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Abstract. In this paper, we introduce and study a new type of sets , namely strongly τb -closed (briefly, τ*b - closed) 

set. This class is strictly between the class of closed sets and the class of gsg- closed sets. It is shown that the class of 

τ*b - open sets forms a topology finer thanτ . Relationships with certain types of closed sets are discussed and basic 

properties and characterizations are investigated. Further, new characterizations of normal spaces are provided and 

several preservation theorems of normality are improved. 
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1. Introduction and Preliminaries. 

  The concept of generalized closed (briefly g-closed) sets was first introduced by Levine [16]. Arya et al. [2] 

defined generalized s e m i -closed (briefly gs- closed)sets. Bhattacharyya and Lehiri [3] introduced the class of 

semi- generalized closed sets (sg-closed sets). Maki, et al. [17, 18] introduced generalised α- closed and α- 

generalized closed closed sets (briefly, gα-closed, αg-closed). Ganster et al [2] introduced τb - closed sets. Lellis et 

al. [13] introduce the class of gsg- closed sets. Jafari [11] and Donchev [8] introduced the concept of sg-compact 

spaces and studied their properties using sg-open and sg-closed sets.   

   Throughout this paper X and Y are topological spaces on which no separation axioms 

are assumed unless stated explicitly. This paper consists of four sections.  

In section 2, we introduce and study the class of τb - closed sets and investigate its relations with certain types of 

closed sets. 

In section 3, we derive several properties and characterizations of τb -closed sets and τb -open sets.  

In section 4, we provide some applications of  τb - closed sets. 

 

   Let us recall the following definitions which are useful in the following sections. 

Definition 1.1. A subset A of a topological space (X, τ) is called: 

 

(1) a semi-open set [15]  if A ⊆ cl(int(A)). 

(2) a pre-open set [20]  if A⊆ int(cl(A)). 

(3) an α-open set[22]  if A ⊆ int(cl(int(A))). 

(4) a b- open set[2] if )(int()(int( AclAclA U⊆  

(5) a semi- pre-open set (β-open set) [1] if A ⊆ cl(int(cl(A))). 

(6) a regular open set [23] if A = int(cl(A)). 

 

    The complements of the above mentioned sets are called their respective closed sets. The semi closure [10] (resp. 

α-closure [18], b- closure[2]) of a subset A of X denoted by scl(A) (resp. αcl(A), bcl(A)) is defined to be the 

intersection of all semi-closed (resp. α-closed, b- closed) sets containing A. The semi interior [10](resp. b- interior) 

of A denoted by sint(A)( resp. bint(A)[2])  is defined to be the union of all semi-open(resp. b- open) sets contained in 

A. 

Definition 1.2 Let (X,�) a topological space and A be a subset of X, then A is called 

(1) generalized closed set [16](briefly g- closed) if cl(A) ⊆  U whenever A ⊆ U and U is open in X. 

(2) semi- generalized closed set [4] (briefly sg- closed) if scl(A) ⊆U whenever A 						⊆Uand U is semi-open in X. 
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(3) a generalized semi-closed set [3](briefly gs- closed) if  scl(A) ⊆ U whenever A ⊆   

  U and U is open in X. 

(4) α- generalized closed set [17](briefly αg- closed) if αcl(A)⊆U whenever A ⊆ U and   

  U is open in X. 

(5) a generalized α- closed set [17](briefly gα- closed) if αcl(A)⊆U whenever A⊆ U and    

  U is α-open in X. 

(6) τb  - closed set [9] if bcl(A) ⊆ U whenever A ⊆ U and U is  open in X. 

(7) w- closed set [23] if cl(A) ⊆ U whenever A ⊆ U and U is semi-open in X. 

(8) α
**

g- closed set [18] if  αcl(A) ⊆ Int(cl(U) whenever A⊆ U and U is open in X. 

(9) generalized semi- pre- closed set [7] (briefly gsp- closed)if spcl(A) ⊆ U when- ever   

  A ⊆U and U is open in X. 

(10) a generalized  pre- closed set [19] (briefly gp- closed) if pcl(A) ⊆ U whenever A   

   ⊆U and U is open in X. 

(11) a generalized sg- closed set [13](briefly gsg- closed) if cl(A) ⊆ U whenever A ⊆ U  

   and U is sg-open in X. 

  

     The complements of the above mentioned sets are called their respective open sets.      

 

2.  τ*b  - Closed Set and its Relationships. 

Definition 2.1. A subset A of a topological space X is called a strongly τb -closed set (briefly, τ*b -closed) if cl(A) ⊆ 

U whenever A ⊆ U and U is τb  -open in X. 

   The family of all τ*b -closed subsets of X is denoted by )(* XCBτ .  

    It is easy to prove. 

Proposition 2.2. Let X a topological space and A be a subset of X, then: 

(1) Every closed set is τ*b - closed. 

(2) Every τ*b -closed is gsg- closed. 

 

Remark 2.3. The converse of part (1) of Propositions 2.2 is true in general as shown in the following example. 

 

Example 2.4. Let X = {a, b, c} with τ ={X,	�, {a, c}}.The set {a, b} is τ*b - closed but not closed set.  

 

Question: Is there a set which is gsg- closed but not τ*b - closed?   

 

   From Remark 3.2 of [13], Proposition 2.2 and well- known results we have the following relations. 

Proposition 2.5. For any topological space X, we have, 

(1) Every τ*b  -closed set is g-closed. 

(2) Every τ*b  -closed set is w-closed. 

(3) Every τ*b  -closed set is αg-closed. 

(4) Every τ*b  -closed set is α
**

g–closed. 

(5) Every τ*b  -closed set is gα-closed and pre-closed. 
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(6) Every τ*b  -closed set is sg- closed and β-closed. 

(7) Every τ*b  -closed set is gs- closed and gp- closed. 

 

Definition  2.6. A subset A of X is called τ*b -open if and only if A
c
 is τ*b -closed, where A

c
 is complement of A. 

The family of all τ*b - open subsets of X is denoted by ).(* XOB τ  

 

   From Proposition 2.2 and Remark 2.5 we have the following result.  

Theorem  2.7.  (1) Every open set is τ*b - open. 

            (2) Every τ*b - open set is gsg- open set. 

            (3) Every τ*b  - open set is g- open and ω- open. 

            (4) Every τ*b  - open set is gs- open, sg-open, β- open and gsp- open. 

            (5) Every τ*b  - open set is gα- open, pre- open and αg- open. 

 

 

3. Characterizations and Properties of τ*b - Closed and τ*b - Open Sets. 

     First we prove that the union of two τ*b - closed sets is τ*b - closed.                   

Theorem 3.1. If A and B are τ*b  -closed subsets of X then AU B is τ*b  -closed in X.  Proof.  Let AU B ⊆U and U 

be any τb - open set. Then A ⊆ U, B ⊆ U. Hence cl(A) ⊆ U and cl(B) ⊆ U. But cl(AU B) = cl(A) U cl(B) ⊆ U. 

Hence AU B is τ*b –closed. □        

Theorem  3.2. (1) If a set A is τ*b - closed, then cl(A) − A contains no non empty closed set (2) If a set A is τ*b - 

closed if and only if cl(A) − A contains no non empty τb - closed set   

Proof. (1)Let F be a closed subset of cl(A) − A . Then A ⊆ Fc. Since A is τ*b - closed then cl(A)⊆ Fc. Hence F⊆ 

(cl(A))
c
. We have F ⊆ cl(A)∩(cl(A))

c
= φ and hence F is empty. Similarly, we prove (2).                          □                                                                                     

                                                                                                                                                          

Remark  3.3. The converse of Theorem 3.2 need not be true as the following example shows. 

 

Example 3.4. Let X = {a, b, c} with τ = {X, φ, {a},{b, c}}. If A = {a, b} then  

cl(A) − A = X − {a, b} = {c} does not contain non empty closed.   

 

Theorem 3.5.  If A is τ*b - closed in X and A ⊆ B ⊆cl(A) then B is τ*b - closed in X. 

 Proof. Let B ⊆ U, where U is τb - open set. Since A⊆ B, so cl(A) ⊆ U. But B⊆ cl(A),  so cl(B) ⊆ cl(A)). Hence 

cl(B) ⊆ U. Thus B is τ*b - closed in X.         □                                                                                                                                                                         

 

Theorem 3.6.  Let A ⊆Y ⊆ X and A is τ*b - closed in X, then A is τ*b - closed relative to Y. 

Proof. Let A ⊆ Y∩G and G is τb -open in X. Then A ⊆ G and hence cl(A) ⊆ G Then Y ∩cl(A) ⊆Y ∩ G. Thus A is 

τb  -closed relative to Y.                   □                                                   

 

Theorem 3.7.  In a topological space X, )(XOBτ = � if and only if every subset of X is a τ*b - closed, where 

)(XOBτ is the collection of all τb - open sets in X and		�  is the set of closed sets in X.                                                       

Proof: If )(XOBτ = �. Let A is a subset of X such that A⊆U where U∈ )(XOBτ , then cl(A) ⊆ cl(U) = U. 

Hence A is τ*b - closed in X.  

    Conversely, if every subset of X is a τ*b - closed. Let U ∈ )(XBτ . Then U ⊆ U and U is τ*b -closed in X, hence 
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cl(U) ⊆ U.  Thus cl(U) = U. Therefore	 )(XOBτ ⊆ �. Now, if S∈ �. Then S
c
 is open and hence it is τb -open. 

Therefore S
c
 ∈ )(XOBτ  ⊆ � and hence S ∈ �  c

. Therefore )(XOBτ  � �.                                □                                                   

 

Theorem 3.8.  If A is τb  - open and τ*b - closed in X, then A is closed in X. 

Proof. Since A is τb - open and τ*b - closed in X then, cl(A)	⊆ A and hence A is closed in X.                                                                 

□                                                                                                                                                                                                

 

Theorem 3.9. For each x∈ X either {x} is τb - closed or {x}
c
 is τ*b - closed in X.  

Proof. If {x} is not τb - closed in X, then {x}
c
 is not τb - open and the only τb -open set  containing {x}

c
 and its 

closure is the space X. Hence{x}
c
 is τ*b - closed in X.       □                                                                                                                                                                                                                                          

Definition  3.10. The intersection of all τb - open subsets of X containing A is called the τb - kernel of A and is 

denoted by τb - ker(A). 

   

    Lellis et al. [13] defined sg- ker(A) to be the intersection of all sg-open subsets of      containing A.  

Remark 3.11. It is clear that τb -ker(A) ⊆ sg- ker(A). 

 

Theorem. 3.12. A subset A of X is τ*b - closed if and only if cl(A) ⊆ τb - ker(A).  

Proof.  Let A be a τ*b - closed in X. Let x ∈ c l(A).  If x ∉ τb - ker (A) then there is a τb  -open set U containing A, 

such that x ∉  U. Since U is a τb - open set containing A, we have cl(A) ⊆ U, hence x∉	cl (A), which is a 

contradiction. 

   Conversely, let cl(A) ⊆ τb - ker(A).  If U is any τb - open set containing A, then 

cl(A) ⊆ τb - ker(A) ⊆ U. Therefore A is τ*b - closed.                         □ 

   Jankovic and Reilly[12] pointed out that every singleton {x} of a space X is either nowhere dense or preopen. This 

provides another decomposition appeared in [5],  namely X = X1 U  X2 where X1 = {x ∈  X :{x} is no where dense} 

and X2 = {x ∈ X : {x} is preopen}.                              □ 

                                     

   Analogous to Proposition 4.1 in [13], we have the following. 

Proposition  3.13.  For any subset A of X, X2∩cl(A) ⊆ τb - ker(A). 

Proof. Let x ∈ X2∩cl(A). If x ∉ τb - ker(A). Then there is a τb - open set U containing A such that x ∉ U. Then U
c
 

is τb - closed containing x. Since x∈cl(A), so cl{x}⊆cl(A), we have int(cl({x}))⊆ int(cl(A)).  Since x∈ X2, so {x}⊆  

int(cl({x}), hence int(cl({x})≠ φ.  Also x∈cl(A), so A∩int(cl({x})≠ φ. Thus there is y ∈ A∩int(cl({x}) and hence  

y	∈ 	 ∩U
c
 . This is a contradiction.                         □                                                                                                                                                

 

    Since τb -ker(A) ⊆ sg- ker(A),by Remark 3.11. we have the following results which is Proposition 4.1 of [13].  

Corollary 3. 15. For any subset A of X,  X2∩cl(A) ⊆ sg - ker(A). 

                                                                            

Theorem 3.16.  A subset A of X is τ*b - closed, if and only if X1∩cl(A) ⊆ A.  

Proof.  Suppose that A is τ*b -closed, and x ∈ X1 ∩ cl(A). Then x ∈X1 and  

x ∈	cl(A). Since x ∈ X1, int(cl({x}) = φ. Therefore {x} is semi-closed. Hence int(cl({x}) ⊆{x}. Since every semi-

closed set is gs-closed, hence τb - closed [9]. So {x} is τb -closed. If x ∉ A and U= X− {x}, then U is a  τb - open 

set containing A and so cl(A) ⊆ U, since x∈ cl(A). So x∈U, which is a contradiction.    

   Conversely, let X1∩cl(A) ⊆ A.Then X1∩cl(A) ⊆ τb - ker(A), since A ⊆ τb - ker(A).  Now cl(A)= X∩cl(A) = (X1

∪X2 )∩cl(A) = (X1∩cl(A))∪(X2∩cl(A)). By hypothesis, X1 ∩cl(A)⊆ τb − ker(A), and by Proposition 3.13, X2 ∩

cl(A) ⊆ τb − ker(A).Then cl(A) ⊆ τb − ker(A). Hence by Theorem 3.12, A is τ*b -closed.                       □                        
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   Since every τ*b - closed set is gsg- closed, we have the following result which is a part of Theorem 4.9 in [15]. 

Corollary 3.17.  If  X1∩ cl(A) ⊆ A, then A is gsg- closed. 

 

Theorem  3.18.  Arbitrary intersection of τ*b -closed sets is τ*b - closed. 

Proof. Let F = {Ai: i ∈ Λ} be a family of τ*b -closed sets and let A= ∩i∈Λ Ai. Since A ⊆ Ai for each i, X1∩cl(A) ⊆
	X1∩cl(Ai ) for each i. By Theorem 3.16 for each τ*b -closed set Ai, we have X1∩cl(Ai)⊆ Ai for each i. So X1∩cl(Ai) 

⊆ A for each i. Hence X1∩cl(A) ⊆X1∩cl(Ai) ⊆ A for each i ∈ Λ. That is X1∩cl(A) ⊆ A. Hence by Theorem 3.16,  

A is τ*b -closed.                                       □                                        

                                                                                                   

   From Theorem 3.1, we have, 

Corollary 3.19. If A and B are τ*b -open sets then A∩B is τ*b -open. 

   From Theorem 3. 18, we have the following, 

Corollary 3.20. Arbitrary union of τ*b - open sets is τ*b - open. 

 

   From Corollary 3.19, Corollary 3.20 and Proposition 2.2(1), we have, 

Corollary 3.21. The class of )(* XOB τ forms a topology on X finer than	τ.  

Theorem 3.22.  A set A is τ*b -open if and only if F ⊆ int(A), where F is τb -closed and F ⊆ A. 

Proof. Let F ⊆int(A) where F is τb -closed and F⊆ A. Then A
c⊆ F

c
 where F

c
 is τb -open. Since F ⊆int(A). So 

cl(A
c
 ) ⊆ (F

c
 ). Thus A

c
 is τ*b - closed. Hence A is τ*b -open. Conversely, if A is τ*b - open, F⊆  A and F is τb - 

closed. Then F
c
 is τb - open and  A

c
 ⊆	Fc

. Therefore cl(A
c
) ⊆  F

c
. Hence F⊆ int(A).               □                                   

  

Theorem 3.23.  If A ⊆ B ⊆ X where A is τ*b - open relative to B and B is τ*b - open in X, then A is τ*b - open in X. 

 

Proof.  Let F be a τb - closed set in X and let F be a subset of A. Then F = F ∩ B is τb - closed in B. But A is τ*b - 

open relative to B. Therefore F⊆  intB(A).  Since 

 intB (A) is an open set relative to B. We have F ⊆ G ∩ B ⊆ A, for some open set G in X. Since B is τ*b - open in X, 

We have F ⊆ int(B)  ⊆ B. Therefore F ⊆int(B)∩G ⊆ B∩G ⊆ A. Hence F⊆ int(A). Therefore A is τ*b -open in X.                  

□                                      

                     

Theorem 3.24.  If int(B)⊆ B ⊆A and A is τ*b -open in X, then B is τ*b -open in X. 

Proof. Suppose that int(A)⊆B ⊆ A and A is τ*b -open in X then A
c
  ⊆ B

c
  ⊆		cl (A

c
) and since A

c
  is τ*b -closed in 

X, by Theorem 3.6, B is τ*b -open in X.          □       

 

Lemma 3. 25. The product of two τb - open sets is τb - open. 

Proof. Let A∈ )(XOBτ , B∈ )(YOBτ  and YXBAW ×⊆×= . Let WF ⊆ be a closed set in YX × , then 

there exist two closed sets AF ⊆1 , BF ⊆2 and so, )int(1 AbF ⊆ , )int(2 BbF ⊆ . Since BAFF ×⊆× 21  and 

)int()int()int(21 BAbBbAbFF ×=×⊆× . Therefore ),( σττ ××∈× YXOBBA .                                

□ 

                                       

 

Theorem 3.26. Let (X,�) and ),( σY  be topological spaces, B be a subset of (Y,�),   
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If BX × is τ*b - closed in the product space ),( στ ××YX , then B is τ*b - closed in    ),( σY . 

Proof. Let M be τb - open subset of Y such that B⊆  M. By Lemma 3. 25, MX × is τb - open. Since BX × is 

τ*b - closed and BX × ⊆ MX × ,  so )( BXcl × = )(BclX × ⊆ MX × . Therefore, MBcl ⊆)( . Hence B 

is τ*b - closed in ),( σY .                                      □              

   

4. Applications.  

     In this section, we introduce a new space namely,
τ*b

T . Its relations with some known spaces are discussed and 

some characterizations are provided. Further we make use of τ*b - closed sets to obtain new characterizations of 

normal spaces.  

   	Let us recall the following concepts. 

Definition 4.1.	  A topological space X is called a  

(1) T1/2- space [16] if every g- closed set is closed.  

(2) Tw - space [22] if every w- closed set is closed. 

(3) Tb- space [6] if every gs- closed set is closed. 

(4) Tgsg- space [13] if every gsg- closed set is closed. 

Definition  4.2.  A space X is called a τ*b
T -space if every τ*b - closed set is closed. 

   From Definitions 4.1, 4.2, Proposition 2.2 and Proposition 2.5, we can easily prove that: 

Proposition  4.3. 

(1)  Every T1/2 - space is a  
τ*b

T - space. 

(2)  Every Tw - space is a  
τ*b

T - space. 

(3)  Every Tb - space is a  
τ*b

T - space. 

(4)  Every Tgsg - space is a  τ*b
T - space. 

                                                         

Remark 4.4.The converse of parts, 1, 2, 3 of Proposition 4.3 is not true in general as shown in the following 

examples. 

Example 4.5. Let X = {a, b, c} with τ = {X, φ, {a},{b, c}}. The family of generalized closed sets = P(X) = The 

family of all w- closed sets = The family of all generalized semi- closed sets and )(* XCBτ = {X, φ, {a},{b, 

c}}.Then X is a 
τ*b

T - space but it is not a T1/2- space, not a Tw – space and not a Tb- space.  

 

Question.  Is there a 
τ*b

T - space which is not Tgsg? 

 

Theorem 4.6.  For a space X the following are equivalent. 

(1) (X, τ) is a 
τ*b

T - space. 

(2) Every singleton of X is either τb - closed or open. 

Proof. (1) ⇒ (2) Let  x ∈ X. Suppose that the set {x} is not a τb - closed set in 

 X. Then the only τb - open set containing {x}
c
 is the space X itself and so {x}

c
 is τ*b -closed in X.  By assumption 

{x}
c
 is closed in X or equivalently {x} is open. 

(2) ⇒ (1) Let A be a τ*b -closed subset of X and let x ∈	cl(A). By assumption 

{x} is either τb - closed or open. 

case(1): Suppose {x} is τb -closed. If x∉A then cl(A) − A contains a non-empty 

τb - closed set {x} which is a contradiction to Theorem 3.2. Therefore  x∈ A. 

case(2): Suppose {x} is open. Since x ∈ cl(A), {x}∩A � φ and therefore cl(A)⊆  A or equivalently A is a closed 
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subset of X.                                                          □ 

                                   

   Finally, we make use of τ*b - closed sets to obtain further characterizations and preservation theorems of normal 

spaces. 

Theorem 4.7. The following are equivalent for a space X: 

(1) X is normal. 

(2) For any disjoint closed sets A and B, there exist disjoint τ*b - open sets U, V such that UA⊂ and    

   VB⊂ . 

(3) For any closed set F and any open set G containing F, there exists a τ*b - open set U    

   of X such that GUclUF ⊂⊂⊂ )( . 

Proof. (1)⇒ (2): This is obvious since every open is τ*b  - open.  

(2) ⇒ (3): Let F be closed and G be open set containing F. Then F and G
c
 are disjoint closed sets. There exist 

disjoint τ*b - open sets U and V such that UF ⊂ and VGc ⊂ . 

Since G
c
 closed, hence τb - closed. So

 
GV c ⊂))(int( . Since φ=VU I , so φ=)int(VU I . Thus

 cVU ))(int(⊂ . Therefore
 

GUclUF ⊂⊂⊂ )( . 

(3) ⇒  (1): Let A and B be disjoint closed sets of X. Hence
cBA⊂ and B

c
 is open. So, by (3), there is a τ*b - open 

set U of X such that
cBUclUA ⊂⊂⊂ )( . We have

cUclB ))((⊂ . Since  A closed , hence τb - closed and 

)int(UA⊂ . Put G= )int(U  and W=
cUcl ))(( .  Hence φ=WGI  . Thus we find two disjoint open sets G 

and W containing A and B respectively. Therefore X is normal.   □ 

       

Definition 4.8. A function ),(),(: στ YXf → is said to be almost closed (resp. almost τ*b - closed) if for each 

regular closed set F of X, f(F) is closed (resp. τ*b  - closed). 

   

   It is clear that:    closed ⇒  almost closed ⇒  almost τ*b - closed.   

Theorem 4.9. A surjection ),(),(: στ YXf → is almost τ*b - closed  if and only if for each subset H of Y and 

each regular open set U of X containing )(1 Hf −
 there exists a τ*b - open set V of Y such that VH ⊂ and 

UVf ⊂− )(1
.   

Proof. Suppose that f is almost τ*b - closed. Let H be a subset of Y and )(XROU ∈ containing )(1 Hf −
. Put 

ccUfV ))((= , then V is a τ*b - open set of Y such that VH ⊂ and  UVf ⊂− )(1
. 

Conversely, let F be any regular closed set of X. Then 
cc FFff ⊂− ))((1

 and )(XROF c ∈ . Hence there exists a 

τ*b - open set V of Y such that  VFf c ⊂)(                                                                                

and
cFVf ⊂− )(1

. Thus )(FfV c ⊂ and )(1 cVfF −⊂ . Hence 
cVFf =)( and )(Ff  

is τ*b - closed in Y. Therefore f is almost τ*b - closed.                                    □                 

 

Theorem 4.10. If ),(),(: στ YXf → is a continuous almost τ*b - closed surjection and X is a normal space, then 

Y is normal. 

Proof. Let A and B be any disjoint closed sets of Y. Then )(1 Af −
 and )(1 Bf −

are disjoint closed sets of X. Since 

X is normal, there exist disjoint open sets U and V such that UAf ⊂− )(1
and VBf ⊂− )(1

. Let G= int(cl(U)) and 

H= int(cl(V)), then G and H are disjoint regular open sets of X such that GAf ⊂− )(1
and HBf ⊂− )(1

. Hence, 

by Theorem 4.9, there exist τ*b - open sets L and W such that LA⊂ , WB⊂ , GLf ⊂− )(1
 

and HWf ⊂− )(1
. And L and W are disjoint, since G and H are disjoint. Therefore Y is normal, by Theorem 4.7.                                              

□                                         

 

   The following result is immediate consequence of Theorem 4.2. 
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Corollary 4.11. [14] If ),(),(: στ YXf → is a continuous almost closed surjection and X is a normal space, then 

Y is normal.  

5. Conclusion. 

    The class of generalized closed sets is one of the significant notions which used in general topology and fuzzy 

topology spaces. The class of τ*b - open sets forms a topology finer than τ. This type of closed sets can be used to 

derive new separation axioms, new forms of continuity and new decompositions of continuity.   
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