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Abstract

In this study, the intersection algebra of two principal ideals of the unique factorization
domain is explained. The generators of the intersection algebra of two principal ideals. The
important and sufficient conditions are obtained for the said intersection algebra to be finitely
generated. It is also shown that intersection algebra of principal ideals in the polynomial ring
IS a semigroup ring.
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1. Introduction

The research of the unique factorization domain has an importance in the field of
commutative algebra and a very interesting concept is intersection algebra of mathematical
structures. In this article, some cases of intersection algebra are discussed in the context of
UFD. This research is divided into three parts.

In the first part, the basic definitions and concepts of algebra and especially in commutative
algebra are given which are necessary to understand the work, and also some examples are
presented to explain the definitions or concepts where it is needed.

In the second part, some important results are given which are already have been proved about
the intersection algebra of different mathematical structures. These results are exceptional and
helped to complete the work of this research.

In the third Part, the UFD (Unique Factorization Domain) is considered and then studied the
intersection algebra of principal ideals. The proof of this section is mainly taken from [1]. In
this part, the following results are proved.
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An example of the intersection algebra of monomial ideals in the polynomial ring is created to
illustrate the theory.

e Found the generators of intersection algebra of principal ideals in UFD.
e Found the if and only if conditions for the intersection algebra to be finitely generated.

It also showed that the intersection algebra of monomial ideals in the polynomial ring is a
semigroup ring.

2. Preliminaries

In this section of the article, some basic definitions and introductory concepts of algebra are
given in general. Particularly the basic definitions of commutative algebra are given and also
some examples are presented to illustrate the concepts. These definitions are taken from [2],

[3], [4], [5], [6] and [7].

2.1. Abelian group: “An abelian group is a setA, together with an operation-that
combines any two elements a and b to form another element denoted a-b. the symbol- is a
general placeholder for a concretely given operation. To qualify as an abelian group, the set

and operation,(A,-), must satisfy five requirements known as the abelian group axioms:

e Closure: Forall a,b in A the result of the operation a-bisalsoin A .

e Associativity: Forall a,b andc in A, the equation (a-b)-c=a-(b-c) holds.

e ldentity element: There exists an element e in A , such that for all elements a in A ,
the equation e-a=a-e=a holds.

e Inverse element: For each a inA , there exists an element b in A such that
a-b=Db-a=e wheree is the identity element.

e Commutativity: Forall a,b in A ,a-b=Db-a.

A group in which the group operation is not commutative is called a non-abelian group or
non-commutative group”

2.2.Ring: “Aring is a set R equipped with two binary operations+and - satisfying the
following three sets of axioms, called the ring axioms

1. Ris an abelian group under addition, meaning that:

] (a+b)+c = a+(b+c)Va,b,c € R (thatis, + is associative)
= a+b=Db+aVva,binR (thatis,+ is commutative).

=  There is an element 0 in R such that a+0=a for all a in R (thatis,0 is the additive
identity)
" Foreach a in R there exists —a in R such that a+(—a) =0 (that is —ais the additive

inverse of a ).

2. Ris a semi multiplicative group, meaning that:
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= (a-b)-c=a-(b-c)forall a,b,c in R (thatis,- is associative).

= Thereisanelement 1in R suchthat a-1=a and 1-a=a forall in R (that s, 1 is the
multiplicative identity).

3. Multiplication is distributive with respect to addition:

= a-(b+c)=(a-b)+(a-c) forall a,b,c in R (left distributivity)
= (b+c)-a=(b-a)+(c-a)forall a,b,c in R (right distributivity).”
2.3.1deal: Let R be aring. A sub ring | of R is called an ideal if it satisfies the
following conditions:
1.(1,+)is a subgroup of (R, +)
2vxel,VreR: Xx-rel.

Equivalently, a right ideal of R is a rightr —submodule of R .

Similarly a subset 1 of R is called left ideal of R if it is an additive subgroup of R absorbing
multiplication on the left:

1.(1,+)is a sub group of (R,+)
2.¥Vxel,VreR: r-xel

Equivalently, a left ideal of R isaleft R—submodule ofR.”
Examples of ideal:

e “Inaring R the set Ritself forms an ideal of R. Also, the subset containing only the
additive identity O, forms an ideal. These two ideals are usually referred to as the
trivial ideals of R.

e The set of all polynomials with real coefficients which are divisible by the polynomial
x* +1 is an ideal in the ring of all polynomials.

e The set of all n—by —n matrices whose last row is zero forms a right ideal in the ring
of all n—by—n matrices. It is not a left ideal. The set of all n—by —n matrices whose
last column is zero forms a left ideal but not a right ideal.”

2.4.Polynomial ring: “The polynomial ring, F[X ], in X over afield F is defined as

the set of expressions, called polynomials in X , of the form
P=p,+PX+pP,X+-+p X" +p X"
Where p,, p,, .-, P, the coefficient of p, are element of F , and X, X? ,are symbols, which are

considered as “powers of X ”, and, by convention, follow the usual rules of exponentiation:
X%=1 X'=X, and
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XX =X,

For any nonnegative integersk andl. The symbol X is called an indeterminate or variable.”

2.5.Principal ideal: “A principal ideal is an ideal in a ring R that is generated by a

single element a of R through multiplication by every element of R .
A left principal ideal of R is a subset of R of the form Ra:{ra: rin R};

A right principal ideal is a subset of the form aR ={ar:r in R};

A two sided principal ideal is a subset of all finite sums of elements of the formras,
namely, RaR = {ras,,+---+1,as, :1;,S,,...,1,,S, in R}.

While this definition for two-sided principal ideal may seem to contrast with the
others, it is necessary to ensure that the ring remains closed under addition.

If R is a commutative ring, then the above three notions are all the same. In that case, it is
common to write the ideal generated by a as(a).”

2.6.Integral domain: “An integral domain is basically defined as a nonzero

commutative ring in which the product of any two nonzero elements is nonzero.
An integral domain is a nonzero commutative ring with no nonzero divisors.
An integral domain is a commutative ring in which the zero ideal {0} is a prime ideal.

An integral domain is a nonzero commutative ring for which every nonzero element is
cancellable under multiplication.”

Examples:

“The archetypical example is the ring Z of all integers.

Every field is an integral domain. For example, the field F of all real numbers is an
integral domain. Conversely, every artinian integral domain is a field. In particular, all
finite integral domains are finite fields. The ring of integers Z provides an example of
a non-Artinianinfinite integral domain that is not a field, possessing infinite
descending sequences of ideals such as:

2527 >5---52"Z252"7 5.

Rings of polynomials are integral domain if the coefficients come from an integral

domain. For instance, the ringZ[x] of all polynomials in one variable with integer

coefficients is an integral domain; so is the ring C[xl,...,xn] for all polynomials in n—

variables with complex coefficients.”

2.7.Unique factorization domain: “A unique factorization domain is defined to be

an integral domain R in which every non-zero element x of R can be written as a
product (an empty product if x is a unit) of irreducible elements p, of R and a unitu

X=Up,p,...p, With n>0
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And this representation is unique in the following sense: If q,...,q, are irreducible elements
of R and w is a unit such that

X =w0q,0g,...q,, Withm > 0.

Thenm=n, and there exists a bijective map¢:{1,....,n} — {1,...,m} such that p; is associated
to g, fori ef{l...n}.

A unique factorization domain is an integral domain R in which every non-zero element
can be written as a product of a unit and prime elements of R .”
Examples:“Most rings familiar from elementary mathematics are UFDs:

1. All principal ideal domains, hence all Euclidean domains, are UFDs. In particular, the
integers (also see fundamental theorem of arithmetic), the Gaussian integers and the
Eisenstein integers are UFDs.

27i
2. Z{e n }is a UFD for all integers1<n<22 ,but not for n=23 .

3. If R isaUFD, then so is R[X ] the ring of polynomials with coefficients in R . Unless
R is a field, R[X]is not a principal ideal domain. By iteration, a polynomial ring in

any number of variables over any UFD (and in particular over a field)is a UFD.
4. The Auslander-Buchsbaum theorem states that every regular local ring is a UFD.”

2.8.Radical of an ideal: “The radical of an ideal | in a commutative ringR , denoted
by Rad(l ) or /1 is defined as

\ﬁ:{r eR|r"e I}for some positive integer n

Intuitively, one can think of the radical of | as obtained by taking all the possible roots of
elements of | . Equivalently, the radical of | is the pre-image of the ideal of nilpotent

elements (called nilradical) in R/ 1 . The latter shows J1 is an ideal itself, containing |

If an ideal | coincides with its own radical, then| is called a radical ideal or semiprime
ideal.”

Examples:“Consider the quotient ring

R=C[x, y]/(y"). Notice that any morphismR —C must have y in the kernel in order to
have a well-defined morphism (if we said, for example, that the kernel should be(x, y—l) the

composition of C[x,y]— R — C would be (x, a y—l) which is the same as trying to force

1=0 ). Since C is algebraically closed, every morphism R — F must factor throughC ,so we
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only have the compute the intersection of {ker(CD) ORS Hom(R,C)}to compute the radical of
(0) . We then find that ,/(0) =(y)<R.

Consider the ring Z of integers:

e The radical of the ideal 4Z of integer multiples of 4 is 2Z

e The radical of 5Z is 5Z

e The radical of 12Z is6Z”

2.9.Monomial ideal: “A monomial ideal is an ideal generated by some monomials in
a multivariate polynomial ring over a field

An ideal | that can be written

I :{Zaax“ laeAa, ek}
For some Ac Z], is a monomial ideal.

Anideal 1 inS =Q[x,,..., X, ]is called a monomial ideal if it satisfies any of the following

equivalent conditions:

(@) I is generated by monomials,
(b) If f :Z%Nnkax“ belongstol then x* e | wheneverk =0,

(c) | is torus-fixed; in other words, if(cl,...,cn)e(Q*)n thenl is fixed under the action

X, = c.Xx forall i”
Example: Let 1(x*). Then I is a monomial ideal and A={n¢|Z,n>2}

2.10. Semigroup ring: “Let G be a monoid. Let R be a ring. Then the semi
group ring of G over R is actually the structure that can be seen as the set of formal
sums,

hRAY

geG

Where r, e R and g eGandr, =0 for all but finitely many g .

Note:Actually the semi group ring can be seen as the direct product of R with its copies. For
each element of G . There is one copy ofR .

2.11. Noetherian ring: “In mathematics, more specifically in the area of abstract
algebra known as ring theory, a noetherian ring is a ring that satisfies the ascending
chain condition on ideals; that is, given any chain of ideals:

Lcclachclyc -
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There exists ann such that:

There are other equivalent formulations of the aNoetherian ring.
For non-commutative rings, it is necessary to distinguish between three very similar concepts:

e Aring is left-noetherian if it satisfies the ascending chain condition on left ideals.
e Arring is right-noetherian if it satisfies the ascending chain condition on right ideals.
e Aring is noetherian if it is both left-and right-noetherian.

For commutative rings, all three concepts coincide, but in general they are different.”
Examples:

e “Any field, including fields of rational numbers,real numbers, and complex numbers,
is noetherian. (A field only has two ideals itself and (0) )

e Any principal ideal domain, such as the integers, is noetherian since every ideal is
generated by a single element.”

2.12. Ascending chain condition: “The ascending chain condition (ACC) and
descending chain condition (DCC) are finiteness properties satisfied by some
algebraic structures, most importantly ideals in certain commutative rings.

A partially ordered set (poset) P is said to satisfy the ascending chain condition
(ACC) if every strictly ascending sequence of elements eventually terminates.

Equivalently, given any sequence

8<a,<a,<

There exists a positive integern such that

2.13. Prime ideal: “A prime ideal is a proper ideal whose complement is closed
under multiplication.

This is equivalent to saying:
abep<aecporbep
An ideal P of a commutative ring R is prime if it has the following two properties:

e If a andb re two elements of R such that their productab is an element of P, then a
isinP orb isinP ,
e Pisnotequal toR for the whole ring.”

Examples:
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“A simple example: For R =Z . the set of even numbers is a prime ideal
In the ring Z [X] of all polynomials with integer coefficients, the ideal generated by 2

and X is a prime ideals. It consists of all those polynomials whose constant coefficient
is even.”

2.14. Quotient ring: “A quotient ring, also known as factor ring, difference ring

or residue class ring, is a construction quite similar to the quotient groups of group
theory and the quotient spaces of linear algebra. It starts with a ring R and a two sided
ideal I inR, and constructs a new ring, the quotient ringR/ 1 , whose elements are
the cosets of | inR subject to special + and- operations.”

2.15. Local ring: “A ringR is a local ring if it has any one of the following

equivalent properties:
R has a unique maximal left ideal.
R has a unique maximal right ideal.
1+ 0and the sum of any two non-units in R is a non-unit.
1+0and ifx is any element of R, thenx orl—x is a unit.
If a finite sum is a unit, then it has a term that is unit(this says in particular that the
empty sum cannot be a unit, so it implies1=0)

A local ring that is an integral domain is called a local domain.”

Examples:

“All fields (and skew fields) are local rings, since {0} is the only maximal ideal in

these rings.

A nonzero ring in which every element is either a unit or nilpotent is a local ring.

An important class of local rings is discrete valuation rings, which are local principal
ideal domain that are not fields.

Quotient rings of local rings are local.”

2.16. Commutative ring: “A ring is a setR equipped with two binary

operations, i.e operations combining any two elements of the ring to a third. They are
called addition and multiplication and commonly denoted by + and-;e.g.a+band
a-b. To form a ring these two operation have to satisfy a number of properties: the
ring has to be an abelian group under addition as well as a monoid under
multiplication, where multiplication distributes over addition; i.e.,

a-(b+c)=(a-h)+(a-c)

The identity elements for add multiplication are denoted 0and1, respectively. The coordinate
plan had four different quadrants.

If the multiplication is commutative, i.e

a-b=b-a
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Then the ring R is called commutative. In the reminder of this article, all rings will be
commutative, unless explicitly stated otherwise.”

Example: “An important example, and in some sense crucial,is the ring of integers Z with the
two operations of addition and multiplication. As the multiplication of integers is a
commutative operation, this is a commutative ring. It is usually denoted Z as an abbreviation
of the German word Zahlen (numbers)

A field is a commutative ring where every non-zero element a is invertible; i.e. has a
multiplicative inverseb such thatab =1

Therefore, by definition, any field is a commutative ring. The rational, real andcomplex
numbers form field. If R is a given commutative ring, then the set of all polynomial in the

variable X whose coefficient are inR forms the polynomial ring, denoted R[X] . The same
holds true for several variables.”

2.17. Module: “Let R be a ring and M an abelian group. We call M a left
R—module if there is a function

RxM =M :(r,m) rm,
Called a scalar multiplications, satisfying

1.(r+s)m=rm+sm
2.r(m+n)=rm+rn,and
3.(rs)m=r(sm)

Forall r,seR, mneG.

We call R the ring of scalars of M .

We can also define a right R—module analogously by using a function

MxR—M:(mr)- mr.

In particular the third property then reads
m(rs)=(mr)s

Note that the two notions coincide if R is a commutative ring, and in this case we can simply
say that M is an R-module.”
Examples of module:

e The K—modules over a field K are simply the K -vector spaces.
e Any matrix ring of aringR isa R-module under componentwise scalar.
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2.18. Submodules: Given a leftR-moduleM a submodule of M is a subset
N < M satisfying

1. N isasubgroup of M and

2. ForallreR andallne N we haverne N

The second condition above states that submodules are closed under left multiplication by
elements of R ; it is implicit that they inherit their multiplication from their containing
module;

Rx N — N must be the restriction of RxM — M

Examples: Any module M is a submodule of itself, called the improper submodule, and the
zero submodule consisting onlyof the additive identity of M , called the trivial submodule.

e A left ideall is a submodule of R viewed as an S -module, whereS is any(not
necessarily proper) subring of R
2.19.Quasi polynomial: “A quasi polynomial (pseudo polynomial) is a
generalization of polynomials. While the coefficients of a polynomial come from a
ring, the coefficients of quasi polynomial are instead periodic functions with
integral period. Quasi polynomial appear throughout much of combinatorics as the
enumerators for various objects.

A quasi polynomial can be written as

q(k)=cy (k)k® +cy (K)k ... 4¢ (k)

Wherec; (k) is a periodic function with integral period. If c, (k) is not identically zero, then

the degree ofq isd

Equivalently, a function f : N — N is a quasi-polynomial if there exist polynomials py,..., P ;

such that f (n) = p;(n) whenn=imods. The polynomials p; are called the constituents of f .”

Example: Given two quasi polynomial F and G , the convolution of F and G is
k
(F*G)(k)=2 F(m)G(k—m)
m=0

Which is a quasi-polynomial with degree <degF +degG +1.

2.20. Characteristic of ring: “The characteristic of a ringR , often denoted char (R)

, Is defined to be the smallest number of times one must use the rings multiplicative
identity(1) in a sum to get the additive identity(0)if the sum does indeed

eventually attainQ; the ring is said to have characteristic zero if this sum never
reaches the additive identity.

10
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That is, char (R) is the smallest positive numbern such that

1+---+1=0
[

n summands
If such a numbern exists, and 0 otherwise.

The characteristic may also be taken to be the exponent of the rings additive group, that is, the
smallest positiven such that

a+---+a=0
[ —’

n summands

For every element a of the ring (again, ifn exists; otherwise zero).”

2.21.Dimension of ring: “The Krull dimension has been introduced to provide an
algebraic definition of the dimension of an algebraic variety: the dimension of the
affine varity defined by an ideal I in a polynomial ring S is the krull dimension of
S/

2.22.Power of an ideal: “LetR be a commutative unital ring | be an ideal inR . The

n® power of | , denoted I" is defined in the following equivalent ways:
e Itis the ideal generated by n -fold products of elements from |
e Itisthe product of the ideal I with itself,n times.

In symbols, it is the additive subgroup generated by elements of the form
aa,..a, where a, 1 . The second power of an ideal is termed its square, and the third power
is termed its cube.”

2.23. Generators of ideals:

e Let R beacommutative ring.

e Let | =R bean ideal.
e Let S| beasubset.

Then S is agenerator of I if and only if | is the ideal generated by S .

2.24. Generator of power of ideal: letl be a graded ideal in a polynomial ringR,
which is generated minimally by x,,---, X, . Then the power of I,i.e I'is generated by

monomials of the form x,..., x;" wherea, +...+a, =t. Denote this set by S .”

2.25.Noetherian filtration: An a noetherian A is called filtered, if for every non-
negative integeri there is a subspace A such that

1) AcA ifi<y,
2) A-ACA

3) A-UA

11
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Theset{A |ie N} is called a filtration of A,

3. Literature Review

During recent years a lot of research has been done in this region of commutative algebra. For
instance see [8], [9], [10], [11], [12], [13], [14] and [15]. Some results are presented here.

A lot of studies have been done since the definition of monomial ideals of a ring. Because it is
really easy to deal with the monomial ideals and in this way, we can prove some results about
the generic ideals in the case of the polynomial ring. Because we can generalize the results
from the monomial ideals to any ideal generated by polynomials.

In [8] the authors consider A such that j; € J1Vi . The authors took | is not nilpotent.
Let A be a commutative noetherian ring with identity and 1,J ideals in A with J C \/|_

Also,assume that the ideal | is not nilpotent and ﬂk I =(0). Then for each positive integer

M one can define V; (J, M) to be the largest integer N such that 3™ < 1. Similarly ,w, (1,n)

is defined to be the smallest integer M such that J™ < 1" .Then the following results are
found.

Definition: [8]“Let A be a noetherian ring. We say that V:A—)Zu{oo} is a discrete
valuation on A if {XGA|V(X):oo} is a prime idealP ,V factors through
A— A/P —ZU{w}, and the induced function on A/ P is a rank one discrete valuation on

A/P.If | isanideal in A , then we denotev(1):=min{v(x)|xel}.”

If R is a noetherian ring, we denote by R the integral closure of R in its total quotient ring

Q(R).

Definition: [8]“Let| be an ideal in a noetherianring A. An element xe A is a said to be
integral over | if X satisfies an equation X" +a, X" +---+a =0 witha, € |". The set of all

elements in A that are integral over | is an ideal ,and the ideal | is called integrally closed
if 1 =1.1f all the powers |I" are integrally closed, then | is said to be normal.

After the above definition the author gave an interesting remark.”
Remark: [8]with the notation established above, for every positive integer ' we have
J— h
1" =1V, "R
i=1

In particular, we have the following.

12


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) i o4
Vol.10, No.3, 2020 l E

Remark: [8]If K,L are ideals inAV, -V, are the Rees valuations of L ,and

V,(K)>v,(L) forall i=1..,h, then K S L .
Definition: [8]A local noetherian ring (A,m) is analytically unramified if its m-adic

completion A is reduced.

Theorem: [8]Let Abe a locally analytically unramified ring .Then for each j=1,......r we
have

E, NQH? gCﬁ(Dj x Rzo)g E,.
Theorem: [8] Letd,,..., &, be thereal numbers. The limit

. v,(J,m,.....m
lim (2. m, )
My o.My —>00 alml_|_...+a_kmk

exists if and only if there exists a rational number | such that|61S =Qy =0, =""=0,for all
s=1,....,.k. Inthis case the limit is equal tol .

Theorem: [8]Assume that the ideal | has only one Rees valuation. Then the limit

v, (J,my,.om,)
my ..., M =0 aiml_|_....+akmk

exists if and only if
|1(J1)/81 :"’:Il(‘]k)/ak.

In mathematics a unique factorization domain is an integral domain.

A commutative ring in which the product of non-zero element is non-zero non-unit
element can be written as a product of prime elements uniquely up to orders an units.

In [9] the authors discussed some results about monomial ideals. Let A=K [X1 Xd]
with X,...,X; indeterminates and B be asub—k—algebraof A generated by monomials in

X;--s Xy .Then B is also a sub—k —algebra module of A ,generated over K as a module
by monomials.

Theorem: [9]If |\/|1 and Mz are finitely generated submonoids of N™, then so is

M =M, M,

13
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Theorem: [9]If 1,1, ck[xl,...,Xd] are monomial ideals, then the length functions f, are

quasipolynomial for allk >0 .

Theorem:[9]If | is an ideal generated by finitely many monomials, then K =Conv(log I) is

the intersection of finitely many closed half-spaces.

Theorem: [9]Let Hy,... H)y ;... H o, Hyy - be half-spaces, and let

be a family of polytopes indexed by @,,...,&, . Then the volume of Qal,__,an is a continuous

function of @,,...,, . In addition, there exist a finite number of hyper planes in RJ, such that

for 4;,...,4, not contained in any of the hyper planes, the volume of the polytope Qal,__.an is

given by adegree d formin &,...,Q,

Theorem: [9]If |;,..., |, are each generated by a single monomial, then f, has the form given
in the above theorem, hence is quasipolynomial of degreed +2.

Theorem: [9]Let | and J be monomial ideals inR =[X1,--.,Xd], where k has characteristic p
,and let S=R/1 .Assume | +J is Mg -primary. Then the Hilbert-Kunz function, HK; , (e),
is eventually a polynomial of degree dimS in P

Definition: [9]If M,=--=M_=M,l,,..,1, are all principal ideals, and R has

characteristic p >0 , then the functionHK,, , :a — fo(pa,..., pa) is called the Hilbert-Kunz

function on M of the ideal | =1, +---+1 The more standard definition is in term of bracket
powers,

11] =(fi" li<1})
With this notation,

HK,, , (a):length(M 17 Im )

Because R has characteristic p ,Imz 1P +---+ 17 which shows that HK}; | is dependent
only on | and not on the choice of |;,...,1,

Theorem: [9] If H is a half-space containing log I ,then aH containslog1®.
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Theorem: [9]If | is generated by h monomials, and if K is the convex hull oflog(l) , then
Iog(la)DZd N(a+h)K.

Theorem: [9] Let A be a subset of R® such that both A and its boundary 0A

have finite volume. Then

vol (A)-vol (8A)\/§ <#(A)<vol (A)+vol (8A)\/§

Theorem: [9]Fix (b,....b,) € N",a>0. then

R
length| —————————
. J Ellmbl+---+lr2“b“}
lim =1

T vl (O mbi/\j

In [12] the authors proved very important and interesting results about power of ideals.
A be commutative noetherian ring with unit @ and b two ideals of A . By “radical ofd” mean

the ideal R(a) composed of the x e Asuch that some power of X lies ind.

Theorem: [12]the sequences (Ub(a,n)/n) and (Wb(a,n)/n)infinite) limits 1, (a) and L, (a) .

Theorem: [12]the operations of multiplication and addition are compatible with the
equivalence relation a ~b between ideals of A .

Theorem: [12](“Cancellation law”). If o, and g’ are equivalence classes of ideals of A
having the same radical,the relation o =ap’ implies g =g’ .

Theorem: [12] the relations s>« and g = g+a in I(A) are equivalent.

Theorem:[12]If o and o' are defined in J(A) then o is defined, and one has

o =a'a' If ofand o are defined in J(A) then (oﬁ)t is defined and one has
o =(a*). If o and B are defined in I(A) , then (aB) is defined and one has
a’f=(ap) .

Theorem: [12]the relation «* =¢' impliesS=1 . The relation a =ﬂs implies o = .
Theorem: [12] Ifa # f, then o 3" =(a"p")" implies

x=uwand y = v'w.
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Theorem: [12]If &;ﬁﬁ, and when elements & and gare chosen in & andﬁ, then the
ratio s/t is uniquely determined by ;

Theorem:[12] Let A be a local ring of dimension d >1,b an ideals of A which is primary

for the ideal od non units , and @ an ideal of A such that dim(A/a)<d.Then I (a) is
defined , and is a finite real numbers.

In [13] the author proved the important results about Noetherian filtration and finite
algebra. Some are presented here.

Definition:[13]A ring A is said to be Noetherian if it satisfies the ascending chain condition

on ideals, i.e. for any increasing chain |, £ 1, € |, - of ideals of R there exists an integer

K such thatl, =1, for all n>k . A left A—module M is Noetherian if it satisfies the
ascending chain condition on submodules.

Definition: [13]Let A be aring. If Ahas a maximal ideal M , then we say that A is a local
ring, denoted (A,m) .

Definition: [13] A unique factorization domain is defined to be an integral domain R in
which every non-zero element X of R can be written as a product (an empty product if X is a

unit) of irreducible elements P; of R and a unitU:
X=U P Py, Withn >0

and this representation is unique in the following sense: 1f0,,...,q  are irreducible elements of
R and W is a unit such that

X=WQq,0,...q, Withm > o,

thenM=N, and there exists a bijectivemap
p:{L..n}>{1,..mj

such that P;is associated to g, fori € {1...n}.

Definition: [13]A principal ideal domain is an integral domain in which every proper ideal
can be generated by a single element. The term "principal ideal domain™ is often abbreviated
P.1.D. Examples of P.I.D.s include the integers, the Gaussian integers, and the set of
polynomials in one variable with real coefficients
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Definition: [13] A pair(l,J)of ideals of a ring A , call the algebra =&, (1"~ J°)u'v'the

intersection algebra of 1and J . If this algebra is finitely generated over R , we say that | and
J have finite intersection algebra.

Definition: [13]Let A be a Noetherian ring, and 1,Jideals in A withJ g\/l_ . Also

assume that | is not nilpotent and ﬂklk =(0). Then for each positive integer M define

vl(J,m) to be the largest Nsuch thatd" 1™, Also, we can examine the sequence

{v;(3,m)} ., which here we will abbreviate tov(m).

Theorem: [13]let R be aUnique factorization domain and 1,J principal ideals in R . Then
I,J have finite intersection algebra.

Theorem:[13]For any
a,b,c,d eN,max(a—b,c—d)+max(b,d)=max(a,c)< ((a-b)-(c-d))(b-d)=0.

Theorem:[13]Let R be a principal ideal domain with |,J idealsinR . Then | and J have
finite intersection algebra.

Theorem:[13]Let 1,J be ideals in a Noetherian local ring A such that J g\/l_ , the ideals
1,J are not nilpotent, andﬂklk :(0) . Assume that J is principal and the ring

B=®,,J"NI"

isNoetherian. Then there exists a positive integer { such that
v(m+t)=v(m)+v(t)

for All m>t.

Theorem: [13]Let R be a unique factorization domain and | and J nonzero principal ideals
in R such that

Jc\t

Then there exists a positive integer t such that

v(m+t)=v(m)+v(t).

Some Results on Principal Ideals in Unique Factorization Domain
In this analysis throughout the ring will be a polynomial ring. Also in this analysis, our
ring will be commutative.
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The aim of this chapter to study the intersection of two principal ideals and powers of
the principal ideals. The concept of intersection algebra is used to study the said structures.
Also, find the generators of the intersection of two principal ideals and also the intersection of
powers of these principle ideals in the Noetherian ring. Our Noetherian ring is a polynomial
ring.

Let S is a polynomial ring and | and J are ideals of S . Then the intersection algebra
of these ideals is a structure which is denoted and defined as

B=® 1"~J"

n,meN

Further we introduced two new variables U;,U, then the intersection algebra can be redefined
as

B,(1.LJ)= > 1"nJ"ujuy

n,meN

Clearly B,(1,J) < S[u,.u,].

If this algebra has finite generators then is called finitely generated.
The concept is illustrated with the help of following example.
Let S=K[x,%] be a ring and let I =(x’x})and J=(xx;). Then the elements of the

intersection algebra B will be of the form

10,,13,,3,,3 716,,2,,4 17,17, .4, 4
k1-|_k2X1 X2 ulu2 +k3X1 X2 ul u2 +k4X1 X2 ul u2

Clearly k;, Ky, ks, k, €1°nJ3°  and

X3 € 12 3%uud = (x5 ) A (x50 )usug = (x)%” uu;

And

7,16,,2 .4 2 4.2, .4 6,4 4,,16 2,4 6,,16 3,,3
X xufug € 17 n 3%ufug = (0% ) (x6° Jufuy = (x%° Jufus

And with this example it is clear that this algebra has natural grading that is N2 -grading.

A semi group G is called an affine semigroup if there is an isomorphism between G and any
subgroup of z° for some integer d .

An affine semigroup is called pointed if it contain the identity element.

We consider any two sets of numbers A={a,,..,a,} and B={b,,...b,} then these sets of
numbers are called fan ordered if
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a _ a

1 .
—>—=forall i=1,...,n-1

o

b

I i+1
If there exists a fan order between Aand B . And if &, =0, =0anda, =D, =1.

Let
m; :{ﬂl(bi’ai)+/12 (bi+11ai+1)|ﬂiiﬂz € Rzo}

Then the fan associated with these sets of numbers is defined as

ZA,B :{mi |i=0,...,n}

Theorem3.1

If S be a unique factorization domain. Let I=(w,..,wi) and J=(w,.. wp) are

n

principal ideals generated by irreducible elements. Let ZAB be the associated fan for

A= {81 an} and B= {bl bn}.Then the intersection algebra is generated by the set

&t
i

{Wflrij ’“.’WI Wbi+15ij ’W:nsij || :0,.--1n, J :1,...,ni}

FERRLE

Where(rij,sij) run over the Hilbert basis for each Q, =m, NZ* where m. € ZAB .

Proof:

As we already know that the intersection algebra is N?-graded. So to complete the proof of
theorem we will consider only a homogenous monomial from algebra. Letbe B .

Let
deg(b)=(r,s)
Where (r,s)em NZ* forsome m ey" . hence (r,s)eN”.

Now according to the definition of associated fan

i 2 E 2 a'i+1
bi r bi+1
. . a S . .
Now if we consider b > . then &1 2.8, and by the ordering of &b, we can easily see that
i
a;r 2b;svj<i
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a'i +1

. S .
If we consider . > then @, I <b.,S and by same argument we can easily see that

i+1
a;r <b;svj>i
So

bel"nJ%u'v®

S
be( Wa”) (W{‘l,...,wﬁ’”)urvS
ar Ay p DigS DS\, 1\,
be( e WL W )uv

As b belong to this ideal then b will be of the type

b= gw ., W W, WU

n

Where g e s be a monomial.

Now since (I,5)€Q, so this ordered pair has a decomposition of the form

)=210,(58)
Where d; € N, Hence r=>".aqr ands=>" qs,;
Therefore
s, 1y,

b=g(w,...w W, wiru'v?)

i+l !

Further

i+1 n

r.ll
b= gHij(alﬁj),___, Vviqj(airij)wqj(biﬂsij), o qu(bnsii)u il 93
As (; is common power of every term so we can write it as

bs: r s \3i

This shows that every monomial of ring S is generated by finite set of generators, which
complete the proof of the theorem.

Definition 3.2 Let F be a field. The semigroup ring F(G) of a semigroup G is the

F —algebrawith F—basis {I* |a <G} and multiplication defined as

Ia'lb =|a+b
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When K ={f,,..., f;} is a collection of monomial inW
F (K is equal to the semigroup ring F(G) , where
G=Nlog( f,)+,....+Nlog( f,)

is the subsemigroup of N' generated by log ( K)

Let B both as anw —algebraand as a F —algebraand keep in mind which structure one is
considering when proving results. While there are important distinctions between the two,
finite generation as an algebra overW is equivalent to finite generation as algebra over F .

Theorem 3.3

Let S be aring that is finitely generated as an algebra over a field F . Then B is
finitely generated as an algebra over S iffit is finitely generated as an algebra over F .

Proof:
Let B be finitely generated over F .

Which means there must exists a finite subset of F which generate B . So every element of
B can be written as a combination of those elements.

Since
FcS
So the subset which generates B is also subset of S .

Hence B is automatically finitely generated overS .

Let {Cl, o Cn} be the set of generators. For anyC eB :

We have

c=>" rc/ Wherel, €3S

Where ,Bi ’s are integral powers.

But we know that S s finitely generated over F , which means every element of S can be
written as a combination of elements of finite subset of F .

Say that set is S, S},

So
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D N i -
r=>" as" whered; €F

U]

So
c:ZL(Z?aijsf”)cf‘

B is finitely generated as an algebra over F with {C,,...,C,,S,,...,S,, } ,\which is proved

complete proof of the theorem.

Definition3.4 Let S =F[x] and x={x,,... X,} be the set generators. Then

F[x]=F[x.,..X,] itis the polynomial ring over a field F . It contains n number of

variables.
Suppose A= { | fq} in which set the number of elements are finite. So this called the
finite
set of distinct monomials in S . Such that
f.21 Vi
The monomial subring spanned by A is the F —subalgebra.
F [A] cS
We know that F[A]=F[ f,,...f, |

Then

F[A]=F[f,..f,]<S

Definition 3.5 A monomial, also called power product. A monomial is a product of powers
of variables with nonnegative integer exponent.

Forany d eN", the set x* = x*,...,x" where d ={d,,..d,} is the set of nonnegative integer

exponents.

Suppose that f is a monomial in polynomial ring S. The f has an exponent vector
f=x
Which is an exponent vector, the exponent vector is denoted by

log(f)=aeN"
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If R is the set of monomials in the polynomial ring S

Then

Iog(R) denotes the set of nonnegative integer exponent vectors of monomial in R .

Theorem 3.6

If S is a polynomial ring over a field F . The polynomial ring S contains n numbers of
variables. | and J are two ideals of polynomial ringS ,

these ideals are generated by monomials (nonnegative power product of variables whose
leading coefficient isone) in S ,then G is a semi group ring.

Proof: As we already know that | andJ are monomial ideals. Then the intersection of all
these ideals denoted as

I"~J" Vnand m
Where,

n, mare powers of the principal ideals.
So,

Each power of principal ideals such as (n, m) are the component of G . The each component

of G is generated by monomials.

Therefore,

G is a subring of F[x,...x,,u;,u,] .The subring G is generated over the field F .

Now,

From the list of monomials
{bi lie A}.
Now,

Consider the Q is the semi group. The semi group Q is generated by
{log(b,)|ie A}
Then,
6=F[0]

And G isasemi group over the field F .
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This show that a polynomial ring over the field and ideals generated by monomials inS .
Then G is semi group ring, which complete the proof of the theorem.
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