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Abstract

Consider an investor’s wealth allocated in a stock with prices modeled as a discrete-
time homogeneous Markov process that is not necessarily specified by any stochastic
recursion unlike in our previous paper (Mbele Bidima (2014)). Under this modified
modeling setting and more stringent (but still verifiable) conditions, using different
tools of Branching processes and Large deviations of functions of Markov transitions,
we show again existence of asymptotic linear arbitrage with geometrically decaying

failure probability in such a market model.
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1 Introduction

A couple of years ago, we introduced in [8] a version of asymptotic arbitrage in discrete-
time Markov models of financial markets, which we called asymptotic linear arbitrage
(ALA) with geometrically decaying failure probability (GDF P). That new concept aimed
at discussing existence of trading opportunities in a general discrete-time Markov model
that generate risk-less profit at a linear increasing speed in long-term, with a probability
of failing to achieve such a linear growth that decays to 0 exponentially fast. (See also [3]
and (9] for inspiring and similar works). We recall below the settings and the main result
of that paper [8].

In a discrete-time financial market we considered two assets in trading: a risk-less asset
(a bank account or a risk-free bond) with fixed interest rate, set to 0 for simplicity, ie.,

with prices normalized to By := 1 for all times ¢ € N, and a single risky security asset (such

*This article is a personal improved work of an unpublished minor part of my PhD thesis defended ten

years ago from Central European University. I still thank my former supervisor there, Miklés Rasonyi.
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as stock) whose (discounted) prices process Sy, t € N, is assumed R-valued and governed

by the stochastic difference equation

St41 = St + p(St) + o(St)err, tEN, (1)

and is assumed integrable in a filtered probability space (Q, F,F,P), with F := (F})ten.
Fi = 0a(5,S1,...,5), for all t € N, the natural filtration of Sy, p: R - Rand o : R — R,
with o > 0, given measurable functions, and (¢;)en an R-valued sequence of i.i.d random
variables. E and Var denoting the expectation and the variance with respect to P.

First, note that (1) could be seen as a time-discretization of a general stochastic differ-
ential equation driven by Brownian motion, whose solution is well known to possess the
Markov property in the literature (see [6, Theorem 5.6]), and that S; in the stochastic
difference equation (1) is a discrete-time Markov process as it is verifiable from [1, pp.
211-228].

Next, in this model, we considered the so-called (bounded) Markovian strategies i.e.,
R-valued F-predictable strategies (m¢)ien of the form m; := 7(S;-1), for all ¢t € N, where
m: R — Ria (bounded) measurable function. Given any such trading opportunity m;, we
assumed that the corresponding (discounted) wealth that an investor allocates in the stock

is an R-valued discrete-time stochastic process V;™ obeying the (self-financing) recursion

{ Ve, =V + 7t+1(St+1 — S¢) for all time ¢ > 1, @)

Vi© == Vo = 0, is the investor’s initial capital.
Under these modeling settings, we proposed the following definition.

Definition 1.1. (Definition 2.2 of [8]). We say that a trading opportunity m, generates
asymptotic linear arbitrage (ALA) with geometrically decaying failure probability (GDFP)

if from zero initial capital Vy, there are real constants a > 0, and ¢ > 0 such that,
PV >at) > 1—e “, for large enough timest > 1, (3)

or equivalently,

PV < at) < e . for large enough times t > 1. (4)

Financially speaking, this means the investor’s wealth by (3) grows linearly fast in
long term with a probability converging to 1 exponentially fast and by (4), failing to
achieve such a linear growth profit could be controlled by a probability that decays to 0
geometrically (exponentially) fast.

Under the mean-reverting condition (6) and other verifiable assumptions (A;), (A2),
(As) set respectively on the stock prices process S;, on the stock prices driving sequence

€¢'s, on the drift and volatility functions p and o and on the so-called stock market price
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of risk stated in [8] (but which are not necessary needed to be recalled here), we proved

the following main result,

Theorem 1.2. (Theorem 2.4 of [8]). There is an explicitly constructed Markovian
strategy w) that realizes ALA with GDFP in the investor’s wealth process (2) with the

stock prices model (1).

To show this result, we began with proving a large set of preliminary results using
advanced Markov chains theory in [10], Non-linear Functional analysis and the Spec-
tral theory of multiplicative regular Markov processes in [7], until we finally applied the
Gartner-Ellis Large deviations theorem in [2, Theorem 2.3.6].

In our present paper, we state and prove a variant of that Theorem 2.4 of [8] in
Theorem 2.12 of the section below under modified modeling settings with a different set
of conditions. A practical example is worked out to show the relevance of this existence

theorem. And we end with concluding remarks in the last section.

2 Modeling Setup and the Main Theorem

On contrary to the conditions set in [8], we consider the following.

Assumption 2.1. 1) The stock prices process S; is not necessarily specified by a stochastic
difference equation like in (1),
2) But still, S is a general discrete-time homogeneous Markov process with state space

a compact interval I instead of the entire real line R as in (1).

Remark 2.2. 1) The assumption on an interval state space of S; could be considered
realistic using empirical justifications as follows: after long time historical observations of
a stock prices on a given market, one may record the smallest value, say a, taken by the
stock and it is possible to chose/predict a higher enough value b that the stock may not
hit even after long-time trading. This is true since stock prices never hit infinite values in
none market.

2) And the assumption that the interval [a,b] can be taken as the state space I of
the stock price process S; is a mathematical condition that we need to use since closed

bounded intervals in R are compact.

Next, let A and Ay denote the Lebesgue measures on R and R? respectively, and let B([)
be the Borel o-algebra on I. For z € I and A € B(I), let P(z, A) :=P(Si+1 € A|S; = 2),
t > 0, be the one-step transition probability kernel of the Markov process S;. And denote
Pz, A) == P(S; € A|Sy==z), t > 1, the corresponding t-step transition probability
kernel. We assume the following stringent (but still verifiable) conditions in our present

modeling settings.
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Assumption 2.3. 1) The one-step kernel P(x,-), for all x € I, has a positive density
plx, ) : I = Ry, with respect to the Lebesque measure \.

2) That kernel densily p(z,-) is uniformly positive and bounded i.e., there erist con-
stants ¢, d € R such that 0 < ¢ < p(z,y) < d < oo, for all z,y € I.

3) Markovian strategies m; in such a general Markovian model are (uniformly) bounded

i.e., the functions m are bounded on I.

For any such Markovian strategy, we still consider the wealth process V;™ of an economic

agent as specified in the stochastic difference equation (2). Note that we may write V;™ as

t
V7' =Vo+ ) Z5, for all time t > 1, where Z] := m(Sp_1)(Sn — Sn-1)

n=1

is the wealth increment by time n < ¢, for all time ¢ > 1.

2.1 Preliminary Results from Markov Chains Theory

Before stating the main theorems of this article, we prove first the following set of
results.

Proposition 2.4. 1) The t-step transition probability kernel P(x,-) has density, say
p(x,-) : I — Ry, with respect to the Lebesque measure A.

2) For all t > 1, the law of Sy has density, say py : I — Ry, with respect to \.

Proof. We prove 1) by induction. Note first that p’(z,-) is just a notation, not power
tth of the density p(x,-) of P(x,-). Next, by induction, if ¢ = 1 and =z € I, then we
have Pl(z,-) = P(x,-) which has density p(z,-) by hypothesis. Set p'(z,-) := p(z,-), so
Pl(x,-) has density p*(z,-). Suppose for ¢ > 1 that P!(x,-) has density, say p'(z,-), then
by Chapman-Kolmogorov's Theorem (see for instance [10, Theorem 3.4.2]), we have for
all A € B(I) that,

PH(z, A) = ]

T t(q = l x > 1 U
P,y P, 4) /; Pz, dy) / P (3, W) A(du),

A
by induction hypothesis.

So if A(A) = 0, then P'™!(z, A) = 0, which means P**! is dominated by the Lebesgue
measure A\. Hence by Radon-Nikodym Theorem, P!*! also has a density p'*!(x,-). We
therefore conclude that for all t > 1, P'(z,-) has a density p'(z, ).

Statement 2) is derived from 1) as follows: for all £ > 1, and all A € B(I) we have,
P(S; € A) = P'(S0,A) = [, p'(So0,y)A(dy). Hence p(y) := p'(So,y), y € I, is the density
of Sy, as required. O

Proposition 2.5. The Markov chain X, is y-irreducible and aperiodic.
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Proof. First, by definition of irreducibility and Proposition 4.2.1 both stated in [10, p. 91],
we have to show that if A € B(I) with A(A4) > 0, then there is an integer ¢ > 1 such that
Pt(z, A) > 0 for all z € I. Indeed, set ¢ := 1, then we have

P(z, A) Jap(z,y)A(dy)
fA cA(dy) by Assumption 2.3, 2) (5)

= cA(A).

hv4

Since A(A) > 0 and ¢ > 0, it follows that P(z, A) > 0 and hence by Proposition 4.2.2 of
[10, p. 91] the Markov process S; is t-irreducible.

For the aperiodicity property, from the last equation in (5) above, setting 1 = ¢,
we obtain by Definition (5.14) in [10, p. 111] that the whole compact state space I is a
vi-small set for the discrete-time Markov process S;. It follows that 1 € E; := {t > 1 :
I is v-small with v, = d;11, for some constant §; > 0}, which implies that d := g.c.d(Ey),
i.e., the greatest common divisor of the set ET, is exactly 1. Moreover since A(I) > 0 i.e.,
IeB(I):={A € B(I): XA) > 0}, we conclude by Theorem 5.4.4 and the definition
of aperiodicity in [10, pp. 122-123] that the Markov process S; is aperiodic, ending the
proof. ]

Next, we state and prove the following technical lemma.

Lemma 2.6. There is a unique invariant (probability) measure ¢ for the Markov
process Sy, having a (stationary) positive density v : I — R, with respect to the Lebesgue

measure X\, such that the following limit holds,
lim P(S; € 4) = p(4) = f ~(@)A(dz), for all A € B(I). (6)
04 A

Proof. We proved in Proposition 2.5 that the whole compact state space I is 11-small for
the Markov process S;, hence by Theorem 16.0.2 of [10], S; is uniformly ergodic, hence
ergodic applying Theorem 16.0.1 of the same reference. It follows by Definition (13.8) of
ergodicity on p. 319 of this reference that there is a unique invariant measure @ for the
Markov process S; such that ||P'(z, ) — ¢|| = 0 as t — oo for all € I. Which means by
Definition (13.7) of [10, p. 319] again that we have, in particular for the initial constant
T:=5) €1,

sup |P'(So, f) — ¢(f)| = 0 as t — oo,
flfl<t

where f runs over the set of real measurable functions on I, ¢(f) := [; f(y)¢(dy) and
P'(So, ) := [, f(y)P'(So,dy). In other words, we have

sup
fHf1=1

/f t(So. dy) /f ‘%OastAOO.
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Setting f := 14 for any A € B(I), we obtain that |P*(Sp, A) —¢(A)| — 0 as t — oo. Since
Pt(Sy, A) = P(S; € A), it follows that P(S; € A) = (A), as t — oc.
Finally we show that ¢ has a positive density. Since ¢ is invariant, using its defining

property (10.1) in [10, p. 237], we obtain the following, for all A € B(I),
o) = [ Pladyetis) = [ [ e pranyetan

- /A ( /I plx,y)e(dr) ) A(dy).

by Fubini Theorem. Setting 7(y) := [; p(x,y)e(dz), for all y € I, which by Assumption
2.3. 2) is positive, we conclude with the later equality that ¢ has positive density =,

showing the lemma, as we required. O
This lemma implies the key result below.

Proposition 2.7. For any Markovian strategy m; in the wealth model (2), there exists
zx € R such that the sequence of expected wealth increments E(ZT) converges to z,. We

call this number z., the asymptotic expectation of the wealth increment ZT.

Proof. By Proposition 2.4 above, for all time ¢, S; has density p;. So for all A, B € B(I),

we have for t > 1,
P(S,_1 € A,S, € B) = fAIP’{St € B|S;_1 = 2)pe_1 (x)\(dx)

B fA /B P, PN (dy)pe-1 (2)A(d2)

= [A | ple o @a(do.dy).

This means, for ¢ > 1, that (S:_1,S;) has density p(z,y)pi—1(x), for z,y € I. Next by
Lemma 2.6 above, since 7(x)(y — z)p(z, y) is bounded on I? (and is measurable), then we

gEtT
E(Z7) = ./IZ m(x)(y — z)p(x, y)pi—1(z) A2 (d, dy)
- _/[2 m(z)(y — z)p(x, y)v(x) A2(dz, dy), ast — oo.

The later integral is finite since p(z,-) and ~ are densities, and w(z)(y — x) is bounded
on I? for all z,y. It is now enough to take z; := [}, 7(z)(y — 2)p(z, y)y(x) A2 (dz, dy), to

terminate the proof. O
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2.2 Existence Theorem on Asymptotic Linear Arbitrage

First, we state and prove the following key lemmas.
Lemma 2.8. Let m be any Markovian strategy in the wealth model (2) such that
A{z el :m(x) #0}) > 0. Then, there is a positive analytic function § : R — Ry,
such that the average investor’s wealth sequence (V" — Vy)/t satisfies a large deviations
principle with good convex rate function A* i.e., the convex conjugate function of A defined
as A(0) :=log (8(0)) for all 6 € R.

6‘rv(rt)p($ ,y) where

Proof. For 6 € R, consider the so-called scaled kernels Ky(z,y) :=
a(z,y) = w(x)(y — x), for all x,y € I. Since, by Assumption 2.3. 3), the process
a(Sp—1,5,) is bounded for all n, it follows again by Assumption 2.3. 3) and 1) that Ky
satisfies the conditions of Theorem 10.1 in [4, p. 67|, for all 8. So Ky has a positive
eigenvalue, say 3 i.e., as in definitions (10.3) and (10.4) of [4, p. 67], there are two
functions f, g # 0 on I (the left and right eigenfunctions associated to ) such that

= [; f(x)Kp(z,y)X(dx) and B(0)g(x) = [, Ko(z,y)g ( JA(dy), for all z,y € I.
It hence follows by Theorem 1 of [5] that hlllt_mc (]E( BV ))1/t = [(0), and that
B is analytic in #. This implies by continuity of Logarithm that %logE(eQ(Vf*VU)) —
log(G(#)) as t — 0.

Define A(6) := log (8(6)), for all # € R. From the basic properties E(X) = M (0)
and Var(X) = MY (0) — (M%(0))? for any random variable with finite expectation and
moment generating function My (t) := Ee'¥, t € R, the following corresponding equality
holds for the so-called asymptotic variance of (V™ — Vp),

1 2
lim tVaT (V7" — Vo) = B8"(0) — Zfr = A"(0).

i—o0

Suppose that the asymptotic variance limy o 3 Var (V;" — Vp) is nonzero i.e., A”(0) >
0, then the analytic function A is a nonlinear, hence it satisfies the conditions of Gartner-
Ellis Theorem 2.3.6 in [2] i.e., (V™ — V})/t satisfies a large deviations principle in R with
good convex rate function A*.

If on contrary A”(0) was zero, then, since as in Proposition 2.7 we have
N0) = [ #a)w - 2 pauni(@)aldr. dy)
2
= (/p m(x)(y — 2)p(x, y)y(x) A2 (da, dy)) :

A”(0) = 0 would imply m(z)(y — ) is constant Az-a.e. on I?, which happens only if

m(x) = 0 A-a.e. on I, a case we excluded in the statement of this lemma. O

Next,
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Lemma 2.9. For any Markovian strategy m; in the investor’s wealth model (2), the
corresponding asymptotic expectation z; is the unique minimizer of the convex rate func-

tion A*. Moreover, we have A*(x) > 0 for all z # 2.

Proof. In the proof of Proposition 2.7, we obtained lim; . (E(cg("'tmv”)))l/t = [(0).
Setting @ := 0, then we get 3(0) = 1. Thus, A(0) = log(5(0)) = 0. So, for all z € R, we
have A*(z) > 0 x © — A(0) = 0. Hence in particular we have A*(z;) > 0. Conversely, let
us also show that A*(z;) < 0 and conclude that A*(z;) = 0 < A*(x) for all 2 € R. Indeed,

for all # € R, we have,
_ b 3
Ozr — A(@) = Oz; + rE»n;o ;( — log E(e” 2n=1 ))

t
o . :
< Bzp + tlg-[olo P (IE(—G ‘ Eul Z,T)) by Jensen-inequality

t
= fz; — 6 lim l(Z]E(z:{))
=8

t—=oo T

= Oz — 0z since lim E(Z]) = 2z,
n—0o0
= Bz —u)

= 0.

Taking the supremum over all § € R we get that A*(z,;) < 0. Hence, we have proved
that A*(z;) = 0 < A*(x) for all z € R. This implies that z, is a global minimun for A*.

On the other hand, 3 is analytic hence differentiable on R; and since 3(f) > 0 for all
f € R, it follows that A = log 3 is also differentiable on R. Which implies that its convex
conjugate A* is strictly convex on its effective domain R. We conclude by strict convexity
that z,; is the unique minimum for A*.

Moreover, let xg # 2z, such that A*(zg) < 0, then A*(zp) < A*(x) for all z € R. This
means, xg is a different global minimum for A*, contradicting the unicity of z;. This

completes the proof, as we required. O

These two lemmas allow us to establish the following last key result, required to state

our main theorem.

Proposition 2.10. For every Markovian strategy m; in the investor’s wealth model
(2) such that X({x € I : w(z) # 0}) > 0, and for any arbitrarily small € > 0, the wealth

process Vi satisfies the following estimate,
P(Vi" > Vo+ (zn —€)t) 21— e @) for large time t. (7)

Proof. Lemma 2.8 above entitled that (V™ —V})/t satisfies a large deviations principle with

good rate function A*. Hence taking only the large deviations upper bound in Definition
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(1.2.4) of [2, p. 5], we obtain for any arbitrary small € > 0 that,
1 Vim — W,
]jmsup—logP(j’iﬂ <z,r—e) < - inf A ().
tvos b t T€(—00,zx —€]
In the proof of the preceding lemma, we obtained that A* is strictly convex, so it is
non-increasing on (—oc, z;|. It follows from this lemma that,
inf A (z)=A"(zx —€) > 0.
r€(—00,2x—¢]

Hence, ]P’(Vi7r >Vo+ (z2r — e)t) > 1 — e A9 for large time t. As we required. O

Remark 2.11. In this result, one may not get in (7) a straightforward linear growth
of the wealth V;™ in the long-run, if zr = 0 for all strategies m¢. So we resort to Martingale

Theory to get a more precise formulation of our main theorem as below.

Theorem 2.12. In the investor’s wealth model (2),

1) If there is a Markovian strategy m with A({z € I : w(x) # 0}) > 0, such that z # 0,
then m is an ALA with GDFP in the model.

2) There is no Markovian strateqy m such that zp # 0 if and only if. for A-almost all
x € I, the Markov process S; starting from Sy = x, with transition density p(z,-), is a
martingale with respect to the natural filtration Fy. However,

3) Under Assumption 2.5. 2), S; cannot be a martingale for almost all So = x. Hence
under the condition of Proposition 2.10, there is always ALA with GDFP.

Proof. 1) Let m be a Markovian strategy such that z; % 0. Then if z; > 0, we choose ¢
small enough such that z; — e > 0, hence we get by inequality (7) an asymptotic linear
arbitrage with geometrically decaying failure probability. Similarly if z; < 0, we choose
the “opposite” strategy —m for which z_, = —z; which is strictly positive. So, with a
similar choice of €, one also gets an ALA with GDF'P.

2) Let m; be any Markovian strategy. If S; is a martingale with respect to F; for A-a.e.
starting point x, then for all time ¢, E(S;|F—1) = Si—1. This holds whatever the law of
Sy_1 is. By a property of Conditional Expectation, we get IE(W(St_l)(S} —55_1)\52_1) =0.
Hence E(Z;) = 0 for all time t, implying that z, = 0.

Conversely, suppose that for some A € B(I) with A(A) > 0 and for all x € A we have

for example,

E(S) — 5|80 = 7) = / plw,y)(y — D)A(dy) > 0.

Then consider the Markovian strategy w(z) := 14(x) for all z € I. From the proof of

Proposition 2.7, we have
s = [, @)= o9 eldr, i)

: ] f (v — 2)p(e, PMdyhy@)M(ds) > 0.
AJI
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Since [;(y — z)p(x, y)A(dy) > 0, A(A) > 0 and v is positive on I, it follows that z, > 0.
3) Finally, without loss of generality, we may suppose that the state space is I = [0, 1].
If S; was a martingale for almost all Sp = x then there would be a sequence x,, — 1 such
that
E[S1|So = zn] = xn — 1, as n — oc. (8)

On the other hand, under Assumption 2.3. 2), let M > 1 be an upper bound for p(z,-)

on I, then
ElSuSo= ol = [ wplanp)dy< [ yMdy <1,
[0,1] [1-1/M,1]
contradicting (8). We may hence conclude, as required. O

We construct below an example of a Markovian model (not necessarily governed by any
stochastic difference equation like the one in [8]) and for which the stringent conditions in

Assumption 2.3. 1) and 2) are verified.

Example 2.13. (Markovian model with uniformly distributed-like transitions). Con-
sider a discrete-time process Sy valued in a compact interval I := [a,b] where 0 < a < b.
Suppose for every x € I, and for any time t € N, the conditional probability law of
Si+1|S¢ = x is given by the density p(x,-) defined for all y € I by,

ifxr=aorax=0,

b—a
p(z,y) = 2(331_&) fa<z<banda <y < x,
z(bl—g:) ifa<z<bandz <y b

1t follows from Subsection 3.4.1 of [10, p. 68] that the one-step transition probability
kernel P(x,-) so defined, generates a time-homogeneous Markov process, which is indeed
Sy by construction, and has density p(x,-) with respect to the Lebesque measure \.

Furthermore, it is easy to check that for all x € I, p(z,-) verifies Assumption 2.3. 1)
and 2). Hence according to Theorem 2.12, with such a Markovian model of stock prices
Sy, it is possible to find a (bounded) Markovian strategy that generates asymptotic linear

arbitrage with GDF P in the investor’s wealth model (2). n

3 Conclusion

To conclude, we draw a comparative remark of Theorem 2.12 to Theorem 2.4 of [8].
Note first that, as known from [1, pp. 211-228], a discrete-time stochastic process X;
is a Markov process if and only if the process evolves in time according to a stochastic
recursion of the form,

X1 = f( Xy, 6041), fort >0, (9)
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where g, is a "driving” sequence of i.i.d. random variables independent from X, and f
is some measurable function. In [8], we proved existence of ALA with GDF P (Theorem
2.4) with the investor’s wealth in (2) in the more common modeling setting that the
stock prices process S; in (1) satisfies the stochastic recursion (9) and takes values in
the entire real line R. To achieve this, we used the Markovian structure provided by the
difference equation (1) by imposing structural conditions (A;), (As2), (Asz) and (6) stated
in [8, pp. 92-93]. And we checked the result in Example 2.18 by considering a discrete-
time Ornstein-Uhlenbeck process where ¢4 are standard normally distributed, hence with
density supported in the entire R. In the present paper, we proved existence of ALA with
GDFP in Theorem 2.12 with the same investor’s wealth process in a modified modeling
case where the stock prices process S; is not specified by any stochastic recursion of the
type (9), but is just assumed to be any general discrete-time homogeneous Markov process
taking values this time in a compact interval I. We notice that, even if any discrete-time
Markov process admits a stochastic recursion of the form (9) as established from [1, pp.
211-228], by avoiding the use of the Markovian structure of the stochastic recursion as in
[8], we had to find and impose different stringent but still realistic conditions (Assumption
2.1. 2) and Assumption 2.3. 1) and 2)) on the Markov process S; in order to prove the
new corresponding existence theorem. By verifying this result in Example 2.13 above, we
found that we necessarily had to choose the (kernel) density of the one-step transition
probability kernel that is supported in the compact interval I and no longer in the entire
real line R.

Finally, we notice that Theorem 2.4 of [8] and Theorem 2.12 of this paper differ also
from each other not only on the mathematical tools used to derive each, but also on the
fact that the Markovian strategy realizing asymptotic linear arbitrage in the former is
explicitly and uniquely constructed while one may find several Markovian strategies m;
satisfying the required conditions A({z € [ : w(x) # 0}) > 0 and z; # 0 in the later.
Consequently, for an arbitrageur trader, the modeling setting of the present article offers
more opportunities to make risk-less profit in long-term in the sense of our proposed
Definition 2.2 in [8].
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