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Abstract 

The majority of real-world systems within the Engineering domain and particularly the construction sector, 

generate enormous amounts of data every instance of time that they are in operation. This data can be collected 

from these systems real-time or otherwise using traditional methods or using contemporary techniques such as 

those that facilitate the implementation of concepts such as the Internet Of Things (IOT). Once gathered into a 

repository, this data can be utilized for planning, predictive, diagnostic, and other purposes. For this data to be 

put to such meaningful uses, there are analytics that need to be performed. This paper showcases typical 

examples of such analytics that generate information that can serve as decision support in a practical setting. 

First, background information that is necessary to support simple to complex data analytics is presented. This is 

followed by a case study used to demonstrate how analytics can be performed on data from an offsite concrete 

block production operation to gain insights into the operation and for diagnostic purposes. To achieve this, 

probability distributions fit to collected data for each state variable are utilized in a setup Monte Carlo simulation 

experiment configured to predict concrete production cycle lengths.  
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1. Introduction 

Practitioners recommend that before the utilization of data in any data-driven analytics study such as simulation 

modeling, machine learning algorithms, or artificial intelligence algorithms, it is absolutely critical that you 

understand the data. Otherwise, one runs the risk of violating mathematical assumptions and drawing wrong 

conclusions when they throw the data into a black box and make deductions (Angela 2014). The best place to start 

gaining insights into the dataset is with descriptive statistics which can reveal a lot of interesting things without the 

need to perform complex calculations. Once this notion of performing frontend analytics is embraced by analysts, 

it then becomes necessary for them to also adopt a strategy that entails exploring each variable individually. 

In situations that regression modeling is the main focus in performing analytics on a given dataset, it is mandatory 

to perform preliminary analytics that give insights into which variables could be redundant and need to be dropped 

moving forward into regression analysis. Correlation analysis is done on all possible variable pairs. Those that 

return high positive correlations (for the linear or non-linear, i.e., Spearman’s and Pearson’s respectively), reveal a 

potential for redundancy hence causing a double effect moving forward into regression analysis. If such a case 

arises, it is recommended to only carry forward one of the highly correlated variables. This is one of the benefits of 

including frontend descriptive analytics in any comprehensive, data-driven study. 

Analytics performed at another level can be utilized to fit models that represent the dataset and the patterns that 

include within it. These could be fuzzy membership functions or probability distributions. In this paper, the focus 

was on the use of probability distributions for this purpose. It was demonstrated how probability distributions are 

fitted to data and how the appropriate distribution was picked, i.e. using different goodness of fit criteria. To 

demonstrate this, a case study on concrete block production was studied. This operation was abstracted, data 

collected about it and data models fitted to each of its state variables. Subsequently, the operation was emulated on 

a computer through Monte Carlo simulation for purposes of predicting the cycle length associated with producing 

four concrete block units.     

 

2. Descriptive Statistics 

Descriptive statistics are some of the front-end statistics that are computed in any analytics study. This is because 
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they allow the data modelers a chance to gain insights into underlying trends in that data that they will be 

processing. In specific cases, the descriptive statistics also provide guidance on how to improve the quality of the 

data, e.g. in case there may exist outliers. 

 

2.1 Sum and Count 

The size of any given dataset is represented by the count statistic. The count is equal to the total number of 

instances, tuples, etc., that there are in a dataset. This statistic is very important because it is used to verify the 

completeness of the data. The count is also used in the computation of other statistics such as the mean, standard 

deviation, skewness, kurtosis, etc. This statistic is often denoted by the letter “n”. The sum is a statistic that at times 

is relevant and other times it’s not relevant. When relevant, the sum is indicative of the total magnitude of the data 

instances within a dataset for a particular state variable. In other cases, it represents the total magnitude of data 

instances that represent different state variables for each unique tuple. A practical example of a situation in which 

the sum of data instances for different state variables would make sense is the evaluation of cycle length, also often 

referred to as cycle time. The sum statistic can give indirect insights into whether the magnitudes of the individual 

data instances are reasonable. 

 

2.2 Measures of Central Tendency 

Measures of central tendency are statistical parameters that are indicative of the distribution of data relative to the 

mean value of the instances within the dataset. 

 

2.2.1 Mean 

The mean of a dataset is the same as the average value which represents the value that is central to all instances 

within a dataset considering their magnitudes as their weights. As such, the mean value tends to lie closer to the 

values with a higher magnitude. The mean is different from the median, which finds the central value in the 

dataset when its instances are ranked in ascending order. The median does not consider the magnitude of the data 

instances but rather, their rank. The mathematical Equation used to obtain the mean value of a given data set is 

presented in Equation 1. 
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2.2.2 Variance and Standard Deviation 

Standard deviation indicates the extent to which instances within a given dataset are close to or dispersed from 

the mean value. Standard deviation is obtained through the variance which takes utilizes the square of the 

difference between instances and their mean value so as to avoid the negative deviations canceling out the 

positive deviations in cases that they are equal in magnitude. The standard deviation is obtained as the square 

root of variance. The mathematical equation used for this is presented in Equation 2. 
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2.2.3 Median 

Median is an interesting statistical measure because it not only falls under the category of measures of central 

tendency but also is within the category of quartiles. A description of this statistic will be presented in this 

sub-section, however, the mathematical formula utilized in its computation will be presented in a general form 

within the sub-section on quartiles. A median is that value that slices the dataset exactly into half when the 

instances in that dataset are arranged in ascending order. This measure does not make use of the magnitude of the 

data instances like the mean does, but rather utilizes the rank of the ordered instances. As such, there are rare 

instances in which median values are the same as mean values but they are often different. When used together, 

the mean and median values can provide valuable insights into the presence of outliers. It has been written in 

literature, that if the mean value and median value of a given dataset are significantly different, there are likely to 

be outliers within that dataset (Angela 2014). 
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2.2.4 Skewness 

Skewness is an important measure in data science that informs about the distribution of data about the mean. 

Formal literature defines skewness as a measure of symmetry about the mean (Provide citations). Data may be 

said to have one of three types of skewness – no skew, positive skew, or negative skew. There exists a simple rule 

to tell the category of skewness for data that has been plotted graphically. Data is said to have a negative skew if 

its tail that is left of the mean is longer than the tail that is right of the mean. Data is said to have a positive skew 

if the tail to the right of the mean is longer than the tail to the left of the mean. Data that has no skew has the 

length of the left tail approximately equal to the tail that is right of the mean. This is shown in Figure 1.   

 

Figure 1. Graphical Representation (Shape) of Positive, No, and Negative Skew (Source: Angela 2014) 

Skewness indicates where the bulk of the distribution/data is and a possible presence of outliers within the data. 

If present, particularly in skewed data, outliers are often in the opposite direction to where the bulk of the data is. 

The Mathematica formula for computing skewness is given in Equation 3.  
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Values computed from this skewness equation can be zero, negative, or positive. A value of zero would imply 

that there is no skewness, i.e. the data is symmetrically distributed about its mean value. On the other hand, 

negative and positive values would imply that the data is skewed to the left and right respectively. 

 

2.2.5 Kurtosis 

Kurtosis is a Greek word that means “curved arching”. In probability and statistics, kurtosis is used as a measure 

of “tailedness” of a probability distribution. It describes the shape of the distribution’s tails in relation to its 

overall shape. It is expressed as the combined weight of a distribution’s tails relative to the weight of the center 

of the distribution (shown in the following mathematical expression). 

                     Weight of left tail Weight of right tail
Kurtosis

Weight of the rest of the distribution

+
=

                            (4) 

It is common knowledge amongst data scientists that normal probability distributions are bell-shaped with 

tails/extremes that extend up to approximately three standard deviations away from the mean (above and below 

the mean). Kurtosis is a statistical measure whose magnitude strives to compare the distribution of data to the 

shape of a typical normal distribution. For example, high values of kurtosis are interpreted as data that is 

distributed in such a way that its tails are longer (also often termed as “heavier”) than those of a normal 

distribution. In other words, high kurtosis values are indicative of the presence of several extreme values that 

make the tails heavy. This translates into an overall unique shape of the distribution, i.e., extreme values can be 

thought of as stretching a distribution along its horizontal axis making the bulk of the data appear within a skinny, 

tall vertically narrow range. The weight of the tails is said to be heavier than that of the rest of the distribution 

and as such, the kurtosis is referred to as leptokurtic. On the other hand, small kurtosis values imply tails that are 

shorter than those of a comparable normal distribution. The fact that there are fewer values within the tails 

implies that the distribution is not stretched along its horizontal hence there are more values in the rest of the 

distribution over a wider range other than the tails resulting in a fatter shorter distribution shape. In this case, the 

weight of the tails is less than the weight of the rest of the distribution and as such the kurtosis is referred to as 

platykurtic. The last case is one in which the tails and rest of the distribution are identical to the bell-shaped 

normal probability distribution. Such as kurtosis is referred to as mesokurtic.  Figure 2 is a visual representation 

of these types of kurtosis. 
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Figure 2. Graphical Representation (Shape) of Negative, Zero, and Positive Kurtosis (Source: Angela, 2014) 

When assessed in isolation, values for this measure are referred to as kurtosis but when compared to the kurtosis 

of a normal distribution (which is a value of 3.0), the measure is referred to as excess kurtosis. The excess 

kurtosis value for a leptokurtic case is positive, that for a mesokurtic is zero while that for platykurtic is negative. 

The Mathematica Equation for excess kurtosis is presented in Equation 5.    
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2.3 Partitioning Statistical Measures 

There are a number of statistics that slice dataset into parts and are referred to here as “Partitioning Statistical 

Measures”. Some of the measures that also belong to this category define the limits/boundaries for the data, i.e. 

minimum value and maximum value. The minimum value represents the cut-off at the lower boundary and is 

equal to the least value in the dataset. The maximum value represents the cut-off at the upper boundary and is 

equal to the greatest value in the dataset. The other partitioning measures have general names describing them, 

i.e. percentiles, deciles, and quartiles. Underneath those can be different instances of percentiles, deciles, and 

quartiles. 

 

2.3.1 Percentiles, Deciles, and Quartiles 

Percentiles, deciles, and quartiles are all statistics that were created to facilitate and equip data scientists with 

mechanisms of examining the fashion in which instances within a particular dataset are distributed. These 

statistics don’t tell the analyst the number of instances that are present within a sub-domain of the dataset but 

rather report the magnitude of an instance at a section where the dataset is sliced. Such information may be 

extremely useful in certain types of applications. The three statistics exist to provide different resolution options 

at which datasets can be scanned. Percentiles provide a 1/100th resolution while deciles provide a 1/10th 

resolution. Quartiles, on the other hand, provide ¼ resolutions. The type of application domain, together with the 

preferences of data scientist, influence the choice of resolution. However, quartiles seem to have been the most 

commonly utilized in both academia and practice. According to Mendenhall & Sincich (1995), the general 

formula used to compute the position index (i) for the value sought is presented in Equation 6. 

                                      ( )1j n
i

m

+
=                                       (6)          

In this formula, n represents the total number of data instances, also referred to as the count for the dataset. Then 

j represents the statistic-based index that is of interest to the analyst. The parameter m represents the resolution at 

which the data is to be split and directly relates to whether you are finding quartiles, deciles, or percentiles. The 

result of this formula is an index i that corresponds to the ranking of the value that is being sought from the 

dataset. The final value is obtained from interpolation or extrapolation using the rank index i that was computed.   

 

2.3.2 Box-Whisker Plot 

A box-whisker plot is a graphical tool used to visually display the distribution of the instances within a given 

dataset. It utilizes the three quartile values (i.e. first quartile, second quartile, and third quartile) to split the data 

into four equal portions (Statistics Canada, 2017). The whiskers go from each quartile to the minimum or 

maximum (See Figure 3). 
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Figure 3. Typical Schematic Layout of a Box-Whisker Plot (Statistics Canada 2017) 

In this Figure, the “lowest observation” and “highest observation” labels correspond to the minimum and 

maximum values in the dataset respectively. The difference between the upper quartile (Q3) and lower quartile 

(Q1) is referred to as the inter-quartile range. The inter-quartile range value is utilized in certain criteria for 

examining the presence of outliers in a given dataset.  Box-whisker plots give insights into the extent to which a 

given dataset varies. The larger the box, the higher the variability in the data instances. It is also indicative of the 

magnitude of the values.   

 

2.3.2 Histogram/Probability Distribution Function and Cumulative Distribution Function 

Probability density functions and cumulative density functions can be expressed both graphically and 

analytically as an equation. However, preference is given to graphical representation because it makes it easy to 

make inferences from visual inspection of their shapes. In fact, for empirical distributions, graphical methods 

may be the only way to represent PDFs and CDFs. PDFs serve different purposes from CDFs. PDFs are mainly 

used to gain insights into the distribution of the data, i.e. the extent of skewness. CDFs, on the other hand, can be 

a fast, and easy way to determine the probability with which certain values or range of values are likely to occur.  

PDFs can be represented in one of two forms based on the fashion in which the likelihood is computed. The first 

of these types makes use of the relative frequency of the data as its likelihood value. The other PDF type utilizes 

a ratio of the relative frequency to the bin width. In the first PDF type, the sum of the relative frequency values is 

always equal to one. In the second type of PDF, the total area for the histogram sums to a value of one. When 

drawing histograms, one critical variable that often affects the shape and values generated, is the bin width. 

Several mathematical models have been proposed for calculating the bin width. They include – Sturge’s rule 

(Sturge 1926), Doane’s rule (Doane 1976), Rice’s, and Freedman-Diaconis’s rule (Hyndman 1995; Legg et al 

2013; Doane 1976). These Equations are each summarized next in their respective order. 
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Once the number of bins has been computed, the bin width can be calculated using Equation 12. Once this has 

been done, the bins across the range of the data can be determined along with the number of data instances that 

fall within each bin, i.e., the frequency. Then one of the types of histograms can be constructed.   

                        Maximum value Minimum value
Bin width

Number of bins

−
=

                            (12) 

A cumulative distribution function is an accumulation of a probability density function. It represents the 

probability with which a specific value or more for a state variable is likely to be achieved. When represented 

graphically, the y-axis always has a minimum value of zero and a maximum value of one. The process of 

generating an empirical CDF from data requires first ranking the data instances in ascending order, then finding 

the ratio of each instance’s rank to the count. For theoretical probability distributions, an analytical equation can 

be obtained for the CDF by integrating the PDF equation.  
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2.4 Fitting Methods for Probability Distributions 

Probability distributions can be fitted in one of two ways: (1) using empirical data, and (2) using expert 

knowledge. The process of fitting probability distributions, whether continuous or discrete in nature, entails 

determining the values of the parameters for that probability distribution. When making use of empirical data as 

input into the distribution fitting process, several fitting methods can be utilized. The most popular of these 

include: (1) moment matching method, (2) maximum likelihood method, and (3) least-squares method. Of these 

three methods, the least-squares method is the most accurate and makes use of the output of the moment 

matching and maximum likelihood methods as its input. Most probability distribution fitting software provide for 

the three distribution fitting methods, for example, easy fit, @Risk, Crystal Ball, etc. Distribution fitting follows 

data collection and cleaning processes in cases in which empirical data is used in the fitting process.   

 

2.5 Testing a Probability Distribution Fit 

The Jargon used to refer to testing how well a fitted distribution is, is referred to as a “Goodness of Fit Test”. The 

goodness of fitting process just follows any probability distribution fitting process that is based on empirical data. 

It is the criteria by which the distributions are ranked. It should be noted that any distribution can be fitted to a 

given dataset because it is a matter of determining its parameter values using the dataset. However, if several 

distributions are fitted to a dataset, there will be some that fit better than others. The fitted distribution represents 

the population model to which the domain of all possible values for that state variable belong or are drawn. 

Different likelihoods can be computed that the empirical data sets came from the various probability distribution 

population models. These can then be used to rank the quality of fit for all the fitted distributions. Examples of 

the goodness of fit ranking methods include, (1) visual inspection of fitted distribution pdf to the empirical data 

histogram, (2) Chi-squared method, and (3) Kolmogorov-Smirnov method. The ultimate preference of the 

distribution is based on the modeler’s intended use of the distribution and how well the distribution ranked based 

on the goodness of fit criteria.   

 

2.6 Data Usage 

Practitioners, researchers, and other analysts within the modeling domain, regard data as the lifeblood of numeric 

computing and modeling. This is attributed to the fact that it is crucial for all the stages involved in the modeling 

process (See Figure 4). Prior to its use within models, data is transformed into different forms depending on the 

type of modeling that is to be performed. For example, probability distributions may be fitted, fuzzy membership 

functions defined, fuzzy rules formulated. All this can only commence based on the data collected directly from 

the field/lab or domain experts. Such data should be collected in the right quantity and should undergo 

pre-processing (e.g. outlier identification and jack-knifing) to ensure that the quality is desirable. It is also 

necessary to gain insights into the nature of the data – its distribution and any obvious patterns that could exist. 

Acquiring such an understanding is extremely vital, particularly when preparing data for purposes of performing 

Artificial Intelligence/Machine Learning (AI/ML) analytics where patterns – simple or complex, matter a lot. 

This is summarized schematically in Figure 4.       

This paper places an emphasis on pre-processing operations that need to be taken prior to transforming data into 

forms that can be utilized in computer-based numeric modeling. There is a significant amount of computational 

work that has to be done at the tail-end of any classical modeling study. This is often technically referred to as 

“output modeling”.  

 

3. Case Study – Concrete Block Production 

3.1 Prefabrication 

Prefabrication is a term used within the construction domain to refer to materials resources utilized in 

construction production processes that typically take place onsite. However, this category of materials, referred 

to as “prefabricated material”, are produced offsite and transported to the construction site for utilization. 

Offsite production is often performed either within a closed facility such as a structural steel or pipe spool 

fabrication shop or within a protected yard. In an offsite setting, the environment is not as constrained from a 

space and layout perspective as construction sites are. This gives the construction engineers vital control and 

leverage that they often utilize to boost their quality, safety, and productivity. As such, the offsite production of 

construction components has been widely adopted by the industry and has blossomed. This has translated into 
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modularization of facility components through all project phases, i.e., conceptualization, design, construction 

(fabrication, and erection), operation, and maintenance. The modularization concepts and practice have matured 

over the years transitioning from first through to fourth generation modularization. Modularization and offsite 

construction has not been limited to specific construction materials but rather has been embraced across the 

spectrum of materials used in the production of facility or infrastructure components such as steel, timber, 

asphalt concrete, cement concrete, etc. 

In this paper, a cement concrete application is chosen and discussed for purposes of showcasing the application 

of the data science concepts presented. The operation selected was one that involves the production of plain light 

cement concrete blocks.  The choice of this operation was guided by the fact that it is cyclic in nature and 

multi-tasked but not in a convoluted fashion. 

 

Data Acquisition & collection 

[Direct field/lab 

measurements, expert 

interrogation]

Data Cleaning

Preliminary 

Analytics 

[Descriptive 

Statistics]

Process Interaction 

Modeling & other 

types of modeling

Input Modeling

[Distribution Fitting, 

Membership function & Rule 

base formulation & 

Goodness of fit testing]

Training, Testing 

and Validation of 

AI/ML Algorithms

 
 

- Generation of output/results

- Output analytics

 
Figure 4. Schematic layout showing the workflow for fitting data models and their use in numeric models  

 

3.2 Methodology 

3.2.1 Process Abstraction and Data Collection 

In order to successfully create the formalism and precise abstraction of a real-world operation and implement 

that successfully on a computer in a numeric fashion, there is a need to abstract the logical sequence in which the 

operation works. Also, there is a need to define data models that emulate the passing of time when processes 

associated with the operation are being executed. This systematic process of formalizing real-world operations 

was ratified and applied in the abstraction of the concrete brick/block making operation. The logical sequence in 

which processes are executed was established through observations made within the fabrication yard. Details 

abstracted were summarized in a schematic layout. These schematic layouts were validated by domain experts 

prior to finalization and subsequent use. The resources utilized within the production process were also 

documented after careful observations from the perspective of each activity. 

Strategic sampling was utilized when identifying locations for studying concrete brick/block production 

operations. The data tracked in this production process was mainly the duration required to complete each 

activity. The duration data for the majority of the tasks were obtained through direct measurement. However, 

those that involved travel over variable distances, the duration variable was replaced with travel speed. The 

duration was measured using a stop clock built within a mobile phone and values recorded within a journal. For 

tasks that involved travel over variable distances, travel times and travel distances were measured and their 

corresponding travel speed values computed. Data was collected at different times of day and days of the week. 
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All this data was subsequently transferred from the journal into an MS. Excel file. Strategies often utilized in 

performing effective time studies were also applied in this data collection process. The following sub-sections 

present an overview of the abstracted operation and data on the duration and speeds with which certain critical 

tasks in this operation are executed. 

 

3.2.2 Concrete Block Production Operation 

Cement concrete blocks are often produced offsite because they are easy to transport and assemble into walling 

systems once delivered onsite. These blocks are produced from light concrete, a concrete that is made using fine 

aggregate, cement, and water. Often a block/brick making machines are used in the production process so as to 

expedite production. The majority of these machines are pneumatic and powered by electricity. Their power 

source varies from conventional hydro-electricity to diesel/gasoline-driven power generators. These machines 

come in different sizes and setups. There is a type that has a mixing chamber attached to the pneumatic 

component. Others don’t come with an attached mixing chamber. Mixing is done separately and the mixture is 

loaded into the machine, which is predominately a pneumatic compacting chamber. The case study operation 

presented in this study made use of a block producing machine without an attached mixing component. The 

process utilized in producing concrete blocks on that offsite production facility is described next.  

Raw ingredients are mixed outside the block making machine. This mixing is typically done either by hand or by 

the use of a mixing machine. In the operation that was being studied, blending was done by machine. After 

ingredients (cement and fine aggregate were fixed), water was added to make the mixture plastic. Ingredients are 

blended to generate a coherent and consistent near-dry mix. This plastic mixture was then loaded into the block 

making machine. The near-dry mix that is loaded into the block making machine contains a lot of air and 

moisture that are not good for the final block product and at this point also has no shape. The block making 

machine has mould components that house the mix that is loaded into the machine. The mixture that was placed 

into the moulds was then pneumatically compacted so that air in the voids is expelled and the contents of the 

mould achieve the desired size and shape of the final block product. Compaction also translates into better 

aggregate interlock hence superior strength and durability. The compacted material is referred to as a concrete 

block from this point onwards. Each concrete block that was produced had the following dimensions: 

200mmX200mmX400mm. The described processes are summarized in the process box labeled “A” in Figure 5.  

 

Measure fine aggregate 

and cement ingredients

Blend the ingredients till 

a consistent mix is 

obtained

A pre-determined amount 

of  water is added to  

ingredients to obtain a 

plastic mixture

Plastic mixture is loaded 

into moulds of brick/

block making machine

Apply pneumatic 

compaction to 

mixture in the 

moulds

Place concrete 

brick/block on 

pallet

Transport bricks/

blocks and put 

them in place to 

cure

Stack cured bricks/

blocks in storage 

area

A B

         

Figure 5: Schematic Diagram Summarizing the Concrete Block Making Process 

The quantity of material feed into a mixing machine was sufficient to produce 24 concrete blocks. However, the 

concrete block making machine was restricted to a capacity of 4 blocks per production cycle because it contains 

only 4 models. As such, subsequent cycles for mixing of raw ingredients were started only after the block 

making machine has completed its 6 cycles required to empty a fully loaded mixing machine. Concrete blocks 

are then placed onto a pallet that is transported by a buggy to a designated laydown area where they are placed 

individually onto the ground surface that is covered with a polythene sheet. The average distance between the 

block making machine and the curing laydown area was approximately 30m. The blocks are left out in the open 

to cure, i.e. dry and develop their design strength. This is shown in the process box labeled “B” in Figure 5. 

However, overhead protection from rain is provided whenever necessary because uncontrolled exposure to 

excessive moisture can adversely affect the curing process. After curing is completed and the desired strength is 

achieved, blocks are moved to a storage area where they are stacked over each other in order to optimize space. 

When the time comes, the blocks are loaded onto a truck and transported to a construction site where they are 

utilized in the building process. 
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4. Analysis, Results, and Discussion 

4.1 Data Export to Mathematica 

Data collected on field activities was stored in an MS. Excel file with values for each state variable placed in a 

column and state variable columns arranged side-by-side. This data is exported to another environment, in this 

case, Mathematica, for purposes of performing analytics on it. This is done to utilize the extensive and robust 

mathematics library built into Mathematica when performing computations hence automating the entire analysis 

process. Data from the excel file was imported using the following Mathematica code snippet and put in unique 

lists for each state variable. Note that an escape sequence was used in the file path definition when calling the 

“Import” function. After the data was successfully exported into Mathematica, other operations were carried out 

on it. 

 

Figure 6. Code Snippet for Importing Data into Mathematica 

4.2 Histograms 

Histograms are useful statistical graphics that give analysts insights into the distribution of the data. There is an 

in-built “Histogram” function within Mathematica that was utilized in plotting the histograms for each of the five 

state variables within our concrete block production case study. The following Mathematica code snippet was 

used to automate this process. 

 

Figure 7. Code Snippet for Plotting Histograms for Each State Variable 

The following histograms (in Figure 8) were generated when the code snippet was executed. The “Likelihood” 

type histogram was generated in each case. There is evidence of skewness in some of the histograms that were 

generated for each state variable in the concrete block fabrication process. 
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(a)                                     (b) 

 

                 (c)                                       (d) 

 

                 (e)  

Figure 8. Histograms Generated from (a) MachineLoading, (b) MachineProcessing, (c) PalletLoading, (d) Haul, 

and (e) Return Datasets 

The histograms for the “MachineProcessing” and “Haul” state variables have tails that are fairly long and heavy. 

This implies that the data points collected in the field had a high presence of extreme values, i.e. very small and 

very large values. The histograms for the “MachineLoading”, “PalletLoading”, and “Return” don’t seem to have 

tails which imply that there were no extreme data points collected from the field.  

The histograms for “MachineProcessing”, and “Return” exhibit near-symmetry, i.e., minimal skewness. 

Histograms for “MachineLoading”, and “Haul” are skewed to the left, i.e. the bulk of their data points are to the 

right. The histogram for “PalletLoading” seems to be skewed to the right, i.e. the majority of its data points are to 

the left side. 

 

4.3 Box-Whisker Plot(s) 

Box-Whisker plots are important visual ways of representing the dispersion of data points for a given state 

variable. For this study, these were generated in Mathematica. The charts obtained are shown in Figure 9. The 

“BoxWhiskerChart” in-built function in Mathematica was used to generate this chart. 
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Figure 9. Box-Whisker Plots for Data on each of the State Variables 

The “Machine Loading”, “Haul” and “Return” state variables show the greatest variation, with the “Haul” and 

Return” variables having the largest variation. It is important to note that the state variable referred to here as 

“Machine Loading” involves the activities for preparing the mix for 4 blocks and loading that mix into the 4 

moulds of the block making machine. The “Palette Loading” state variable has the least variation and has the 

least values compared to all the other state variables. The “Machine Processing” state variable exhibits moderate 

variability.  

The high uncertainties in the “Haul” and “Return” state variables are inherent to the fact that it is a travel activity 

and one that involves movement that is manually powered through a significant distance, i.e. 30m. The effort 

expended by the workers pulling or pushing the loaded or unloaded cart varies depending on how their fatigue 

levels, time of day, etc. The fact that the duration for these two activities are almost twice as high as those of 

other activities implies that they could result in waiting and delay hence bottlenecking the production cycle. 

Consequently, these two activities should be the first to be looked at if any improvements to the production of the 

operation are to be considered. Addition of resources, i.e. another cart with workers could lessen the delay of 

waiting by the block producing machine hence shortening the overall cycle length for the block production. 

The “MachineProcessing” state variable is a tricky one in this case study. Although the Box-Whisker plot shows 

that it has moderate variability and relatively short durations compared to most of the other activities (except 

pallet loading), it is a critical activity for the entire process because it is equipment intensive. Consequently, 

decision makers managing and supervising such an operation need to pay attention to it and dedicate the best 

equipment that they possibly can in order to maximize the uptime and avoid bottlenecking the operation. It is for 

such scenarios that data analysts are advised and cautioned to interpret their results in relation to the contexts 

they are studying. 

 

4.4 Basic and Other Statistics 

Results generated by running the Mathematica code snippet in Figure 10 are summarized in Table 1. It is a 

combination of basic statistics and more advanced ones. These statistics give valuable conclusive insights into 

the nature and quality of the data that was collected for each state variable. 

The “MachineLoading”, “Haul”, and “Return” datasets generated negative skewness values. The values of 

skewness for these state variables are relatively small which implies that their data was slightly skewed to the left. 

The “Haul” time had the highest magnitude while the “Return” time had the least magnitude of the three hence 

the “Haul” state variable has the highest skew to the left while the “Return” state variable has the least skewed to 

the left of the three state variables. 

The “MachineProcessing” and “PalletLoading” state variables generated positive skewness values. Their values 

are both relatively small but with that of the “PalletLoading” being the larger of the two. This means that both 

these state variables are skewed to the right but with the “PalletLoading” exhibiting more of that than the 

“MachineProcessing”.   
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Figure 10. Mathematica code snippet for generating basic statistics 

Table 1. Basic statistics for the state variables in the concrete block production operation 

Parameter State Variable Time [Minutes] 

MachineLoading MachineProcessing PalletLoading Haul Return 

Count 50 50 50 50 50 

Minimum 5.21 2.57 1.07 8.89 10.52 

Maximum 8.90 6.81 3.14 19.01 17.64 

Mean 7.45 4.53 1.95 14.28 14.13 

Variance 0.88 0.46 0.29 4.98 2.85 

Skewness -0.49 0.22 0.47 -0.62 -0.18 

Kurtosis 2.56 5.04 2.67 3.20 2.74 

Quartile 1 6.76 4.06 1.64 13.03 13.03 

Quartile 2 7.62 4.50 1.88 14.67 14.12 

Quartile 3 8.17 5.01 2.26 15.78 15.23 

Inter-quartile range 1.41 0.95 0.62 2.75 2.2 

Lower Outlier Threshold 3.10 1.15 0.14 4.86 7.22 

Upper Outlier Threshold 11.02 8.24 4.07 23.14 20.94 

# of Outliers 0 0 0 0 0 

Only two state variables, “MachineProcessing” and “Haul” have kurtosis values greater than 3.0 hence 

leptokurtic. This implies that their tails are heavier than that of a normal distribution and also indicate a high 

presence of extreme values in the data points collected from the field. This was evident in the shape of the 

histograms that were plotted. Consequently, there is a higher probability of sampling high and small values from 

the probability distributions of these state variables.     

The “MachineLoading”, “PalletLoading”, and “Return” state variables have kurtosis values less than 3.0 

meaning that they are platykurtic and have tails that are lighter relative to a normal distribution of same mean 

and standard deviation. It also implies that there was no presence of extreme values in the data points collected in 

the field. The probability of sampling small or large values from their probability distributions is also extremely 

low.   

The quality of the datasets for each respective state variable is largely determined by the presence or lack of 

outliers. In this case study, near outlier cut-off thresholds were used. Results obtained indicate no presence of 

outliers in any of the state variables hence implying that the quality of the datasets was good and could be used in 

the subsequent analysis without a need for improvement.   
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5. Input Modeling 

Input modeling may be expert-driven or data-driven and can be used to transform data into a model format that 

can subsequently be entered as input into a higher-level model. These low-level data models could be probability 

distributions, fuzzy membership functions, fuzzy rules, etc. In this study, we will be demonstrating the process of 

fitting probability distributions which can subsequently be utilized in simulation experiments.  

EasyFit software was used to fit probability distributions to data for each respective variable. The least-squares 

distribution fitting method was used to obtain the parameters for each distribution for the respective state 

variables.  The same goodness of fit methods were used to obtain the best-fitted distributions for each state 

variable. “1” stands for the K-S test, “2” for the Anderson-Darling test, and “3” for the Chi-Square test.  

Table 2. Input data models for the state variables in the concrete block production operation 

State Variable 1 [KS] 2 [AD] 3 [Chi] 

MachineLoading JohnsonSB[-0.82,1.14, 

3.96, 5.38] 

Triangular[4.92,8.17,9.17] Weibull[10.98,8.78,-0.93] 

MachineProcessing Dagum[0.46,14.02,3.97] Gamma[150.40,0.05,-3.74] Beta[790.93,1185.7,-19.8

1,41.03] 

PalletLoading Lognormal[0.63,0.28] Log-Logistic[5.93,1.85] Cauchy[0.26,1.88] 

Haul Dagum[0.26,25.22,16.19] Triangular[8.12,15.42,19.34] Beta[4050.50,15.06,-2270

.8,22.78] 

Return JohnsonSB[-1.11,2.81,20.27

,2.08] 

Weibull[4.18,6.78,7.97] Lognormal[2.64,0.12] 

The graphical plot of the fitted probability distributions that ranked first for each of the state variables were 

plotted in Figure 11. 

  

               (a)                         (b)                           (c) 

 

                 (d)                              (e) 

Figure 11. Fitted probability distributions for (a) MachineLoading, (b) MachineProcessing, (c) PalletLoading, (d) 

Haul, and (e) Return state variables 

6. Monte-Carlo Analytics 

In order to generate an authentic result on which output analysis could be show-cased, a Monte Carlo simulation 
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was performed using the five state variables to obtain the cycle length for producing several concrete blocks 

off-site. A code snippet was written in Mathematica to automate the simulation process (See Figure 12). 

 

Figure 12. Mathematica code snippet for the Monte-Carlo simulation experiment 

The configurations for the simulation experiment and basic statistics of the results obtained are summarized in 

Table 3. 

Table 3. Simulation experiment configuration and results 

# Parameter Value 

1 Simulation Seed 7808849308 

2 Total # of Iterations 5, 000 

3 Mean Value 41.40 

4 Variance 9.12 

5 Standard Deviation 3.02 

 

7. Output Analysis 

Monte Carlo simulation experiments conducted in an orderly fashion typically generate output that closely or 

precisely follows the normal probability distribution, i.e. is consistent with the central limit theorem. In this study, 

cycle length for the production of concrete blocks in an offsite location was computed using Monte Carlo 

simulation. The first task in any output analysis would typically involve testing for normality to confirm this. The 

easiest way to do this is by generating the P-P and Q-Q graphical plots. This was done using the EasyFit software 

and the results obtained presented in Figure 13.  
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(a)                                         (b) 

Figure 13. Graphical Plots of (a) P-P and (b) Q-Q for the Cycle Length in the Concrete Block Production 

Operation 

Both plots indicate that the results generated from the simulation closely follow the normal distribution. 

Parameters for the normal distribution were obtained from results, i.e. the mean and standard deviation. The 

probability density function and cumulative density function for the fitted normal probability distribution were 

overlaying those of the empirical distribution for the empirically generated data. The plots generated are shown 

in Figure 14. 

 

(a)                                             (b) 

Figure 14. Graphical Plot of (a) the PDF and (b) the CDF of the Theoretical Fitted Normal Probability 

Distribution 

The probability density function primarily gives insights into the distribution of the values in a dataset and 

provides a visual means of assessing the appropriateness of fit for a particular theoretical probability distribution. 

Aside from that, it does not have much use in practice. On the other hand, the cumulative distribution function 

has several uses. It can be used to quickly obtain quantile values, probabilities associated with the state variable 

taking on certain values. For example, the probability of producing a pallet full of concrete blocks within a 

certain time of less can now easily be determined directly from the CDF graphs without the need for complex 

computations.  

Other analyses that can be done include obtaining the confidence intervals for certain key statistics, quantiles, 

and probabilities. Examples of how this can be done for the mean and variance of the data generated in the case 

study are presented. A 5% significance level is assumed and the total number of observations is equated to the 

total number of simulation iterations performed, i.e. 5,000. The calculations for the interval for the mean value 

are presented next. 
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The computations for the confidence interval of the variance are slightly different. They are based on the 

Chi-Square probability distribution rather than the normal distribution. This distribution is chosen because when 

(the sample variance is) corrected to the population variance, the ratio of the corrected variance to the true 

population variance ([n-1]s2/σ2), is Chi-square distributed to n-1 degrees of freedom. The calculations are 

presented next.  
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2 2
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The mean and variance for which confidence intervals are computed are those of the population to which values 

generated in the simulation experiment are assumed to be drawn. The true values of these are not known but it 

can be concluded with a certain degree of confidence, 95% in this case, that they lie within a given range, i.e., the 

confidence interval.  

In essence, output analysis utilizes values generated from a simulation experiment as inputs so that other 

analytics can be carried out which give to results from which inferences can be made and applied directly into 

practice. 

 

8. Conclusions and Recommendations 

The paper has successfully demonstrated how quantitative data can be exported into a robust environment for 

performing extensive analytics. Mathematica was the environment utilized in this case but other similar 

environments such as Matlab, Python, R, etc. could have been used. The choice of environment would depend on 

the analyst’s skill level in writing code within the environment, access to the environment, and the availability of 

libraries and functions within those libraries to perform the analytics that is desired. The paper, through 

incorporating a practical case study, demonstrated how data analytics on observations collected from field 

operations can generate results that can be used to guide decision-makers on effective improvement strategies to 

implement. 

The case study presented in this paper was on an offsite concrete block production operation. In this operation, 

mixtures were made such that 1 bag of cement would produce 4 concrete blocks of size 200mmX200mmX400mm. 

The blending of basic ingredients was done in a machine that is different for the block making machine. A mix 

that can produce 24 concrete blocks was produced each cycle but only a portion of that mix that can produce 4 

concrete blocks was loaded into the block making machine at a time. The paper also demonstrated how insights 

into each activity of a production operation can be acquired from performing basic statistics and generating 

standard plots. It becomes evident which activities are highly variable for example “Haul” and “Return” tasks in 

the case study presented, and these considered if potential improvements to the entire operation are to be made. It 

was also shown how data models can be derived from empirical data and utilized in more advanced analytics, 

such as Monte Carlo simulation to obtain useful metrics for operations such as cycle length. In the concrete block 

production operation presented, 4 concrete blocks were produced in each cycle. Results from the Monte Carlo 

simulation experiment showed that the cycle length for producing these 4 concrete blocks had a mean of 41.40 

minutes and a standard deviation of 3.02 minutes. Observation of the operations and discussions held with 

workers also indicated that availability of pallets onto which freshly produced blocks are placed is a major 

constrain to how much the process can produce.  

This case study serves as a basis for building more comprehensive process interaction simulation models that can 

be used to experiment with different scenarios, for example, whether if adding a second block making machine 

with its own crew, there would be a need of adding another crew for hauling loaded pallets and returning to the 

machine or whether one such crew would be sufficient to service both machines to realize higher production 

rates.  

It has been shown how preliminary and more detailed analytics can be performed on data collected in a 
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real-world system. Strategies for scrutinizing the data for quality issues have also been presented. The authors 

also demonstrated how to diagnose systems for inefficiencies, how to rank and prioritize those for effective 

improvement strategy development and implementation. 
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