host in Patch 1 106/(65x365)  

by 

simulation 

Λℎ2 The recruitment rate of a host in Patch 2 106/(65x365) 
Λ𝑣1 The recruitment rate of a host in Patch 2 2/14 × 106 

Λ𝑣2 The recruitment rate of a host in Patch 2 
8/14 × 105  

8/14 × 104 
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(a) Level set of R0 (b) The solution of 𝐼ℎ1 and 𝐼ℎ2 

Figure 2. Simulation using the set of migration parameter as 

 {𝛼12 = 0.01, 𝛼21 = 0.035, 𝛽21 = 0.02, 𝛽12 = 0.001} 

3.2 Unidirectional Infected Host Migration 

We want to show the importance of the infected host transfer to an isolated patch. Assumed endemic happen in 

Patch 1 which is a central city. Since we want to reduce the infected host population in Patch 1, the government 

will transfer the infected host to Patch 2 which assumed to be an isolated area. Infected people will be 

quarantined in Patch 2 so they cannot enter Patch 1 due to a perfect border screening of infected people from 

isolated Patch 2. For this scenario, the migration parameter β21 becomes equal to zeros and using Eq.(4), the 

basic reproduction ratio 𝑅0 becomes 𝑅0 = 𝑚𝑎𝑥{𝑅0
(1)η1, 𝑅0

(2)}. Condition 𝑅0
(1)η1 < 1 and  𝑅0

(2) < 1 equivalent 

with 𝑅0 < 1. This means 𝐸0 is globally asymptotically stable if and only if 𝑅0
(1)η1 < 1 and  𝑅0

(2) < 1. Setting 

β21 = 0 implied that 𝑎0 < 0 if and only if 

(𝑅0
(2) − 1)(𝑅0

(1)η1 − 1) < 0. 

Let 𝐼ℎ̅2
∗∗ =

μℎ(μℎ+α12+α21)(𝑁ℎ2
∗ )

2
μ𝑣(𝑅0

(2)
−1)

𝑏𝑣(Λ𝑣2𝑏ℎ(α12+μℎ)/𝜇𝑣+μℎ(μℎ+α12+α21)𝑁ℎ2
∗ )

. Substitute β21 = 0 to δ(𝐼ℎ2) of Eq. (8) can be factorized as  

δ(𝐼ℎ2) = (𝐼ℎ2 − 𝐼ℎ̅2
∗∗)(𝑏𝑣

2(γ + μℎ)𝑘2𝐼ℎ2 + 𝑘1𝐼ℎ2 + 𝑘0),  

where 𝑘2 > 0, 𝑘1 ∈ ℝ, and 𝑘0 = (𝑁ℎ2
∗ )2β12μℎμ𝑣

2(𝑁ℎ1
∗ )2(μℎ + α12 + α21)(1 − 𝑅0

(1)η1). Thus, if 𝑅0
(2) > 1 we 

have a minimal a positive root of δ(𝐼ℎ2) denoted by 𝐼ℎ̅2
∗∗  with corresponding state as follow 

𝑆ℎ̅1
∗∗ =

μℎ(μℎ+α12+α21)𝑁ℎ1
∗ 𝑏𝑣+α21μ𝑣(γ+μℎ)𝑁ℎ2

∗

𝑏𝑣(μℎ+α12+α21)(μℎ𝑁ℎ2
∗ (μℎ+α12+α21)+Λ𝑣2𝑏ℎ(α12+μℎ)/𝜇𝑣)

;𝐼�̅�2
∗∗ =

𝐼ℎ̅2
∗∗Λ𝑣2𝑏𝑣/μ𝑣

𝐼ℎ̅2
∗∗ 𝑏𝑣+𝑁ℎ2

∗ μ𝑣
, 𝐼�̅�1
∗∗ = 0, 

𝐼ℎ̅1
∗∗ = 0, and  𝑆ℎ̅2

∗∗ =
𝑁ℎ2
∗ (μℎ(μℎ+α12+α21)𝑏𝑣+μ𝑣(μℎ+α12)(γ+μℎ))

𝑏𝑣(μℎ𝑁ℎ2
∗ (μℎ+α12+α21)+Λ𝑣2𝑏ℎ(α12+μℎ)/𝜇𝑣)

. 

We called this condition as a boundary endemic equilibria 𝐸1 = (𝑆ℎ̅1
∗∗ , 0,0, 𝑆ℎ̅2

∗∗ , 𝐼ℎ̅2
∗∗  , 𝐼𝑣2

∗ ).  
 

If 𝑘0 < 0 then we have another a positive root 𝐼ℎ2
∗ =

−𝑘1+√𝑘1
2−4𝑏𝑣

2(γ+μℎ)𝑘2𝑘0

2𝑏𝑣
2(γ+μℎ)𝑘2

. Condition 𝑘0 < 0 equivalent with 

𝑅0
(1)η1 > 1, and this means that if 𝑅0

(1)η1 > 1 then a positive 𝐼ℎ2
∗ =

−𝑘1+√𝑘1
2−4𝑏𝑣

2(γ+μℎ)𝑘2𝑘0

2𝑏𝑣
2(γ+μℎ)𝑘2

  which correspond 

with an interior endemic equilibrium 𝐸∗ = (𝑆ℎ1
∗ , 𝐼ℎ1

∗ , 𝐼𝑣1
∗ , 𝑆ℎ2

∗ , 𝐼ℎ2
∗ , 𝐼𝑣2

∗ )  exist. 

 

The stability analysis of 𝐸1 and 𝐸∗ is quite complicated. Thus, the below theorem applied in a specific scenario 

when healthy people are isolated in their patch, i.e. α12 = 0 and α21 = 0. The stability of 𝐸∗ will be shown by 

the numerical results.   

 

Theorem 3. A boundary endemic equilibria 𝐸1 = (𝑆ℎ̅1
∗∗ , 0,0, 𝑆ℎ̅2

∗∗ , 𝐼ℎ̅2
∗∗  , 𝐼𝑣2

∗ ) is locally asymptotically stable if and 

only if 𝑅0
(2) > 1 and 𝑅0

(1)η1 < 1. 
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Proof: It is clear if 𝑅0
(2) > 1 then 𝐼ℎ̅2

∗∗   has a positive value. The local stability of 𝐸1 can be examined by the 

linearizing system (6) around 𝐸1. The characteristic polynomial of Jacobian from the system (6) when all 

mobility is zeros, except β12 ≠ 0 and evaluated in 𝐸1 can be written as follows.  

p(λ) = (λ + μh)(K3λ
3 + K2λ

2 + K1λ + K0) δ(λ) (9) 

where δ(λ) = (λ2 + (μℎ + μ𝑣 + γ + β12)λ + μ𝑣(γ + μℎ + β12)(1 − 𝑅0
(1)η1)),  

𝐾3 = 𝑁ℎ2(γμ𝑣 + 𝑏𝑣μℎ + μℎμ𝑣)(Λℎ2 + Λ𝑣2𝑏ℎ/μ𝑣), 

𝐾2 = μℎ (𝑅0
(2)
μ𝑣(γ + μℎ)(Λℎ2/μℎ(γ + 3μℎ + 2μ𝑣) + Λ𝑣2𝑏ℎ/μ𝑣) + Λℎ2(γ + 2μℎ)𝑏𝑣) + 

Λℎ2μℎμ𝑣𝑏𝑣𝑅0
(2)
+ μ𝑣(γ + μℎ)𝑏ℎ(γ + μℎ + μ𝑣)Λ𝑣2/μ𝑣 + Λℎ2μ𝑣(γ + μℎ)

2, 

𝐾1 = 𝑏𝑣(Λℎ2 + Λ𝑣2𝑏ℎ/μ𝑣) (𝑅0
(2)
Λℎ2μ𝑣 + 𝑏ℎ(γ + μℎ + μ𝑣)Λ𝑣2/μ𝑣 + Λℎ2(γ + μℎ)) + 

(Λℎ2/μℎ)
2μ𝑣(γ + μℎ)(γμ𝑣 + 𝑏𝑣μℎ + μℎμ𝑣) (𝑅0

(2)
− 1), and 

𝐾0 = (γ + μℎ)(γμ𝑣 + 𝑏𝑣μℎ + μℎμ𝑣)(Λℎ2 + Λ𝑣2𝑏ℎ/μ𝑣)Λℎ2μ𝑣 (𝑅0
(2)
− 1) 

 

All eigenvalues of the last polynomial third order have the negative real part if they satisfy Routh-Hurwitz 

Criteria, such that 𝐾𝑖 > 0 for i=0,1,2,3 with 𝐾2𝐾1 > 𝐾3𝐾0. For 𝑅0
(2) > 1, we obtain 𝐾𝑖 > 0 for all 𝑖. Thus all 

roots of  Eq. (9)(9) have negative real parts if and only if  𝑅0
(2) > 1 and 𝑅0

(1)η1 < 1, which shows that 𝐸1 is 

locally asymptotically stable in this condition.                                  ∎ 

Remark 4. For 𝑅0
(2) < 1 then 𝐸1 does not exist, since 𝐼ℎ̅1 < 0. Further, for 𝑅0

(2) > 1 and 𝑅0
(1)η1 > 1 then δ(0) <

0 and lim
𝜆⟶∞

δ(λ) = ∞ when λ ∈ ℝ. Then, there exists 𝜆∗ > 0 such that δ(λ∗) = 0 which proves instability of 𝐸1 

even though this boundary equilibrium exists. 

 

Stability and existence diagram for this scenario in (𝑅0
(1)η1, 𝑅0

(2))-plane can be seen in Figure 3 which indicated 

a trans-critical bifurcation of the equilibrium point. For 𝑅0
(2) < 1, the dynamical behavior of (6) can change twice 

when 𝑅0
(1)η1 < 1 varies from zeros to infinity; the condition goes to 𝐸0 if 𝑅0

(1)η1 < 1, but if 𝑅0
(1)η1 > 1 then the 

solution of the system (6) goes to 𝐸∗. Besides, when 𝑅0
(2) > 1, the dynamical behavior of (6) also change twice, 

𝑅0
(1)η1 < 1 varies from zeros to infinity; the condition goes to 𝐸1 if 𝑅0

(1)η1 < 1, but if 𝑅0
(1)η1 > 1 then the 

behavior of the system (6) go to 𝐸∗. 
 

Since we want to see the effect of infected host transfer, we look β12 as the bifurcation parameter. To find trans-

critical bifurcation, we set 𝑘0 to be zero and solve the critical value of β12, denoted by β̂12 is given by β̂12 =
(𝑅01 − 1)(γ + μℎ)   where  𝑅01 is the basic reproduction ratio of patch 1 before any migration or transfer occurs 

between two-patch, i.e. 𝑅01 =
Λ𝑣1𝑏ℎ𝑏𝑣μℎ

Λℎ1(γ+μℎ)μ𝑣
2.  Since β12 is the migration rate of the infected host, then 0 < β12 < 1. 

This implied that a trans-critical bifurcation occurs when 1 < 𝑅01 < 1 +
1

γ+μℎ
.  

 
Figure 3. Stability and existence diagram when only 𝛽12 ≠ 0 

 

 
𝑅0
(1)
𝜂1 

 𝑅0
(2)
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This strategy can be used if the government want to eradicate or reduce the number of infected hosts in Patch 1 

by transferring infected host from Patch 1 to Patch 2 as an isolated patch. There is two probability of Patch 2 

before transferring occurs, a free infection patch or a less endemic patch than Patch 1. Figure 4 illustrated the 

dynamical behavior if the isolated patch less endemic than the small one. Figure 5 illustrated the dynamical 

behavior if the isolated patch is free from disease.  

Figure 4(a) is associated with the trans-critical bifurcation diagram using a set of parameters as shown in Table 1 

with 𝑁𝑣1 = 8 × 10
5. This figure shows the solution of system (6) goes to co-endemic equilibria 𝐸∗ if β12 <

β̂12 = 0.378, however, the dynamic behavior of the system (6) goes to 𝐸1 if β12 > β̂12. The number of infected 

hosts in each patch, i.e. 𝐼ℎ1 and 𝐼ℎ2 using different values of β12 shown in Figure 4(b) confirm the analytical 

results. A trans-critical bifurcation and infected host number in Figure 4 shows the effect of transferring infected 

hosts from Patch 1 to Patch 2.  

At the beginning of the disease spreading, both patches are endemic but Patch 1 is more endemic than Patch 2, 

since 𝑅01 = 3.5 and 𝑅02 = 1.4. The increasing number of infected hosts who will be transferred from Patch 1 to 

Patch 2 less than 37.8% can reduce the number of infected hosts in Patch 1 and an increasing number of 𝐼ℎ2. This 

is reasonable due to the infected host transferring from Patch 1 to Patch 2. The increasing number of infected 

hosts transferring as many as 37.8% cause Patch 1 free from the disease and the disease persist in Patch 2. 

However, transferring infected host more than 37.8% does not give any effect, since the Patch 1 free from the 

disease and Patch 2 become endemic.  

 

  

(a) Value 𝐼ℎ1
∗  and 𝐼ℎ2

∗  as a function of β12 (b) The solution of 𝐼ℎ1(𝑡) and 𝐼ℎ2(𝑡)  

Figure 4. Simulation of only 𝛽12 ≠ 0, 𝑅01 = 3.5, and 𝑅02 = 1.4 

 

Figure 5 shows a scenario when Patch 1 is the only endemic patch before transferring happens. Patch 2 is a free 

disease area. For several reasons, the government of Patch 1 wants to isolate the infected people in Patch 2 by 

transferring them to Patch 2. If they transfer less than 38% infected host, the condition gets worse since the 

disease will be persistent in Patch 2. However, if they transfer more than 38% infected host then the disease will 

be eradicated from both patches. 
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(a) Value 𝐼ℎ1
∗  and 𝐼ℎ2

∗  as a function of β12 (b) The solution of 𝐼ℎ1(𝑡) and 𝐼ℎ2(𝑡) 

Figure 5. Simulation of only β12 ≠ 0, R01 = 3.5, and R02 = 0.7 

 

3.3 Healthy Host Migration 

Assume that all infected populations cannot migrate to another patch since medical screening at the border. 

Introducing some new notation to make the calculation simpler, i.e. 

𝑄1 =
𝑏𝑣μℎ(μℎ+α12+α21)

μ𝑣(γ+μℎ)
, 𝑅1 =

𝑅0
(1)
(𝑄1+𝑅0

(2)Λℎ1
𝑁ℎ1
∗ +α21

𝑁ℎ2
∗

𝑁ℎ1
∗ )

𝑅0
(2)(α12+μℎ)+𝑄1

, 𝑅2 =
𝑅0
(2)
(𝑄1+𝑅0

(1)Λℎ2
𝑁ℎ2
∗ +α12

𝑁ℎ1
∗

𝑁ℎ2
∗ )

𝑅0
(1)(α21+μℎ)+𝑄1

, and ϱ =

(γ+μℎ)𝑁ℎ1
∗

𝑏𝑣
(𝑅0

(1)𝑅0
(2)μ𝑣(γ + μℎ) + 𝑏𝑣 (𝑅0

(1)(α21 + μℎ) + 𝑅0
(2)(α12 + μℎ)) + 𝑏𝑣𝑄1). 

Let 𝐼ℎ2
∗ =

𝑁ℎ1
∗ 𝑁ℎ2

∗ μ𝑣(γ+μℎ)(𝑅0
(1)(α21+μℎ)+𝑄1)(𝑅2−1)

𝑏𝑣ϱ
.  

 

The only healthy host migration indicates that β12 = 0 and β21 = 0, then polynomial (8), δ(𝐼ℎ2), can be 

rewritten as δ(𝐼ℎ2) = 𝑏𝑣(γ + μℎ)𝐼ℎ2(𝐼ℎ2 − 𝐼ℎ̅2
∗∗)(𝐼ℎ2 − 𝐼ℎ2

∗ ). This means that δ(𝐼ℎ2) has three roots,  𝐼ℎ̅2
∗ = 0, 𝐼ℎ̅2

∗∗ , 

and  𝐼ℎ2
∗ . Condition 𝐼ℎ2 = 𝐼ℎ̅2

∗ = 0 correspond with a boundary equilibrium 𝐸1 = (𝑆ℎ̅1
∗ , 𝐼ℎ̅1

∗ , 𝐼�̅�1
∗ , 𝑆ℎ̅2

∗ , 0,0) where  

𝑆ℎ̅1
∗ =

𝑁ℎ1
∗ 𝑄1+𝑁ℎ2

∗ (α21+μℎ)

𝑅0
(1)(α21+μℎ)+𝑄1

, 𝐼ℎ̅1
∗ =

𝑁ℎ1
∗ μℎ(μℎ+α12+α21)(𝑅0

(1)
−1)

((α21+μℎ)𝑅0
(1)
+𝑄1)(γ+μℎ)

, 𝐼�̅�1
∗ =

𝐼ℎ̅1
∗ Λ𝑣1𝑏𝑣/𝜇𝑣

𝐼̅ℎ1
∗ 𝑏𝑣+𝑁ℎ1

∗ μ𝑣
, and 𝑆ℎ̅2

∗ =
Λℎ2𝑅0

(1)
+𝑁ℎ2

∗ 𝑄1+𝑁ℎ1
∗ α12

(α21+μℎ)𝑅0
(1)
+𝑄1

.  

Further, condition 𝐼ℎ2 = 𝐼ℎ̅2
∗∗  correspond with 𝐸2 = (𝑆ℎ̅1

∗∗ , 0,0, 𝑆ℎ̅2
∗∗ , 𝐼ℎ̅2

∗∗ , 𝐼�̅�2
∗∗) where 

𝑆ℎ̅1
∗∗ =

𝑁ℎ1
∗ 𝑄1+α21𝑁ℎ2

∗

(μℎ+α12+α21)𝑁ℎ2
∗ (𝑄1+𝑅0

(2)(α12+μℎ))
, 𝑆ℎ̅2
∗∗ =

𝑄1+α12+μℎ

𝑄1+𝑅0
(2)(α12+μℎ)

, 𝐼�̅�2
∗∗ =

𝐼ℎ̅2
∗∗ Λ𝑣2𝑏𝑣/𝜇𝑣

𝐼ℎ̅2
∗∗ 𝑏𝑣+𝑁ℎ2

∗ μ𝑣
. 

The last possibility condition 𝐼ℎ2 = 𝐼ℎ2
∗  correspond with a co-endemic equilibrium 𝐸∗ =

(𝑆ℎ1
∗ , 𝐼ℎ1

∗ , 𝐼𝑣1
∗ , 𝑆ℎ2

∗ , 𝐼ℎ2
∗ , 𝐼𝑣2

∗ ), where  

𝑆ℎ1
∗ =

𝑁ℎ1
∗ 𝑄1+α21𝑁ℎ2

∗

(μℎ+α12+α21)𝑁ℎ2
∗ (𝑄1+𝑅0

(2)(α12+μℎ))
, 𝑆ℎ2
∗ =

𝑄1+α12+μℎ

𝑄1+𝑅0
(2)(α12+μℎ)

, 𝐼ℎ1
∗ =

𝑁ℎ1
∗ μ𝑣(𝑅0

(2)(α12+μℎ)+𝑄1)(𝑅1−1)

(α21+μℎ)𝑅0
(1)
𝑏𝑣+(α12+μℎ)𝑅0

(2)
𝑏𝑣+𝑅0

(1)
𝑅0
(2)
μ𝑣(γ+μℎ)+𝑄1𝑏𝑣

, 𝐼𝑣1
∗ =

𝐼ℎ1
∗ Λ𝑣1𝑏𝑣/𝜇𝑣

𝐼ℎ1
∗ 𝑏𝑣+𝑁ℎ1

∗ μ𝑣
, 𝐼𝑣2
∗ =

𝐼ℎ2
∗ Λ𝑣2𝑏𝑣/𝜇𝑣

𝐼ℎ2
∗ 𝑏𝑣+𝑁ℎ2

∗ μ𝑣
.  

This co-endemic equilibrium exists if 𝑅1 > 1 and 𝑅2 > 1. 
 

Theorem 5.  An equilibrium E1 is locally asymptotically stable if 𝑅0
(1) > 1  and 𝑅2 < 1. 

Proof. The local stability of E1 can be examined by linearizing the system (6) around E1. A characteristic 

equation of the Jacobian evaluated in E1 can be written as 

(λ2 + (μ𝑣 + γ + μℎ)λ + μ𝑣(μℎ + γ)(1 − 𝑅2))(𝑎4𝜆
4 + 𝑎3𝜆

4 + 𝑎2𝜆
4 + 𝑎1𝜆 + 𝑎0) = 0 (10) 

with 𝑎𝑖 > 0 for 𝑖 =  1,2,3,4. All eigenvalues have the negative real part if 𝑅0
(2) < 1 and the last fourth-order 

polynomial satisfy the Routh-Hurwitz criteria (Allen, 2007), such that 𝑎𝑖 > 0 for 𝑖 =  1,2,3,4 with 𝑎3𝑎2𝑎1 >

𝑎1
2 + 𝑎3

2𝑎0. If 𝑅0
(1) < 1, we obtain 𝑎𝑖 > 0 for i = 1,2,3,4. Thus, all the eigenvalues of the polynomial (10) have 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.5, 2020 

 

46 

 

negative real parts if and only if 𝑅2 < 1 which shows the locally asymptotically stable behavior of E1. 

                  ∎ 
 

Theorem 6. An equilibrium E2  is locally asymptotically stable if 𝑅0
(2) > 1 and 𝑅1 < 1. 

Proof. The characteristic equation of Jacobian from the system (6) which evaluated in E2 can be written as 

follows 

(λ2 + (γ + μℎ + μ𝑣)λ + μ𝑣(μℎ + γ)(1 − 𝑅1))(λ
4 + 𝐴3λ

3 + 𝐴2λ
2 + 𝐴1𝜆 + 𝐴0) = 0 

where 𝐴3, 𝐴2, 𝐴1 ∈ ℝ
+ and 𝐴0 = 𝑁ℎ2

∗2μ𝑣μℎ(α12 + α21 + μℎ)(μℎ + γ)(𝑅0
(2) − 1). These four eigenvalues have 

the negative real part if they satisfy the Routh-Hurwitz Criteria (Allen, 2007), such that 𝐴𝑖 > 0  for 𝑖 =  1,2,3,4 

with 𝐴3𝐴2𝐴1 > 𝐴1
2 + 𝐴3

2𝐴0. For 𝑅0
(2) > 1, we obtain 𝐴𝑖 > 0 for 𝑖 =  1,2,3,4. Thus, all eigenvalues have 

negative real parts if and only if 𝑅1 > 1 which implied that E2 is locally asymptotically stable.  

                   ∎ 

 
Figure 6. Stability diagram in (𝑅0

(1), 𝑅0
(2))-plane 

It is easy to see that 𝑅0
(1)

 and 𝑅0
(2)

 are a threshold for disease-free steady-state stability and threshold for both 

boundary endemic equilibrium existence, 𝐸1 and 𝐸2. The basic reproduction number of (6) when all infected host 

isolated is 𝑅0 = 𝑚𝑎𝑥{𝑅0
(1), 𝑅0

(2)}. Observing Theorem 5-6 implied that 𝑅0 cannot determine the dynamics of the 

system (6) completely. 𝑅0 can only determine if the disease dies out in total population including two patches. 

According to Theorem 5-6, another threshold 𝑅1  and 𝑅2 are also necessary to obtain the existence of co-endemic 

equilibrium 𝐸∗.  
 

From Figure 6, it can be seen that this boundary separates the parameter plane into four distinct regions, 

𝐷0, 𝐷1, 𝐷2, and 𝐷∗. In  𝐷0 = {(𝑅0
(1), 𝑅0

(2)) |𝑅0
(1) ≤ 1, 𝑅0

(2) ≤ 1}, 𝐸0 is locally asymptotically stable; 𝐸1   is locally 

asymptotically stable in 𝐷1 = {(𝑅0
(1), 𝑅0

(2)) |𝑅0
(1) > 1, 𝑅2 ≤ 1}; 𝐸2 is locally asymptotically stable in 𝐷2 =

{(𝑅0
(1), 𝑅0

(2)) |𝑅1 ≤ 1, 𝑅0
(2) > 1}; and 𝐸∗  is locally asymptotically stable in the region 𝐷∗ = {(𝑅0

(1), 𝑅0
(2)) |𝑅1 >

1, 𝑅2 > 1}.  
 

Since 𝑅1 = 1 is equivalent to 𝑅0
(2) =

(𝑁ℎ1
∗ 𝑄1+𝑁ℎ2

∗ α21)𝑅0
(1)
−𝑁ℎ1

∗ 𝑄1

𝑁ℎ1
∗ (α12+μℎ)−𝑅0

(1)
Λℎ1

. Note that 𝑅0
(1) =

𝑁ℎ1
∗ (α12+μℎ)

Λℎ1
> 1 is the 

asymptotic line of the curve 𝑅1 = 1. Similarly,  𝑅2 = 1 has the asymptotic line 𝑅0
(2)

=
𝑁ℎ2
∗ (α21+μℎ)

Λℎ2
> 1. Thus, it is 

not difficult to see the following facts from Figure 6: when 1 < 𝑅0
(1) <

𝑁ℎ1
∗ (α12+μℎ)

Λℎ1
, the dynamical behavior of 

(6) can change twice when 𝑅0
(2)

 varies from zero to infinity. 𝐸1 is stable for 0<𝑅0
(2)

≤
Nh2

* (Q1+𝑅0
(1)
(α21+μh))

𝑅0
(1)

Λh2+Nh1
*

α12+Nh2
*

Q1

; 𝐸∗  is 

stable 

stable 

stable 

exist 
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stable for 
𝑁ℎ2
∗ (𝑄1+𝑅0

(1)(α21+μℎ))

𝑅0
(1)
Λℎ2+𝑁ℎ1

∗ α12+𝑁ℎ2
∗ 𝑄1

< 𝑅0
(2) <

(𝑁ℎ1
∗ 𝑄1+𝑁ℎ2

∗ α21)𝑅0
(1)
−𝑁ℎ1

∗ 𝑄1

−𝑅0
(1)
Λℎ1+𝑁ℎ1

∗ (α12+μℎ)
; 𝐸2 is stable for 𝑅0

(2)
≥
(Nh1

*
Q1+Nh2

*
α21)𝑅0

(1)
-Nh1

*
Q1

-𝑅0
(1)

Λh1+Nh1
* (α12+μh)

. 

Further, if 𝑅0
(1) < 1 or 𝑅0

(1) >
𝑁ℎ1
∗ (α12+μℎ)

Λℎ1
, the dynamical behavior of (6) can change only once when 𝑅0

(2)
 vary 

from zeros to infinity. Similarly, when 1 < 𝑅0
(2) <

𝑁ℎ2
∗ (α12+μℎ)

Λℎ2
, the dynamical behavior of (6) can all change 

twice when 𝑅0
(1)

 varies from zeros to infinity; when 𝑅0
(2) < 1 or 𝑅0

(2)
>
𝑁ℎ2
∗ (α12+μℎ)

Λℎ2
, it can change only once. 

Note 𝑁ℎ𝑖 =
Λℎ𝑖

μℎ
, (𝑖 = 1,2) represents the size of the population in patch 𝑖 at the equilibrium in the absence of 

disease and mobility, while the basic reproduction number in patch 𝑖 is given by 𝑅0𝑖. The direct calculation 

shows that 

𝑅0𝑖 − 𝑅0
(𝑖) =

𝑏ℎ𝑏𝑣𝑁𝑣𝑖(𝑁ℎ𝑗α𝑗𝑖 − 𝑁ℎ𝑖α𝑖𝑗)

(μℎ + α12 + α21)𝑁ℎ𝑖μ𝑣(μℎ + γ)𝑁ℎ𝑖
∗ , 𝑖, 𝑗 = 1,2, 𝑖 ≠ 𝑗 

This means that 𝑅0𝑖 > 𝑅0
(𝑖) if and only if 𝑁ℎ𝑗α𝑗𝑖 > 𝑁ℎ𝑗α𝑖𝑗. It implies that under the condition that mobility 

individuals go out from patch 𝑖 to 𝑗 is greater than mobility individuals go to patch 𝑖 from 𝑗, the basic 

reproductions number in patch 𝑖 in the absence of dispersal is less than in the presence of dispersal. So, 

increasing the mobility of healthy people (susceptible and recovered) from patch 𝑗 to 𝑖 may be a helpful control 

strategy for the dengue disease eradicated in patch 𝑖. 
 

Next, we will figure out the stability region of equilibria in (𝑅01, 𝑅02)-plane as shown in Figure 7. Curve 𝑅1 = 1 

and 𝑅2 = 1 will be intersect in (𝑅01, 𝑅02)= (
Nh1

*

Nh1
,

Nh2
*

Nh2
). This gives us a different illustration that depends on ratio 

α21𝑁ℎ2

α12𝑁ℎ1
. 

 

 (a) 𝛼21𝑁ℎ2 < 𝛼12𝑁ℎ1 (b) 𝛼21𝑁ℎ2 = 𝛼12𝑁ℎ1 (c) 𝛼21𝑁ℎ2 > 𝛼12𝑁ℎ1 

Figure 7. Stability Diagram in (𝑅01, 𝑅02) −plane 
 

Let 𝑅01 and 𝑅02 before mobility occurs are given. We want to see the effect of healthy host mobility only in the 

dengue spread out. The only threshold for interior endemic equilibrium was 𝑅1 and 𝑅2. Using a similar set value 

of the parameter, and plot 𝑅1 = 1   and 𝑅2 = 1 in (α12, α21)-parameter plane gives us stability region as shown 

in Figure 7. 

 
Figure 8. Stability and existence diagram in (𝛼12, 𝛼21)- plane, setting 𝑅01 = 3.5 and 𝑅02 = 1.4 

 

Figure 8 shows that changes in mobility parameter 𝛼12 and 𝛼21 contributed to the stability of endemic 

equilibrium. If we fix one parameter, called 𝛼21 equal to 0.035, the equilibrium can change third times along the 

stable 

stable 

stable 

stable 

stable 

stable 

stable 
stable 

stable 

exist 

exist 

exist 
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𝛼12 axis, from 𝐸∗ become 𝐸2 to 𝐸∗ then 𝐸1 as shown in Figure 9. Otherwise, set a fixed 𝛼12 equal to 0.025, the 

equilibrium can change third times along the 𝛼21 axis, from 𝐸1  becomes 𝐸∗ then 𝐸2. 

 
Figure 9. Trans-critical Bifurcation diagram of 𝐼ℎ1

∗  and 𝐼ℎ2
∗  setting 𝛼21 = 0.035 

 
Figure 10. The solution of 𝐼ℎ1 and 𝐼ℎ2 with a fixed value of 𝛼21 = 0.035 

 

Figure 10 shows up different dynamic behavior of solution with a different value of α12. Both patches isolated 

figure out by the black line, which both patches are endemic with Patch 1 more endemic than Patch 2 since 

R01 = 3.5, and R02 = 1.4. Setting α12 = 0.003 and α21 = 0.035, healthy host migration makes Patch 1 free 

from infection but disease persists in Patch 2. Increasing healthy host migration from Patch 1 to Patch 2 as much 

as α12 = 0.01 increasing infected host of Patch 1 and decreasing infected host number in Patch 2, which makes 

both patches endemic. However, increasing  α12 as much as 0.02 will make disease dies out in Patch 2 

corresponding with the persistence of infection in Patch 1. This means that the control of people’s mobility can 

be a control strategy for disease eradication in patchy environments. From this scenario also, we show that the 

mobility healthy human can both intensify and reduce the spread of the disease in patches.  

 
Figure 11 Stability and existence diagram in (𝛼12, 𝛼21)- plane, setting 𝑅01 = 1.07 and 𝑅02 = 0.89 

 

In the second example, we consider a case where at the beginning Patch 1 endemic but Patch 2 not. Figure 11 

shows that if only the healthy host migrated from Patch 1 to Patch 2, i.e. 𝛼21 equal with zeros, then there is no 

chance to make the disease vanish from both patches. Further, let 𝛼21 as small as 0.001 and 𝛼12 ∈
(0.000366,0.000539) will result in the disease dies out in both patches. However, 𝛼12 less than 0.000366 

makes a reverse condition, which Patch 1 free from infection but Patch 2 is not. This result is strengthened by the 
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dynamical behavior of the infected population as shown in Figure 12.  

 

 
Figure 12.  The solution of 𝐼ℎ1 and 𝐼ℎ2 using a fixed value of 𝛼21 = 0.001 

4. Conclusion 

We have analyzed the two-patch model for host-vector transmission. In this model, we study the effect of host 

migration using a different rate for a healthy host and infected host. The disease transmission is assumed could 

happen when the host stays in a patch since infection during the transportation is negligible. The vector 

population cannot migrate to other patches due to the limited flying ability. When migration between patch 

occurs, we found that the 𝑅0 is the threshold condition for the global stability of the disease-free state, �̃�0 = √𝑅0 

is the basic reproductive number of the disease. If the one-directional host migration is not considered, either 

𝛽12 = 0 or 𝛽21 = 0, then the basic reproduction number becomes 𝑅0̂ = max{𝑅0
(1)η1, 𝑅0

(2)η2} < 𝑅0. It implied 

that the host migration would increase the basic reproduction number. If we only migrated infected host from 

Patch 1 to Patch 2, the infection level within Patch 1 will decrease and become a disease-free state as 𝛽12 

increased. Moreover, the infection level within Patch 2 as increasing of 𝛽12 will be increasing at the beginning, 

going to its maximum level and then decrease to its endemic level as shown in Figure 4 and Figure 5. 

The healthy people migration only shown leads to the disease spread both patches if 𝑅1 and 𝑅2 are greater than 1. 

The basic reproduction number of this model is 𝑅0 = {𝑅0
(1), 𝑅0

(2)}, but from Theorem 5 and 6, 𝑅0 cannot 

determine their dynamics completely since the threshold 𝑅1 and 𝑅2 are also necessary. From Figure 8 and Figure 

11, we can see that the disease vanishes in a patch if the healthy host migration is suitable. 
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