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Abstract: In this paper,  the  system of partial differential equations of the  thermo sensitive 

liposome-mediated drug delivery  model is solved analytically by applied the Adomian 

decomposition method with the appropriate initial and boundary  condition as well. Also, to 

determine the effectiveness of suggested models, simulated results were in comparison to the 

corresponding experimental information , and an important agreement was reached . So that a 

quantitative analysis is finally done by numerical simulation by adopting the values of all 

typical parameters to clarify the drug concentrations behavior with increasing time in different 

cases. 
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1.Introduction  

The system of drug delivery has an important role in controlling the effect of medications 

because of its effect on drug composition, average release, target organs, working time and 

ultimately drug toxicity and side effects. It is the composition of the drug in the form of doses 

or the delivery system of the drug that actually converts research that includes the discovery of 

medicines and various pharmacological aspects in to a clinical practice [1].TSL or Temperature 

sensitive liposomes is one of the important systems of drug delivery in order to transfer 

chemotherapy to the place of the solid tumor. When exposed to temperatures above or at the 

lipid solid-to-liquid phase transition temperature (often above 40 ° C), it is believed that the 

pores form inside the sebaceous membrane, leading to the release of the coated medicine 

[2,3].Thus, the administration of TSL during the moderate increase in temperature applied to 

the tumor leads to the delivery of treatment through the tumor. It has been exhibited that this 

treatment strategy significantly reduces tumor size compared with non-thermally sensitive 

liposomes or conventional chemotherapy [3-5]. While various drugs have been encapsulated in 

TSL, doxorubicin (Dox) is the most widely investigated agent [6,7] . Dox is a clinical cancer 

therapy used for a variety of solid tumors [8,9].  

The concept of tissue stem cells has extended to the concept of primary cancer cells (cancer 

stem cells) over the past years. Depending to the current hypothesis, there are a small number 

of "stem-like" cancer cells that work to reveal the largest portion of malignant cancer cells [10, 

11]. Because of the difficult access to cancer stem cells by some classic treatment strategies, it 

can play a role in relapse of malignant tumors [12, 13]. Cancer stem cells are actually 

characterized in the context of several various cancers [12, 14]. The mathematical modeling 

used to delivery of drug and predictability consistently by launching a growing field regarding 

its importance in the industrial and academic fields is because of its future astronomical 

potential. Similar to any other scientific discipline, simulations of computer are probably to be 
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part of future studies in the specialty of pharmacy. By allocating the doses of treatments 

included in the required medication administration and the target profile for the transfer of 

treatments, the mathematical prognosis allows to excellent evaluates of the composition needed 

along with other needs for the dosage forms used. One very difficult aspect is the combination 

of mathematical models and theories that measure the transfer and release of drugs into tissues 

and living cells. Different works have been achieved previously on treatment transfer devices 

regarding optimal design with the help of either numerical simulations / modeling processes or 

experimental approaches, therapeutic efficacy, and often all procedures are employed [15–17]. 

Mathematical modeling has shown various visions that are useful in understanding the 

mechanism of the effect of these physical properties on the transport of therapeutic medicine, 

and this contributes to the development, presentation and expectation of the treatment strategy 

in the end [18–20]. Moreover, mechanistically, studied how mathematical modeling of the mass 

transport of the drug can describe therapeutic responses to chemo-therapy [21,22] and enable 

the understanding of the process of drug delivery in the human [23]. Nevertheless, for dating, 

these efforts were limited using the inability to account for temporal and spatial heterogeneity 

in characteristics of tumor and the drug dosing. The chemo-therapy drug needs for traversing 

the interstitial, vasculature space (for example, micro-environment and stroma), and cell 

membranes of cancer for finally reaching intracellular goals. Likely, the capability for 

characterizing these physical characteristics of tumor must enable clinicians and scientists to 

not just predict responses, but moreover rationally design therapeutics for the individual cancer 

patient .Toward the present target, developed the theory of chemo-therapy responses based on 

the quantitative physical transport characteristics of cells of cancer [24, 25] as well as the solid 

tumor [26, 27, 28].Work to this end has also resulted in increased understanding of how 

vasculature structure and the resulting interstitial fluids behavior were included in nanocarriers 

distribution in the vessels of blood, in vivo [29]. The present generalized model allows us for 

considering the variety of strategies of treatment, involving the systemic drug delivery by 

nanocarriers, and helps for predicting the response of tumor for various forms of the drugs 

delivery by nanocarriers, and helps for predicting the response of tumor for various forms of 

the drugs delivery approaches before starting the treatment. The present mathematical model 

proposed focuses on the complex endosomal events as well as the release mechanism of drugs 

in systemic plasma, tumor plasma , tumor interstitial fluids and stages of intracellular tumor 

[17].This leads to system of the partial differential equations along with appropriate set of the 

boundary and initial conditions [17]. In this paper , the Adomian decomposition method 

(ADM) is applied to find the solution of the model of the liposome drug concentration release 

to tumor over time in different locations.  Hear ,This method was used  for the first time to 

handle the current problem by investigates the solution of partial differential equations which 

was calculated in the form of the components of an infinite series. The comparison between 

present results with the  experimental data indicate that the efficiency and the reliability of 

proposed method. 
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2. Mathematical formulation 

    Modelling drugs release dynamics in Systemic plasma compartment . 

TSL-DOX pass through the wall of blood vessels because of its small size after accumulate, 

and administration in the extracellular spaces in tumors. Moreover, the liposome is expected to 

stay stable at temperature of body. When heated locally, encapsulated drugs released from the 

temperature- susceptible liposome grease quickly when the temperature comes to the point of 

transition [16, 17] . 

There is 2 compartments, tumor compartment and systemic plasma compartment.  According to 

the Starling law, the trans vascular from blood to interstitial flux per tumour volume is defined 

as 

 𝐹𝑣 =  𝐾𝑣
𝑆

 𝑉
 [𝑃𝑣 − 𝑃𝑖 − 𝜎𝑇 (𝜋𝑣 − 𝜋𝑖)]  ,                                                                                        (1) 

where, 𝐾𝑣 shows the hydraulic conductivity of the blood vessels wall, S/V is surface area of 

blood vessels per tumour tissue unit volume, 𝑃𝑖 and 𝑃𝑣 are the respective pressures of interstitial 

fluid and blood vessels, 𝜎𝑇  is the average of coefficient of osmotic reflection (the measurement 

of the relative permeability of the specific membranes to the specific solute) for proteins of 

plasma and finally, 𝜋𝑣 and 𝜋𝑖 show the respective osmotic pressure of interstitial and plasma 

fluids. 

Equation of liposome-encapsulated drug concentration [𝐶𝐿
𝑆] can be written as follows [ 17 ]; 

𝜕𝐶𝐿
𝑆

𝜕𝑡
= 𝐷𝐿

𝑆 𝜕2𝐶𝐿
𝑆

𝜕𝑥2 -𝛾1
𝜕𝐶𝐿

𝑆

𝜕𝑥
-𝐾1𝐶𝐿

𝑆,                                                                                                       (2) 

where, 𝐷𝐿
𝑆 shows the coefficient of diffusion of the liposome-encapsulated drugs in the 

systemic plasma, 𝛾1 was advection magnitude and 𝐾1 shows the rate constant of the drug 

release from the liposome at the systemic plasma. 

Equation of free drug concentration[𝐶𝐹
𝑆 ] 

𝜕𝐶𝐹
𝑆

𝜕𝑡
= 𝐷𝐹

𝑆 𝜕2𝐶𝐹
𝑆

𝜕𝑥2 -𝛾2
𝜕𝐶𝐹

𝑆

𝜕𝑥
-𝐾1𝐶𝐹

𝑆,                                                                                                       (3) 

where, 𝐷𝐹
𝑆  shows the coefficient of diffusion of the free drugs in the systemic plasma 𝛾2 is the 

advection magnitude , and 𝐾1 shows the rate constant of the drug release from the liposome at 

the systemic plasma. 

Firstly at period t = 0, just injected doses of the liposomes-encapsulated drugs are found. 

Thus, initial conditions are following: 𝐶𝐿
𝑆(x,0)=M , 𝐶𝐹

𝑆(x,0)=0. 

At x = 0, for example at the left boundary of plasma of the system, both the free drugs and 

liposome-encapsulated drugs are eliminated throughout clearance of body. Mathematically, these 

can be characterized as the following. 

−𝐷𝐿
𝑆 𝜕𝐶𝐿

𝑆

𝜕𝑥
= 𝐾𝑐𝑙

𝐿 𝐶𝐿
𝑆       and    −𝐷𝐹

𝑆 𝜕𝐶𝐹
𝑆

𝜕𝑥
= 𝐾𝑐𝑙

𝐹 𝐶𝐹
𝑆, 

where, 𝐾𝑐𝑙
𝐿  and 𝐾𝑐𝑙

𝐹  are rate constants of the clearance of free and liposomal drugs, respectively, 

in plasma of the system. At x = 𝑛𝑙 , for example at the interfaces where the free drug and 

liposomal drugs introduce in the compartment of tumour from plasma  of the system, the 

following common conditions were occurred in calculation. flux continuity should be assigned 

at interfaces. Thus,  

𝛾1𝐶𝐿
𝑆−𝐷𝐿

𝑆 𝜕𝐶𝐿
𝑆

𝜕𝑥
= 𝛾3𝐶𝐿

𝑇𝑃−𝐷𝐿
𝑇𝑃 𝜕𝐶𝐿

𝑇𝑃

𝜕𝑥
 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online)  

Vol.10, No.1, 2020 

 

43 

 

 
Figure 1: The schematic diagram of the drugs transport to tumour and the releasing liposomal drugs  

 

Modelling drugs transport dynamics in Tumor compartment.  

As time elapses, the liposomal in addition to the free drugs enter in to the compartment of 

tumor from the compartment of systemic plasma. The compartment of tumor is subcategorized 

in to tumor plasma, tumor interstitial fluids and tumor intracellular. The drug exchange between 

tumor plasma and tumor interstitial fluids goes on simultaneously, nevertheless in the current 

work, a particular pathway of transport of drugs is taken in to consideration. The liposome 

having drugs encapsulation moves from the systemic plasma in to the plasma of tumor as 𝐶𝐿
𝑇𝑃 . 

Likewise, free drugs in the systemic plasma enter in to the plasma of tumor as 𝐶𝐹
𝑇𝑃 .The drugs 

released from the liposome in interstitial fluids are depicted as free drugs 𝐶𝐹
𝑇𝐼𝐹. These free 

drugs get disseminated through interstitial fluids, bind with the protein found there. Also, free 

drugs interact with the receptors of surface of the tumor cells and enter in to the tumor 

intracellular space. No another form of drugs, whether they are bound drugs or liposomal drugs, 

can enter in to the cells of tumor. 

We can represent the tumour compartment by following ; 

Partial differential equations of the concentration of liposome encapsulated drugs in plasma of 

tumour [𝐶𝐿
𝑇𝑃] 

𝜕𝐶𝐿
𝑇𝑃

𝜕𝑡
= 𝐷𝐿

𝑇𝑃 𝜕2𝐶𝐿
𝑇𝑃

𝜕𝑥2 − 𝛾3
𝜕𝐶𝐿

𝑇𝑃

𝜕𝑥
− 𝐹𝑙𝑝−𝐾𝑟𝑒𝑙𝐶𝐿

𝑇𝑃,                                                                            (4) 

where, 𝐷𝐿
𝑇𝑃and 𝛾3denote the coefficient of diffusion and advection magnitude of the liposomal 

drug in plasma of tumors, respectively, 𝐾𝑟𝑒𝑙 stands for the rate of release of liposomes, and 

𝐹𝑙𝑝is the liposomes encapsulated drugs loss because of movement of the liposomes 

encapsulated drugs in the interstitial fluid throughout the capillary wall and defined as    

𝐹𝑙𝑝=𝐹𝑣(1-𝜎𝑙)𝐶𝐿
𝑇𝑃+𝑃𝑙

𝑆

𝑉
(𝐶𝐿

𝑇𝑃-𝐶𝐿
𝑇𝐼𝐹)

𝑃𝑒𝑙

𝑒𝑃𝑒𝑙−1
  ,                                                                                (5) 

where, 𝜎𝑙 is the coefficient of the osmotic reflection for the particle of the liposomal drug, and 

𝑃𝑙 the permeability of the vasculature wall to the liposome and 𝑃𝑒𝑙=  
𝐹𝑣 (1−𝜎𝑙) 

𝑃𝑙  
𝑆

𝑉

  represents the 

trans capillary P’eclet number.  

Partial differential equations of the concentration of liposomes encapsulated drugs in the 

interstitial fluid [𝐶𝐿
𝑇𝐼𝐹] 

𝜕𝐶𝐿
𝑇𝐼𝐹

𝜕𝑡
= 𝐷𝐿

𝑇𝐼𝐹 𝜕2𝐶𝐿
𝑇𝐼𝐹

𝜕𝑥2 − 𝛾4
𝜕𝐶𝐿

𝑇𝐼𝐹

𝜕𝑥
+ 𝐹𝑙𝑝−𝐾𝑟𝑒𝑙𝐶𝐿

𝑇𝐼𝐹  ,                                                                     (6) 
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where, 𝐷𝐿
𝑇𝐼𝐹and 𝛾4 show the coefficient of diffusion and the advection magnitude of the 

liposomal drugs in interstitial fluid of the tumour,  respectively. 

Partial differential equations of free drug concentration in interstitial fluids [𝐶𝐹
𝑇𝐼𝐹] 

𝜕𝐶𝐹
𝑇𝐼𝐹

𝜕𝑡
= 𝐷𝐹

𝑇𝐼𝐹 𝜕2𝐶𝐹
𝑇𝐼𝐹

𝜕𝑥2 − 𝛾5
𝜕𝐶𝐹

𝑇𝐼𝐹

𝜕𝑥
+ 𝐹𝑓𝑝+𝐾𝑟𝑒𝑙𝐶𝐿

𝑇𝐼𝐹+𝐾𝑑𝐶𝐵
𝑇𝐼𝐹-𝐾𝑎𝐶𝐹

𝑇𝐼𝐹𝐶𝑃
𝑇𝐼𝐹-𝐾𝑓𝐶𝐹

𝑇𝐼𝐹𝑅𝑆
𝑇𝐶+𝐾𝑟𝐶𝐵𝑆

𝑇𝐼𝐹     (7) 

where, 𝐷𝐹
𝑇𝐼𝐹 and 𝛾5 are the coefficient of diffusion and advection magnitudes of the free drugs 

in the interstitial fluids, respectively, 𝐹𝑓𝑝is the free drugs passing capillary walls in interstitial 

fluids which may be defined as same as (5) with 𝜎𝑙 = 𝜎𝑑 , 𝑙 = 𝑑, 𝐿 = 𝐹, such that 𝜎𝑑 is the 

coefficient of osmotic reflection for the particle of drug, 𝐶𝐹
𝑇𝐼𝐹 was concentration of the free 

drugs in plasma of the tumour shows the vasculature wall permeability to the particle of free 

drug, 𝐾𝑎  , 𝐾𝑓, 𝐾𝑑, and 𝐾  𝑑 were the association , and dissociation average constants, 

respectively.  

Partial differential equations of concentration of Protein in interstitial fluids [𝐶𝑃
𝑇𝐼𝐹] 

𝜕𝐶𝑃
𝑇𝐼𝐹

𝜕𝑡
= 𝐾𝑑 𝐶𝐵

𝑇𝐼𝐹 −  𝐾𝑎𝐶𝐹
𝑇𝐼𝐹𝐶𝑃

𝑇𝐼𝐹,                                                                                                (8) 

Partial differential equations of the concentration of bound drugs in interstitial fluids [𝐶𝐵
𝑇𝐼𝐹] 

𝜕𝐶𝐵
𝑇𝐼𝐹

𝜕𝑡
= 𝐷𝐵

𝑇𝐼𝐹 𝜕2𝐶𝐿
𝑇𝐼𝐹

𝜕𝑥2 - 𝛾6
𝜕𝐶𝐵

𝑇𝐼𝐹

𝜕𝑥
− 𝐾𝑑𝐶𝐵

𝑇𝐼𝐹 +  𝐾𝑎𝐶𝐹
𝑇𝐼𝐹𝐶𝑃

𝑇𝐼𝐹 + 𝐹𝑏𝑝 ,                                                (9) 

where, 𝐷𝐵
𝑇𝐼𝐹 and 𝛾6 are the coefficient of diffusion and advection magnitude of bound drug in 

interstitial fluids, respectively, 𝐹𝑏𝑝depicts the amount of the bound drugs gained from trans 

capillary exchange in interstitial fluids, defined as same as (5) with 𝜎𝑙 = 𝜎𝑏, 𝑙 = 𝑏, 𝐿 = 𝐵, such 

that 𝜎𝑏 is the coefficient of osmotic reflection for particles of the drug, 𝑃𝑏 shows the 

vasculature wall permeability to particles of the bound drug and 𝑃𝑒𝑏 = 
𝐹𝑣(1−𝜎𝑑)

𝑃𝑏𝑒( 
𝑆

𝑉
 )

 represents the 

trans -capillary P´eclet number. 

Partial differential equations of concentration of free drug into plasma of tumour [𝐶𝐹
𝑇𝑃] 

𝜕𝐶𝐹
𝑇𝑃

𝜕𝑡
=𝐾𝑟𝑒𝑙𝐶𝐿

𝑇𝑃 − 𝑉𝑇𝑃𝐹𝑓𝑝+𝐾𝑒1𝐶𝐹
𝑇𝑃-𝐾𝑎𝐶𝐹

𝑇𝑃𝐶𝑃
𝑇𝑃 +  𝐾𝑑𝐶𝐵

𝑇𝑃 ,                                                       (10) 

where, 𝑉𝑇𝑃 was a volume fraction of the plasma of the tumour, 𝐾  𝑑 ,and 𝐾 𝑎 were dissociation 

and association averages with the protein, respectively. 

Partial differential equations of Protein concentration in tumour plasma [𝐶𝑃
𝑇𝑃] 

𝜕𝐶𝑃
𝑇𝑃

𝜕𝑡
= − 𝐾𝑎𝐶𝐹

𝑇𝑃𝐶𝑃
𝑇𝑃 + 𝐾𝑑 𝐶𝐵

𝑇𝑃,                                                                                                 (11) 

Partial differential equations of  concentration of bound drug in plasma of tumour [𝐶𝐵
𝑇𝑃] 

𝜕𝐶𝐵
𝑇𝑃

𝜕𝑡
= − 𝑉𝑇𝑃𝐹𝑏𝑝 + 𝐾𝑎𝐶𝐹

𝑇𝑃𝐶𝑃
𝑇𝑃 − 𝐾𝑑 𝐶𝐵

𝑇𝑃,                                                                                (12) 

  Partial differential equations of cell surface receptor concentration [𝑅𝑆
𝑇𝐶] 

𝜕𝑅𝑆
𝑇𝐶

𝜕𝑡
= − 𝐾𝑓 𝑅𝑆

𝑇𝐶𝐶𝐹
𝑇𝐼𝐹 + 𝐾𝑟 𝐶𝐵𝑆

𝑇𝐶 − 𝐾𝑡 𝑅𝑆
𝑇𝐶 + 𝐾𝑥 𝑅𝐼

𝑇𝐶 + 𝐾𝑠𝑦𝑛𝑅𝑆
𝑇𝐶,                                             (13) 

where, 𝐾𝑡  is the rate constant of constitutive internalization, 𝐾𝑥  shows the rate constant of the 

receptor recycling, and K syn shows the surface receptors synthesis rate. 

Partial differential equations of cell surface bound drug concentration [𝐶𝐵𝑆
𝑇𝐶 ] 

 
𝜕𝐶𝐵𝑆

𝑇𝐶

𝜕𝑡
=  𝐾𝑓 𝑅𝑆

𝑇𝐶𝐶𝐹
𝑇𝐼𝐹 − 𝐾𝑟 𝐶𝐵𝑆

𝑇𝐶 − 𝐾𝑒 𝑅𝑆
𝑇𝐶 + 𝐾𝑥 𝑅𝐼

𝑇𝐶,                                                                 (14) 

where, 𝐾𝑒  represents the internalization rate constant 

 Partial differential equations of internalized bound drug concentration [𝐶𝐵𝐼
𝑇𝐶 ] 

𝜕𝐶𝐵𝐼
𝑇𝐶

𝜕𝑡
=  𝐾𝑒 𝐶𝐵𝑆

𝑇𝐶 + 𝐾′𝑓 𝑅𝐼
𝑇𝐶𝐶𝐹𝐼

𝑇𝐼𝐹 + 𝐾′𝑟 𝐶𝐵𝐼
𝑇𝐶 − (𝐾ℎ𝑟 + 𝐾𝑥  )𝐶𝐵𝐼

𝑇𝐶  ,                                               (15) 

where, 𝐾ℎ𝑟 shows the rate constant of the lysosomal degradation  
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Partial differential equations of the internalized free drug concentration [𝐶𝐹𝐼
𝑇𝐶] 

𝜕𝐶𝐹𝐼
𝑇𝐶

𝜕𝑡
= 𝐾′𝑓 𝑅𝐼

𝑇𝐶𝐶𝐹𝐼
𝑇𝐼𝐹 − 𝑅𝐼

𝑇𝐶𝐶𝐹𝐼
𝑇𝐼𝐹 + 𝐾′𝑟 𝐶𝐵𝐼

𝑇𝐶 − 𝐾ℎ𝑙 𝐶𝐹𝐼
𝑇𝐶, ,                                                           (16) 

where, 𝐾ℎ𝑙  the rate constant of the liposomal degradation of the internalized free drug. 

Firstly, at the time t = zero, just the injected dosage of liposome-encapsulated drug is 

obtainable. Also, since interstitial fluid and plasma in the compartment of tumour include the 

protein, so originally, they have concentration of non-zero. Also, concentrations of the receptor 

in the tumor intracellular compartment have non-null concentrations originally. However, all 

other drug embodiments taken in consideration originally have null concentration. Thus, 

primary conditions come as following: 

𝐶𝐿
𝑇𝑃(x,0)=𝐶𝐿

𝑇𝐼𝐹(x,0)=𝐶𝐹
𝑇𝐼𝐹(x,0)=0, 𝐶𝑃

𝑇𝐼𝐹(x,0)=𝑃0
𝑇𝐼𝐹, 𝐶𝐵

𝑇𝐼𝐹(x,0)=𝐶𝐹
𝑇𝑃(x,0)=0,   

𝐶𝑃
𝑇𝑃(x,0)=𝑃0

𝑇𝑃,𝐶𝐵
𝑇𝑃(x,0)=0, 𝑅𝑆

𝑇𝑃(x,0)=𝑅𝑆0
𝑇𝑃,𝐶𝐵𝑆

𝑇𝐶(x,0)=0, 𝐶𝐵𝐼
𝑇𝐶(x,0)=𝐶𝐹𝐼

𝑇𝐶(x,0)=0,𝑅𝐼
𝑇𝐶(x,0)=𝑅𝐼0

𝑇𝐶 

However, at interfaces, jump of concentration maybe take place because of the different drug 

partitioning between tumour compartment and systemic plasma. Like complexities are 

addressed throughout  

−𝐷𝐹
𝑆 𝜕𝐶𝐹

𝑆

𝜕𝑥
= 𝑃1( 𝐶𝐿

𝑇𝑃 − 𝐶𝐿
𝑆)            at x= 𝑛1 −𝐷𝐿

𝑇𝑃 𝜕𝐶𝐿
𝑇𝑃

𝜕𝑥
 = 𝑃2( 𝐶𝐿

𝑆 − 𝐶𝐿
𝑇𝑃)      at x=𝑛1  

−𝐷𝐿
𝑇𝐼𝐹 𝜕𝐶𝐿

𝑇𝐼𝐹

𝜕𝑥
 = 𝑃3( 𝐶𝐿

𝑆 − 𝐶𝐿
𝑇𝐼𝐹)     at x=𝑛1               −𝐷𝐹

𝑇𝐼𝐹 𝜕𝐶𝐹
𝑇𝐼𝐹

𝜕𝑥
 = 𝑃4( 𝐶𝐹

𝑆 − 𝐶𝐹
𝑇𝐼𝐹)    at x=𝑛1  

However, since the bound drugs aren’t suitable for emerging out of compartments of tumour, 

so a no flux condition maybe included 

𝛾6𝐶𝐵
𝑇𝐼𝐹−𝐷𝐵

𝑇𝐼𝐹 𝜕𝐶𝐵
𝑇𝐼𝐹

𝜕𝑥
=0 ,             at x=𝑛1  

At x = 𝑛2 , for example, the extreme right boundary of compartment of tumors, certain no flux 

conditions were studied as liposomes-encapsulated drugs, and the bound drug can emerge out of 

tumors. Therefore, the following boundary conditions are occurred in the account. 

𝛾3𝐶𝐿
𝑇𝑃−𝐷𝐿

𝑇𝑃 𝜕𝐶𝐿
𝑇𝑃

𝜕𝑥
=0,          at 𝑥 = 𝑛2       ,     𝛾4𝐶𝐿

𝑇𝐼𝐹−𝐷𝐿
𝑇𝐼𝐹 𝜕𝐶𝐿

𝑇𝐼𝐹

𝜕𝑥
=0,        at x = 𝑛2 , 

𝛾6𝐶𝐵
𝑇𝐼𝐹−𝐷𝐵

𝑇𝐼𝐹 𝜕𝐶𝐵
𝑇𝐼𝐹

𝜕𝑥
=0,        at x = 𝑛2     , 

 Moreover, due to interaction between 𝐶𝐹
𝑇𝐼𝐹and , 𝑅𝑆

𝑇𝐶there is feeblepossibility of the existence 

of 𝐶𝐹
𝑇𝐼𝐹at the extreme right boundary, x = 𝑛2 . Thus, 𝐶𝐹

𝑇𝐼𝐹 = 0  at x = 𝑛2 . 

3.Dimensionless Equations 

All the parameters and variables in the mathematical model can be defined in dimensionless                            

forms as [17]; 

𝐶𝑗
𝑖= 

 𝐶𝑗
𝑖

𝑀
 ,i = S, T P, TI F, TC, j = L, F,B, P,B S,B I, FI,    𝑅𝐾

𝑇𝐶=
 𝑅𝐾

𝑇𝐶

𝑀
  , k = S, I,   𝑥  = 

𝑥

𝑛2
  , 𝑡  =

 𝐷𝐿 
𝑆 𝑡

𝑛2
2   

, 𝑛𝑙= 
𝑛𝐼

𝑛2
, l = 1, 2,  𝐷𝑚

𝑛   = 
 𝐷𝑚

𝑛

 𝐷𝐿
𝑆  , m = L, F,B,  n = S, T P, T IF, 𝐹𝑣  =

𝐹𝑣𝑛2
2

 𝐷𝐿 
𝑆 , 𝑃0

𝑆 

𝑉
=  

𝑃0
𝑆 

𝑉
𝑛2

2

 𝐷𝐿 
𝑆 , o = l, fe, 

be,   

𝐾𝑟𝑒𝑙= 
𝐾𝑟𝑒𝑙𝑛2

2

 𝐷𝐿 
𝑆 , 𝐾𝑐𝑙

𝐿 = 
𝐾𝑐𝑙

𝐿 𝑛2

 𝐷𝐿 
𝑆 , 𝐾𝑐𝑙

𝐹= 
𝐾𝑐𝑙

𝐹 𝑛2

 𝐷𝐿 
𝑆 , 𝑃𝑒𝑝= 

𝛾𝑝𝑛2

 𝐷𝐿 
𝑆 ,p = 1, 2, 3, 4, 5, 6, 𝑄𝑞= 

𝑃𝑞𝑛2

 𝐷𝐿 
𝑆 , q=1, 2, 3, 4,𝑃0

𝑎 

=
 𝑃0

𝑎

𝑀
 , a= TP, TIF, 𝑅𝑏

𝑇𝐶=
 𝑅𝑏

𝑇𝐶

𝑀
 ,b= 𝑆0, 𝐼0,𝐷𝑎0= 

𝐾𝑎𝑛 2  
2  𝑃0

𝑇𝐼𝐹

 𝐷𝐿 
𝑆 , 𝐷𝑎1= 

𝐾𝑎𝑛 2  
2  𝑃0

𝑇𝑃

 𝐷𝐿 
𝑆  ,𝐷𝑎2=

𝐾𝑓𝑛 2  
2  𝑅𝑆0

𝑇𝐶

 𝐷𝐿 
𝑆  

,𝐷𝑎3=
𝐾𝑓

′ 𝑛 2  
2  𝑅𝐼0

𝑇𝐶

 𝐷𝐿 
𝑆 , 
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𝛼 =
𝐾𝑑

𝐾𝑎
 ,𝛽 =

𝐾𝑟

𝐾𝑓
 , 𝛿 =

𝐾𝑟
′

𝐾𝑓
′  , 𝐵𝑝0= 

 𝑃0
𝑇𝐼𝐹

𝛼
 , 𝐵𝑝1=

 𝑃0
𝑇𝑃

𝛼
 , 𝐵𝑝2=

 𝑅𝑆0
𝑇𝐶

𝛽
 ,𝐵𝑝3 =

 𝑅𝐼0
𝑇𝐶

𝛿
, 𝐾𝑐= 

𝐾𝑐𝑛 2  
2

 𝐷𝐿 
𝑆  ,c=1, 𝑒1, t, x, 

syn, e, hr, hl. 

Also, the mentioned equation in its form of dimensionless is following: 

𝜕𝐶𝐿
𝑆

𝜕𝑡
= 𝐷𝐿

𝑆 𝜕2𝐶𝐿
𝑆

𝜕𝑥2 - 𝑃𝑒1
𝜕𝐶𝐿

𝑆

𝜕𝑥
 -𝐾1𝐶𝐿

𝑆,                                                                                                  (17) 

𝜕𝐶𝐹
𝑆

𝜕𝑡
= 𝐷𝐹

𝑆 𝜕2𝐶𝐹
𝑆

𝜕𝑥2 - 𝑃𝑒2
𝜕𝐶𝐹

𝑆

𝜕𝑥
 -𝐾1𝐶𝐿

𝑆,                                                                                                  (18) 

𝜕𝐶𝐿
𝑇𝑃

𝜕𝑡
= 𝐷𝐿

𝑇𝑃 𝜕2𝐶𝐿
𝑇𝑃

𝜕𝑥2 - 𝑃𝑒3
𝜕𝐶𝐿

𝑇𝑃

𝜕𝑥
− 𝐹𝑙𝑝-𝐾𝑟𝑒𝑙𝐶𝐿

𝑇𝑃,                                                                             (19) 

𝜕𝐶𝐿
𝑇𝐼𝐹

𝜕𝑡
= 𝐷𝐿

𝑇𝐼𝐹 𝜕2𝐶𝐿
𝑇𝐼𝐹

𝜕𝑥2 - 𝑃𝑒4
𝜕𝐶𝐿

𝑇𝐼𝐹

𝜕𝑥
+ 𝐹𝑙𝑝-𝐾𝑟𝑒𝑙𝐶𝐿

𝑇𝐼𝐹,                                                                       (20) 

𝜕𝐶𝐹
𝑇𝐼𝐹

𝜕𝑡
= 𝐷𝐹

𝑇𝐼𝐹 𝜕2𝐶𝐹
𝑇𝐼𝐹

𝜕𝑥2 -𝑃𝑒5
𝜕𝐶𝐹

𝑇𝐼𝐹

𝜕𝑥
+ 𝐹𝑓𝑝+𝐾𝑟𝑒𝑙𝐶𝐿

𝑇𝐼𝐹+
𝐷𝑎0

𝐵𝑝0
𝐶𝐵

𝑇𝐼𝐹-
𝐷𝑎0

𝑃0
𝑇𝐼𝐹 𝐶𝐹

𝑇𝐼𝐹𝐶𝑃
𝑇𝐼𝐹-

𝐷𝑎2

𝑅𝑆0
𝑇𝐼𝐹 𝐶𝐹

𝑇𝐼𝐹𝑅𝑆
𝑇𝐶+

𝐷𝑎2

𝐵𝑝2
𝐶𝐵𝑆

𝑇𝐶(21) 

𝜕𝐶𝑃
𝑇𝐼𝐹

𝜕𝑡
=

𝐷𝑎0

𝐵𝑝0
𝐶𝐵

𝑇𝐼𝐹 −  
𝐷𝑎0

𝑃0
𝑇𝐼𝐹 𝐶𝐹

𝑇𝐼𝐹𝐶𝑃
𝑇𝐼𝐹,                                                                                           (22) 

𝜕𝐶𝐵
𝑇𝐼𝐹

𝜕𝑡
= 𝐷𝐵

𝑇𝐼𝐹 𝜕2𝐶𝐵
𝑇𝐼𝐹

𝜕𝑥2 -𝑃𝑒6
𝜕𝐶𝐵

𝑇𝐼𝐹

𝜕𝑥
−  

𝐷𝑎0

𝐵𝑝0
𝐶𝐵

𝑇𝐼𝐹 +  
𝐷𝑎0

𝑃0
𝑇𝐼𝐹 𝐶𝐹

𝑇𝐼𝐹𝐶𝑃
𝑇𝐼𝐹 + 𝐹𝑏𝑒,                                         (23) 

𝜕𝐶𝐹
𝑇𝑃

𝜕𝑡
 =𝐾𝑟𝑒𝑙𝐶𝐿

𝑇𝑃 − 𝑉𝑇𝑃𝐹𝑓𝑝-𝐾𝑒1𝐶𝐹
𝑇𝑃- 

𝐷𝑎1

𝑃0
𝑇𝑃 𝐶𝐹

𝑇𝑃𝐶𝑃
𝑇𝑃 +  

𝐷𝑎1

𝐵𝑝1
𝐶𝐵

𝑇𝑃,                                                    (24) 

𝜕𝐶𝑃
𝑇𝑃

𝜕𝑡
= − 

𝐷𝑎1

𝑃0
𝑇𝑃 𝐶𝐹

𝑇𝑃𝐶𝑃
𝑇𝑃 +  

𝐷𝑎1

𝐵𝑝1
𝐶𝐵

𝑇𝑃,                                                                                            (25) 

𝜕𝐶𝐵
𝑇𝑃

𝜕𝑡
= − 𝑉𝑇𝑃𝐹𝑏𝑒 +

𝐷𝑎1

𝑃0
𝑇𝑃 𝐶𝐹

𝑇𝑃𝐶𝑃
𝑇𝑃 −  

𝐷𝑎1

𝐵𝑝1
𝐶𝐵

𝑇𝑃,                                                                            (26) 

𝜕𝑅𝑆
𝑇𝐶

𝜕𝑡
= −

𝐷𝑎2

𝑅𝑆0
𝑇𝐼𝐹 𝐶𝐹

𝑇𝐼𝐹𝑅𝑆
𝑇𝐶 +  

𝐷𝑎2

𝐵𝑝2
𝐶𝐵𝑆

𝑇𝐶 − 𝐾𝑡 𝑅𝑆
𝑇𝐶 + 𝐾𝑥 𝑅𝐼

𝑇𝐶 + 𝐾𝑠𝑦𝑛𝑅𝑆
𝑇𝐶,                                        (27) 

𝜕𝐶𝐵𝑆
𝑇𝐶

𝜕𝑡
=   

𝐷𝑎2

𝑅𝑆0
𝑇𝐼𝐹 𝐶𝐹

𝑇𝐼𝐹𝑅𝑆
𝑇𝐶 − 

𝐷𝑎2

𝐵𝑝2
𝐶𝐵𝑆

𝑇𝐶 − 𝐾𝑒 𝐶𝐵𝑆
𝑇𝐶 + 𝐾𝑥 𝐶𝐵𝐼

𝑇𝐶,                                                             (28) 

𝜕𝐶𝐵𝐼
𝑇𝐶

𝜕𝑡
=  𝐾𝑒 𝐶𝐵𝑆

𝑇𝐶 +
𝐷𝑎3

𝑅𝐼0
𝑇𝐶 𝑅𝐼

𝑇𝐶𝐶𝐹𝐼
𝑇𝐼𝐹 −

𝐷𝑎3

𝐵𝑝3
𝐶𝐵𝐼

𝑇𝐶 − (𝐾ℎ𝑟 + 𝐾𝑥  )𝐶𝐵𝐼
𝑇𝐶,                                                (29) 

𝜕𝐶𝐹𝐼
𝑇𝐶

𝜕𝑡
= − 

𝐷𝑎3

𝑅𝐼0
𝑇𝐶 𝑅𝐼

𝑇𝐶𝐶𝐹𝐼
𝑇𝐼𝐹 +

𝐷𝑎3

𝐵𝑝3
𝐶𝐵𝐼

𝑇𝐶 − 𝐾ℎ𝑙 𝐶𝐹𝐼
𝑇𝐶 ,                                                                          (30) 

𝜕𝑅𝐼
𝑇𝐶

𝜕𝑡
=  −

𝐷𝑎3

𝑅𝐼0
𝑇𝐶 𝑅𝐼

𝑇𝐶𝐶𝐹𝐼
𝑇𝐼𝐹 +

𝐷𝑎3

𝐵𝑝3
𝐶𝐵𝐼

𝑇𝐶 + 𝐾𝑡 𝑅𝑆
𝑇𝐶 − (𝐾ℎ𝑟 + 𝐾𝑥  )𝑅𝐼

𝑇𝐶,                                             (31) 

The interface, initial, and boundary conditions in the dimensionless method as below: 

𝐶𝐿
𝑆(x,0)=l,𝐶𝐹

𝑆(x,0)=𝐶𝐿
𝑇𝑃(x,0)=𝐶𝐿

𝑇𝐼𝐹(x,0)=𝐶𝐹
𝑇𝐼𝐹(x,0)=0,𝐶𝑃

𝑇𝐼𝐹(x,0)=𝑃0
𝑇𝐼𝐹,𝐶𝐵

𝑇𝐼𝐹(x,0)=𝐶𝐹
𝑇𝑃(x,0)=0, 

𝐶𝑃
𝑇𝑃(x,0)=𝑃0

𝑇𝑃,𝐶𝐵
𝑇𝑃(x,0)=0, 𝑅𝑆

𝑇𝑃(x,0)=𝑅𝑆0
𝑇𝑃,𝐶𝐵𝑆

𝑇𝐶(x,0)=𝐶𝐵𝐼
𝑇𝐶(x,0)=𝐶𝐹𝐼

𝑇𝐶(x,0)=0,𝑅𝐼
𝑇𝐶(x,0)=𝑅𝐼0

𝑇𝐶, 

− 
𝜕𝐶𝐿

𝑆

𝜕𝑥
= 𝐾𝑐𝑙

𝐿 𝐶𝐿
𝑆,        and boundary conditions −𝐷𝐹

𝑆 𝜕𝐶𝐹
𝑆

𝜕𝑥
= 𝐾𝑐𝑙

𝐹 𝐶𝐹
𝑆      at x=0 

𝑃𝑒1𝐶𝐿
𝑆−𝐷𝐿

𝑆 𝜕𝐶𝐿
𝑆

𝜕𝑥
= 𝑃𝑒3𝐶𝐿

𝑇𝑃−𝐷𝐿
𝑇𝑃 𝜕𝐶𝐿

𝑇𝑃

𝜕𝑥
   at x=𝑛1   −𝐷𝐹

𝑆 𝜕𝐶𝐹
𝑆

𝜕𝑥
= 𝑄1( 𝐶𝐹

𝑇𝑃 − 𝐶𝐹
𝑆)         at x=𝑛1  

−𝐷𝐿
𝑇𝑃 𝜕𝐶𝐿

𝑇𝑃

𝜕𝑥
 = 𝑄2( 𝐶𝐿

𝑆 − 𝐶𝐿
𝑇𝑃)            at x=𝑛1          −𝐷𝐿

𝑇𝐼𝐹 𝜕𝐶𝐿
𝑇𝐼𝐹

𝜕𝑥
 = 𝑄3( 𝐶𝐿

𝑆 − 𝐶𝐿
𝑇𝐼𝐹)  at x=𝑛1  

−𝐷𝐹
𝑇𝐼𝐹 𝜕𝐶𝐹

𝑇𝐼𝐹

𝜕𝑥
 = 𝑄4( 𝐶𝐹

𝑆 − 𝐶𝐹
𝑇𝐼𝐹)         at x=𝑛1           𝑃𝑒6𝐶𝐵

𝑇𝐼𝐹−𝐷𝐵
𝑇𝐼𝐹 𝜕𝐶𝐵

𝑇𝐼𝐹

𝜕𝑥
=0          at x=𝑛2  

𝑃𝑒3𝐶𝐿
𝑇𝑃−𝐷𝐿

𝑇𝑃 𝜕𝐶𝐿
𝑇𝑃

𝜕𝑥
=0                        at x=𝑛2         𝑃𝑒4𝐶𝐿

𝑇𝐼𝐹−𝐷𝐿
𝑇𝐼𝐹 𝜕𝐶𝐿

𝑇𝐼𝐹

𝜕𝑥
=0           at x=𝑛2  

𝑃𝑒6𝐶𝐵
𝑇𝐼𝐹−𝐷𝐵

𝑇𝐼𝐹 𝜕𝐶𝐵
𝑇𝐼𝐹

𝜕𝑥
=0                    at x=𝑛2             𝐶𝐵

𝑇𝐼𝐹 =0                                  at x=𝑛2  
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4. Method of solution 

Also, the above governing equations are completed by helping Adomian decomposition method 

(ADM) . The method is named after the scientist who discovered it, namely G. Adomian [21]. 

ADM is widely applied because it is a kind of analytical approximation method that is 

integrated between the analytical exact method and analytical approximate methods called the 

semi-analytical method. It is active and powerful in solving nonlinear ordinary and partial 

differential equations based on the calculation Adomian polynomials for non-linear terms [28-

30]. Let us consider the following equation: 

𝐿𝑢 + 𝑁𝑢 + 𝑅𝑢 = 𝑔 (𝑥)                                                                                                              (32) 

The linear terms decomposed in L + R, whereas the non-linear terms are observed using N , 

where L and R are facilely invertible linear operators and g is a given function; from (32) we 

have 

(or R)𝑢 = 𝑔 (𝑥)−𝑁𝑢 − 𝑅(or L)𝑢.                                                                                              (33) 

To begin the ADM analysis [18, 21], a linear differential operators with respect to t and x and its 

inverse are respectively defined as 

𝐿 = 
𝜕(.)

𝜕𝑡
                    𝐿−1 = ∫ (. )

𝑡

0
 dt                                                                                            (34) 

𝑅 =
𝜕2(.)

𝜕𝑥2                    𝑅−1 = ∫ ∫ (. )
𝑥

0

𝑥

0
𝑑𝑥𝑑𝑥                                                                                 (35) 

And the nonlinear term with assume that N(u) = 𝛹 (u) can be decomposed by an infinite series of 

polynomials 

(𝑢) =∑ 𝐴𝑛 (𝑢0 , 𝑢1 , . . . , 𝑢𝑛 ),∞
𝑖=0                                                                                                   (36) 

where 𝐴𝑛  are the Adomian’s polynomials [7] defined as 

𝐴𝑛 =
1

𝑛!

𝑑𝑛

𝑑𝜆𝑛[𝛹(∑ 𝜆𝑖∞
𝑖=0 𝑢𝑖 )]𝜆=0,             n=0,1,2,…                                                                     (37) 

Now, applying the inverse operators(34) and (35) to both sides of (33) with equation(37) then 

via the initial  or boundary conditions, we find the following two recurrence relations; 

              (𝐴)                                                                   (𝐵) 

𝑢0 =u(x,0)+ 𝐿−1(𝑔)                                     𝑢0= 𝑢(0, 𝑡) +x 
𝜕𝑢(0,𝑡)

𝜕𝑥
 + 𝐿−1(𝑔) 

𝑢1=−𝐿−1(R(𝑢0 )−𝐿−1 (𝐴0)                         𝑢1=−𝑅−1(𝐿(𝑢0 )−𝑅−1 (𝐴0)                      

𝑢2=−𝐿−1(R(𝑢1 )−𝐿−1 (𝐴1)                         𝑢2=−𝑅−1(𝐿(𝑢1 )−𝑅−1 (𝐴1)                                                                                         

.                                                                     .                                                                          (38)    

.                                                                     .                                                                                                                                  

.                                                                     . 

𝑢𝑛=−𝐿−1(R(𝑢𝑛−1 )−𝐿−1 (𝐴𝑛−1)                𝑢𝑛=−𝑅−1(L(𝑢𝑛−1 )−𝑅−1 (𝐴𝑛−1) 

Thus each term of u is solved and the general solution of equation (34) obtained depending to 

ADM as the following infinite series: 

u=∑ 𝑢𝑛 
∞
𝑛=0                                                                                                                               (39) 

However, for some problems [31] the current series can’t be calculated, so we must use the 

solution approximation from the truncated series 

𝑈𝑀=∑ 𝑢𝑛 
𝑀
𝑛=0  with 𝑙𝑖𝑚

𝑀→∞
𝑈𝑀=u                                                                                               (40) 

Now, the series solutions of equations (17-31) by applying recurrence relations of ADM in 

group (A) or group(B) of equation(38) are; 

𝐶𝐿
𝑆(𝑥,t)=∑ 𝐶𝐿

𝑆
𝑛

=3
𝑛=0 (1 − 3681.9 𝑥4)𝑒−𝐾1𝑡 .                                                                        (41) 

𝐶𝐹
𝑆(𝑥,t)=∑ 𝐶𝐹

𝑆
𝑛

=3
𝑛=0 ∑ 𝑎𝑖𝑥

𝑖6
𝑖=0 𝑒−𝐾1𝑡 − 1 + (𝑥𝑎1 − 𝑎3𝑥3) .                                                 (42) 

𝐶𝐿
𝑇𝑃(𝑥, 𝑡)=∑ 𝐶𝐿𝑛

𝑇𝑃3
𝑛=0  =∑ 1 − 𝑒−𝐾1𝑡𝑐𝑖𝑥

𝑖6
𝑖=0 +(644.44)𝑥 +(6.80E-13)𝑥2 

                         +(5.50E-7)𝑥3+ (5E-22)𝑥4+(2.41E-16)𝑥5+ (1.50E-21)𝑥6  .                      (43)                      
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𝐶𝐿
𝑇𝐼𝐹(𝑥, 𝑡)=∑ 𝐶𝐿𝑛

𝑇𝐼𝐹3
𝑛=0 =∑ 1 − 6

𝑖=0 𝑒−𝐾1𝑡𝑐𝑖𝑥
𝑖 − 100𝑥 −  (6.76𝐸 − 13)𝑥2 

−(2.07𝐸 − 5)𝑥3 −  (4.97𝐸 − 22)𝑥4 − (2.41𝐸 − 16)𝑥5 − (1.50𝐸 − 31)𝑥6 .                        (44)              

𝐶𝐹
𝑇𝐼𝐹(𝑥, 𝑡)=∑ 𝐶𝐹𝑛

𝑇𝐼𝐹3
𝑛=0 =∑ 𝑑𝑖𝑥

𝑖6
𝑖=0 𝑒−𝐾1𝑡 − 1 -17.05𝑥 – (1.14E-17)𝑥2                                      (45) 

𝐶𝑃
𝑇𝐼𝐹(𝑥, 𝑡) =∑ 𝐶𝑃𝑛

𝑇𝐼𝐹 =3
𝑛=0 ∑ 𝑄1𝑖 ∗ 𝑒−𝐾1𝑡 + 𝑄2𝑖𝑥

𝑖  𝑡 + 𝑄3𝑖𝑥
𝑖6

𝑖=0  .                                                 (46) 

𝐶𝐵
𝑇𝐼𝐹(𝑥, 𝑡)=∑ 𝐶𝐵𝑛

𝑇𝐼𝐹 = ∑ 𝐸𝑖𝑥
𝑖6

𝑖=0 𝑒−𝐾1𝑡 + 1 + 5800𝑥 +3
𝑛=0 (−5.00𝐸6)𝑥2 + (16.50)𝑥3 −

(7.10𝐸7)𝑥4 − (9.19𝐸 − 17)𝑥5 − (5.43𝐸 − 11)𝑥6 − (7.80𝐸 − 10)𝑥7 − (1.31𝐸 − 24)𝑥8   

(47) 

𝐶𝐹
𝑇𝑃(𝑥, 𝑡)=∑ 𝐶𝐹𝑛

𝑇𝑃 =3
𝑛=0 ∑ ( 𝑓𝑖

6
𝑖=0 + ℎ𝑖𝑡 + 𝑔𝑖𝑒−𝐾1𝑡)𝑥𝑖 + ∑ 𝑝𝑖𝑥

𝑖2
𝑖=1 𝑡2 .                                       (48) 

𝐶𝐵
𝑇𝑃(𝑥, 𝑡) = ∑ 𝐶𝐵𝑛

𝑇𝑃 = ∑ ( 𝑟𝑖
6
𝑖=0 + 𝑧𝑖𝑡 + 𝑜𝑖𝑡2 + 𝐿𝑖𝑡

3 + 𝑛𝑖𝑒−𝐾1𝑡)𝑥𝑖3
𝑛=0 .                                          (49)                                                     

𝐶𝐵𝑆
𝑇𝐶(𝑥, 𝑡)=∑ 𝐶𝐵𝑆𝑛

𝑇𝐶 = 1 − 𝑒−𝐾1𝑡 +3
𝑛=0 ∑ (𝐴1𝑖 + 𝐴2𝑖

6
𝑖=0 𝑒−𝐾1𝑡 + 𝐴3𝑖𝑡 + 𝐴4𝑖𝑡2)𝑥𝑖 .                      (50) 

𝐶𝑃
𝑇𝑃=1+∑ (𝐺1𝑖𝑒

−𝐾1𝑡6
𝑖=0 + 𝐺2𝑖 + 𝐺3𝑖  𝑡 + 𝐺4𝑖𝑡

2 + 𝐺5𝑖𝑡
3 + 𝐺6𝑖𝑡4)𝑥𝑖 + ∑ 𝐺7𝑖

2
𝑖=0 𝑥𝑖𝑡5.                 (51) 

𝐶𝑅𝑆
𝑇𝐶(𝑥, 𝑡) = ∑ 𝐶𝑅𝑆𝑛

𝑇𝑃 =3
𝑛=0 ∑ (𝐻1𝑖

6
𝑖=0 𝑒−𝐾1𝑡 + 𝐻2𝑖 + 𝐻3𝑖𝑡 + 𝐻4𝑖𝑡

2 + 𝐻5𝑖𝑡3 + 𝐻6𝑖𝑡
4)𝑥𝑖 .             (52) 

𝐶𝐵𝐼
𝑇𝐶(𝑥, 𝑡)=∑ 𝐶𝐵𝐼𝑛

𝑇𝐶 =3
𝑛=0 ∑ ( 𝐵1𝑖

6
𝑖=0 𝑒−𝐾1𝑡 + 𝐵2𝑖 + 𝐵3𝑖𝑡

3 + 𝐵4𝑖𝑡
2 + 𝐵5𝑖𝑡 + 𝐵6𝑖𝑡

4)𝑥𝑖 .                (53) 

𝐶𝐹𝐼
𝑇𝐶(𝑥, 𝑡)=∑ 𝐶𝐹𝐼𝑛

𝑇𝐶 =3
𝑛=0 ∑ ( 𝑁1𝑖

6
𝑖=0 𝑒−𝐾1𝑡+𝑁2𝑖𝑡+𝑁3𝑖𝑡2+𝑁4𝑖𝑡3+𝑁5𝑖𝑡4+𝑁6𝑖𝑡5+𝑁7𝑖𝑡6)𝑥𝑖             (54) 

𝐶𝑅𝐼
𝑇𝐶(𝑥, 𝑡)=∑ 𝐶𝑅𝐼𝑛

𝑇𝐶 =3
𝑛=0 ∑ (𝐹1𝑖

6
𝑖=0 𝑒−𝐾1𝑡+𝐹2𝑖+𝐹3𝑖𝑡+𝐹4𝑖𝑡

2+𝐹5𝑖𝑡3+𝐹6𝑖𝑡4+𝐹7𝑖𝑡5+𝐹8𝑖𝑡
5)              

(55) 

where the coefficients values of all above equations are listed in appendix. 

Table 1. Values of Parameter  
The Parameter  The Value The reference 

𝜎𝑇 avg. osmotic reflection coefficient for plasma proteins 0.820 [34, 35-37] 

𝜎𝑑(free) avg. osmotic reflection coefficient for free drugs 0.150 [37, 38] 

𝜋𝑣 The osmotic pressure of the plasma 2666 Pa [34, 35-37] 

𝑃𝑙 The vasculature wall permeability to the liposomes 3.42 *l0−7 cm/s [39, 40] 

𝑃𝑓𝑒 The vasculature wall permeability to the free drugs 3.0 *l0−4cm/s [37, 41] 

𝑃𝑣 The pressure of blood vessels 2080 Pa [34, 35-37] 

𝐾𝑣 The hydraulic conductivity 2.10 * l0−9s−lcm/Pa .s [34, 35-37] 

𝐾𝑐𝑙
𝐹  The clearance average constant of the free drugs 1.1 *l0−3s−l [42] 

𝐾ℎ𝑙 The lysosomal degradation average constant 1.67 * l0−4s−l [43] 

𝐾𝑒 The internalization average constant 2.75 * l0−3s−l [44] 

𝐾𝑡 The constitutive internalization rate constant 5 * l0−4s−l [43] 

𝑛1  The interface position 10−3cm — 

𝐾′𝑟 The dissociation average constant 2* l0−2s−l [45, 46] 

𝐾𝑓 The association average constant 107 (mol cm−3S )
−l

 [37] 

𝐾′𝑓 The association average constant 2*106(mol cm−3S )
−l

 [47] 

𝛾
𝑗
, 𝑗 = 1 − 6 advection magnitude 10−4* 10−3cm/s [48] 

𝐾1 drug release average constant at systemic plasma 10−5s−l [49] 
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Table 2. Values of Parameter 
Parameter  The value the reference 

σl avg. osmotic reflection coefficient for the liposomal drugs 0.950 [48] 

𝜎𝑑 (bound) avg. osmotic reflection coefficient for the bound drugs 0.820 [37, 38] 

𝜋𝑖 The osmotic pressure of interstitial fluids 2000 Pa [34, 35-37] 

𝑃𝑏𝑒 The vasculature wall permeability to the bound drugs 7.80 * l0−7s−1cm/s [38, 40] 

𝐾𝑟𝑒𝑙 drug release rate constant 0.0078 s−1 [48] 

S/V surface of blood vessels at tumour compartment area per unit 

volume 
200 cm−l [34, 35-37] 

𝑉𝑇𝑃 volume fraction 0.07452 [41] 

𝐾𝑐𝑙
𝐿  clearance average constant of the liposomal drugs 2.228 *l0−4s−l [41] 

𝐾ℎ𝑟 lysosomal degradation average constant 3.670*l0−5s−l [43] 

𝐾𝑥 recycling rate constant 9.670*l0−4s−l [43] 

𝐾𝑟 plasma clearance rate constant 11*l0−3s−l [41] 

𝐾𝑑 dissociation average constant 103 S−l [48] 

𝐾𝑎 The association average constant 107(mol cm−3S )
−l

 [43] 

𝑃 𝑖, i = 1 - 4 The mass transfer coefficient 10− 7−10−6 cm/s [50] 

𝐷𝑝, p=L ,F,B The diffusion coefficient 10− 8− 10−6cm2/s [51, 52-54] 

𝑛2  boundary position of compartment of tumour  10− 2 — 

 

 
Fig.2: Comparison of the experimental data with the current results [33] . 

5. Numerical simulation and discussion 

The systematic quantitative analysis was achieved to locally drug delivery according to parameters 

of the model listed in Table l and 2 in more details with characterization of pharmacokinetic 

aspects. The representation of graphic of the drug concentrations in its various embodiments were 

showed in the well case in Figures 1 - 11 so that the underlying governing the physical phenomena 

was illustrated. 

When seen the results in Figure 2, it can be observed that against the onset, the data of tests match 

exactly, whereas against the termination , there is the small deviation between the current 

mathematical model profile and its counterpart of tests [33]. The rationale behind this consequence 

is that the present model seeks with free drugs being transported to biological tissues while the 
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framework of tests [33] lacks in the transport of drugs. These results proved that the applied of 

Adomian decomposition method for solving problems of nonlinear partial equations  is a powerful 

tool to obtain solutions without a need for large size of computations. Additionally, the numerical 

results which obtained using the current approach indicate the high accuracy degree. We showed 

that the procedure of decomposition is quite efficient for determining the exact solutions .And 

applicability of ADM for solving the partial differential equations of  mathematical model to 

deliver drugs to the tumor over time in different locations. 

 

Fig.3:Profiles of time variant concentration of CL
S at different locations.          Fig.4:Profiles of time variant concentration of CF

S at different 

locations. 

 

Fig.3and Fig.4 are describes the profiles of period-variant concentration of liposomes-encapsulated 

drugs in the systemic plasma(CL
S) and free drugs(CF

S)  of four different axial sites distributed across. 

The rate of decrease of concentration of  the liposomes-encapsulated drugs from its most 

concentration immediately becomes higher and higher as resulting by releasing free drugs ,  they 

entry in to tumor plasma. On another hand  CF
S acquires and grows certain band in accordance to 

the particular immediate of time followed using the gradual descend for periods rest. 

Fig.5represents the time-variant concentration profiles of liposome encapsulated drug CL
TPin tumor 

plasma for deferent axial sites stretched on the full domain .As time elapses, the liposomal in 

addition to free drugs crosses in to the compartment of tumour from the compartment of systemic 

plasma. The liposome having drugs en-capsulation moves from the systemic plasma in to the 
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plasma of tumour as CL
TP  .An increase in concentration initially within the tumor plasma because 

of  distribution of liposome from the systemic plasma to tumor plasma. Also, the concentration 

gradually decreases due to the release of the drug as free forms and the net loss of fatty liposome 

because of the exchange of drugs between the parts of the sub-tumor through the capillaries. Figure 

6 describes the profiles of period-variant concentration of liposome encapsulated drugs in 

interstitial fluid CL
TIF for deferent axial sites stretched on the full domain. In the tumor 

compartment, the exchange of liposome encapsulated drugs takes place between interstitial fluids 

and plasma due to the exchange of drugs through the capillaries. As a result of the spread of CL
S, its 

concentration in interstitial fluid increases .The released drugs from the liposome in interstitial 

fluids was depicted as free drugs (CF
TIF ). These free drugs get disseminated through interstitial 

fluids . The interstitial fluids contain the big portion of free drugs (CF
TIF), since just the free drug 

can cross the compartment of tumor cell. 

 
Fig.5: Profiles of period variant concentration of CL

TP at various sites.         Fig.6: Profiles of time variant concentration of CL
TIF at various sites 

 

Fig.7: Profiles of period variant concentration of CF
TP at various sites            Fig .8: Profiles of period variant concentration of CB

TP at various 

sites 

Fig.7 shows the profiles of period-variant concentration of free drugs in tumor plasma (CF
TP) for 

deferent axial sites stretched on the full domain. the free drugs in systemic plasma crosses in to 
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the plasma of tumor as CF
TP.The increase in concentration occurs as a result of the release rate 

of liposome and free drugs leaks from the systemic plasma to plasma of tumor. Fig. 8 shows 

profiles the period-variant concentration of the bound drugs in tumor plasma CB
TPfor deferent 

axial sites stretched on the full domain .The free drugs bind with the protein found there. Also , 

free drugs interact with receptors of the surface of cells of tumor and cross in to tumor 

intracellular spaces. No another drug forms, whether it is bound drugs or liposomal drugs, can 

cross in to cells of tumor .Where the exchange of bound drugs between the sub-sections of the 

tumor through the capillaries and the effect associated with the formation of a free 

pharmaceutical protein compound . 

 

Fig.9:Profiles of period variant concentration of CF
TIF at various sites.  Fig.10: Profiles of period variant concentration of CB

TIF at various sites 

 

Figs.9 and 10 are represents the profiles of time-variant concentration of free drug (CF
TIF) and  

represents the profiles of period-variant concentration of bound drugs (CB
TIF) in interstitial fluid 

for deferent axial sites stretched on the full domain. CF
TIFis peaked because of liposome and the 

free drug  of the tumor that crosses the wall of capillaries into the interstitial fluid and then 

decreases because of its relation with the proteins and receptors of the surfaces of cancer cells 

.Free drug (CF
TIF) binds with the proteins (CP

TIF) in interstitial fluids for forming the free drug-

protein complexes, like bound drugs (CB
TIF) . Bound drug (CB

TIF) peaks because of its interaction 

with the free exchange of drugs and drugs across borders to the interstitial fluid of tumor 

plasma. Over time, CB
TIF decreases because of the dissociation of the drug-protein complexes in 

interstitial fluids of the tumor. 

 

Conclusions   

The simulation of the phenomena of drugs transport and the release of mathematical modelling 

drugs show to be too important as it helps in release kinetics prediction, which has a useful value in 

optimization of forms of the drug dosage. Also, the systematic quantitative analysis was achieved 

to locally drug delivery to tumors over time at different locations successfully, based on parameters 

of the model obtained with Table (l&2) with the  full characterizing the pharmaco-kinetic aspect 
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.The results obtained show that the ADM  is quite efficient to determine the precise analytical  

approximate solutions.  The approach provides the powerful tool to obtain the solutions without a 

need for large size of computations. In addition, The ability and power of the Adomian 

decomposing method (ADM) confirm that there is no need to effort device for investigating the 

solution of a non-linear system of partial differential equations and reliable. It provides the analyst 

with an easily computable, readily verifiable and rapidly convergent sequence of analytic 

approximate functions for the solution. 
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Appendix 

 

  No of 

Equations 

coefficients  values 

42 a0 =1 a1 =0.014 a2 =3.7E+12 a3 =7.8E+13 a4 =1.6E+25 a5 =6.7E+34 a6 =1.9E+36 

43 b0 = 1 b1 = 644.44     b2 = 0.0055 b3 = 2.40 b4=0.51E-5 b5=0.19E-2 b6=1.90E-5 

44 c0 = 1 c1 = 100 c2 = 0.6E-2 c3 = −0.40 c4=−0.5E-5 c5 = 0.3E-3 c6=1.9E-9 

45 d0 = 1 d1 = 17.1 d2=1.1E-17 d3=-3.8E-16 d4=-2.8E-10 d5=5.6E-9 d6=1.04E-13 

46 Q10=- Q30 

     =1.7E+14 

Q11=  −Q31 

     =2.9E+19 

Q12= −Q32 

      =2.5E +26 

Q13= −Q33 

     = - 2.8E+15 

Q14= −Q34 

       =1.2 E +22 

Q15= −Q35 

       =0.015 

Q16= -Q36 

=1.7E+5 

Q20=2.9E+16 Q21=5.07E+17 Q22=1.4E +19 Q23=4.9E +13 Q24=2.1 E +20 Q25=0.00027 Q26=161.57 

47 l0=1 l1=5800 l2=5E + 16 l3=16.5 l4=7.1E-7 l5=9.2E − 17 l6=5.4E-11 

48 f0= g0 = 1 f1=-g1 

   = -0.45E-2 

f2= -g1  

    =-3814.05 

f3=-g3 

    =-8.2E-21 

f4=  -g4  

    =-7.3E-15 

f5= -g5 

     =1.5E-13 

f6 =  -g6 

    =2.7E-18 

h0=1.72E+6 h1=0.79E-4 h2=65.7 h3=1.4E-22 h4=1.3E-16 h5=-2.5E-15 h6= -5.7E-30 

p1=-7.5E-7 p2=-7.8E-22 − − − − − 

49 r0=1 r1=4.58E+13 r2=3.8E+11 r3 =8.2E-13 r4=1458.2 r5=-0.14 E -4 r6=-0.02 

z0=1 z1=-7.9E+11 z2=-6.6E+9 z3=-1.4E-14 z4=-1.25 z5=25.1 z6=0.5E-2 

o0=1.48 E +20 o1= 6.81E+9 o2=5.7E+7 o3=1.2E-16 o4=0.01 o5=-0.21 o6=-0.4E-5 

L0 =-8.54E+17 L1=-3.91E+7 L2=-4.5E-16 L3=-7E-11 L4=-0.6E-4 L5=0.12E-2 L6=2.8E-8 

n0=-1 n1=-4.6E+5 n2=-3.8E+11 n3=-0.82E-4 n4=-73.9 n5=1458.2 n6=0.03 

50 A10=-A20=1 A11 = -A21 

       =1.7E+9 

A12 = -A22 

     = -1.5E+16 

A13=-A23 

      =-3.2E-8 

A14 =-A24 

      =-63.96 

A15 =-A25 

     =1279.2 

A16 =-A26 

       =0.02 

A30=-1.72E+6 A31=-2.9E+7 A32=2.5E+14 A33=5.5E-10   A34 = 1.1 A35=-22.1 A36=-0.4E-3 

A40=3.38E+7 A41=5.8E+8 A42=-4.97E+15 A43=-1.1E-8 A44=-0.95E-2 A45=0.2 A46=4.3E-16 

51 G10=1 G11 =4.6E+21 G12 =3.8E+27 G13 =8224.1 G14 =7.3E+9 G15=-1.5E+11 G16 =-2.7E+6 

G20=1.7E+30 G21=7.9E+19 G22=6.6E+25 G23=0.007 G24=1.3E+8 G25=-2.5E+9 G26=-46557.1 

G30=-1.5E+28 G31=-6.8E+17 G32=-5.7E+23 G33=-1.2 G34 =-1.1E+6 G35=2.2E+7 G36=401.4 

G40 =8.5E+25 G41=3.9E+15 G42=3.3E+21 G43=0.007 G44=6227.94 G45=-1.3E+5 G46=-2.3 

G50=-3.7E+23 G51=-1.7E+13 G52=-1.4E+19 G53=-0.3E-4 G54=-26.8 G55=536.9 G56=1.2E-12 

G60=9.9E+7 G61 =6.4E+10 G62 =0.7E-40  − − − − 

52 H10=-H20 

=-4.6E+14 

H11 =-H21 

   =-7.8E+15 

H12 =-H22 

=-6.7E+22 

H13 =-H23 

=-0.14 

H14 =-H24 

=7.4E+6 

H15 =-H25 

=-1.5E+8 

H16 =-H26 

=-2734.9 

H30 =7.8E+12 H31=1.3E +14 H32=-1.2E +21 H33=-0.24E-2 H34=1.3E+5 H35=-2.5E+6 H36 =-47.2 

H40=-6.8E+10  H41=-1.2E+12 H42=9.95E+18 H43=0.2E-4 H44=-1097.5 H45 =21950 H46 =0.4 

H50 =3.9E+8 H51 =6.6E+9 H52=-5.7E+16 H53=-1.2E-7 H54 =6.3 H55 =-126.2 H56=-0.2E-2 

H60 =9.7E+7 H61 =1.6E+9 H62=-1.4E+16 H63=-3.1E-8 H64=-0.03 H65=0.54 H66=1.2E-15 

53 B10 =-B20 

    =6.3E+13 

B11 =-B21 

    =1.1E+15 

B12=-B22 

   =-9.2E+21 

B13 =-B23 

      =-0.02 

B14=-B24 

=-1596.8 

B15=-B25 

    =3.5E+5 

B16 =-B26 

       =6.5 

B30=55.3E+7 B31 =9.1E+8 B32=-7.9E+15 B33=-1.7E-8 B34 =-31.6 B35 =631.4 B36 =0.01 

B40 =-9.3E+9 B41=-1.6E+11 B42=1.4E+18 B43=0.3E-5 B44 =5493.4 B45=-1.1E+5 B46 =-2.03 

B50 =1.1E+12 B51=1.8E+13 B52=-1.6E+20  B53=-0.3E-3 B54=-6.4E+5 B55=1.3E+7 B56 =236.01 

B60=-4.8E+8 B61=-8.3E+9 B62=7.1E+16 B63= -1.5E-7 B64 = 0.13 B65=−2.72 B66=-6.1E-15 

54 N10=-2.6E+20 N11=-4.5E+21 N12=-3.9E+28 N13=83420.4 N14=1.5E+18 N15=-2.9E+19 N16=-5.5E+14 

N20= -4.5E+18 N21= -7.7E+19 N22=6.7E+26 N23=1438.3 N24=2.6E+16 N25=-5.1E+17 N26=-9.4E+12 

N30=-2.2E+14 N31=-2.8E+15 N32=3.3E+22 N33 =0.1 N34=1.3E+12 N35=-2.5E+13 N36=-4.7E+8 

N40=9.7E+11 N41=1.7E+14 N42=-1.4E+20 N43=-0.3E-3 N44=5.4E+9 N45=1.1E+11 N46=-2.02E+6 

N50=3.3E+9 N51=-5.7E+10 N52=4.96E+17 N53=0.1E-5 N54=1.9E+7 N55=-3.8E+8 N56=-6948.8 

N60=1.9E+14 N61=3.3E+15 N62=-2.8E+22 N63=−0.1 N64=−53913.5 N65=1.1E+6 N66=2.4E-9 

55 F10=-F20 

    =-2.6E+20 

F11=-F21 

=-4.5E+21 

F12=-F22 

=-3.9E+28 

F13=-F23 

=83420.4 

F14= -F24 

=2.9E+25 

F15= -F25 

=-5.9E+26 

F16=-F26 

=-1.1E+22 

F30=-4.5E+18 F31=-7.7E+19 F32=6.7E+26 F33=1438.3 F34=5.1E+23 F35=-1.02E+25 F36=-1.9E+20 

F40=3.9E+16 F41=6.7E+17 F42=-5.8E+24 F43=-12.4 F44=-4.4E+21 F45=8.8E+22 F46=1.6E+18 

F50=−2.2E+14 F51=-3.8E+15 F52=3.3E+22 F53=0.1 F54=2.5E+19 F55=-5.1E+20 F56=-4.9E+15 

F60=9.7E+11 F61=1.7E+13 F62=-1.4E+20 F63=-0.3E-3 F64=-1.1E+17 F65=2.2E+18 F66=4.3E+13 

F70=-3.3E+9 F71=-5.7E+10 F72=4.9E+17 F73=0.10E-5 F74=3.8E+14 F75=-7.5E+15 F76=-1.4E+11 

F80=3.8E+21 F81=6.5E+22 F82=-5.6E+29 F83=-1.2E+6 F84=-1.1E+12 F85=2.2E+13 F86=3.99E+8 
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