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Abstract

In this work, a new modification of homotopy perturbation method was proposed to find
analytical solution of high-order integro-differential equations. The Modification process
yields the Taylor series of the exact solution. Canonical polynomials are used as basis
function. The assumed approximate solution was substituted into the problem considered in
which the coefficients of the homotopy perturbation parameter p were compared, and then
solved, resulting to a single algebraic equation. Thus, algebraic linear system of equations
were obtained by equating the coefficients of various powers of the independent variables in
the equation to zero, which are then solved simultaneously using MAPLE 18 software to
obtain the values of the unknown constants in the equations. The values of the unknown
constants were substituted back to get the initial approximation which yield the final solution.
Some examples were given to illustrate the effectiveness of the method.

Keywords: Homotopy perturbation, Integro-differential equation, Canonical polynomial,
Basis function

1. General Introduction
In every phenomenon in real life, there are many parameters and variables related to each
other under the law imperious on that phenomenon. When the relation between the parameters
and variables are presented in mathematical language we usually derive mathematical model
of the problem, which may be equation , a differential equation, an integral equation, a system
of integral equations, an integro-differential equation and etc. To solve these equations, the
numerical solutions of such equations have been highly studied by many authors. In recent
years, numerous works have been focusing on the development of more advanced and
efficient methods for integro-differential equations such as Wavelet-Galerkin method and Tau
method and semi analytical-numerical techniques such as Taylor polynomials, Adomians
decomposition method and the Homotopy perturbation method (HPM).

Perturbation techniques are widely used in science and engineering to handle linear
and nonlinear problems. The homotopy perturbation was first proposed by JH-He in (1998)
and further developed and improved by him in (2003). This method is based on the use of
traditional perturbation method and homotopy technique. In this method the solution is
considered as the summation of infinite series which converges rapidly to the exact solutions.
The applications of the HPM in nonlinear problems have been demonstrated by many
researchers. Amongst them are S. Abbasbandy, Iterative Hes homotopy perturbation method
for quadratic Riccati differential equation, Appl. Math. Comput. (2006), Babolian, Dastani,
Numerical solutions of two-dimensional linear and nonlinear Volterra integral equations:
homotopy perturbation method and differential transform method, (2011), Biazar, Ghazvini,
Numerical solution for special non-linear Fredholm integral equation by HPM, Appl. Math.
Comput. (2008).

Several authors have proposed a variety of the modified homotopy perturbation
methods. Yusfoglu (2009) proposed the improved homotopy perturbation method for solving
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Fredholm type integro-differential equations. Javidi (2009) proposed the modified homotopy
perturbation method for solving non-linear Fredholm integral equations. This results reveals
that the (MHPM) is very effective and convenient.In another study he applied the Modified
homotopy perturbation method for solving system of linear Fredholm integral equations,
Javidi (2009). Golbabai et al. (2008) used the modified homotopy perturbation method for
solving Fredholm integral equations. In another work, he introduced new iterative methods for
nonlinear equations by (MHPM), Golbabai et al. (2007).

In this work, a new modification of homotopy perturbation method was proposed to
find analytical solution of higher-order integro-differential equations. Basically the MHPM is
the same as the HPM. In the HPM, in order to find the solution, the series components are to
be calculated and the sum of the partial series of these components is considered as an
approximation of the solution. However, in the MHPM, the method is designed in such a way
that only one term of the series is calculated.

1.1 Aim and Objectives

The aim of this study is to modify the existing Homotopy perturbation method to find the
solution high-order integtro-differential equations by using Canonical polynomials basis
function.

The main objectives of this work are to:

* construct canonical polynomials to serve as the basis function for the proposed methods

* develop a fast and accurate algorithm for the approximation solution of high order
integro-differential equations;

» generalize the proposed method for the solution of nth order integro differential equation;

1.2 Definition of Relevant Terms
Integral Equations
An Integral Equation is an equation in which the unknown function y(x) appears
under an integral sign. A standard integral equation is of the form:
y(@) = fx) + A [, K@ y(dt, (1)
where g(x) and h(x) are the limits of integration, 4 is a constant parameter, f(x) is a
known analytic function and K (x, t) is a function of two variables x and t called
the kernel or the nucleus of the integral equation, Wazwaz, (2011).

Integro-Differential Equations (IDE)
An integro-differential equations is an equation which involves both the integral and
the derivatives of an unknown function. A standard integro-differential equation is of
the form:
h
y® () = f@) + 2[00 K@ Oyt 2)
where g(x), h(x), f(x), A and K(x, t) are already explained in (1) and n is the
order of the IDE. (2) is called Fredholm Integro-Differential Equation (FIDE) if both the
lower
and upper bounds or limits of the region of the integration are fixed numbers while it is called
Voltera Integro-Differential Equation (VIDE) if the lower bound of the region of integration
isa
fixed number and the upper bound is a variable, Wazwaz, (2011).
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2. Review of Homotopy perturbation method (HPM)

In this section, the HPM is briefly reviewed.
Consider the following equation:

Aw)—f(r)=0,req 3)
with boundary conditions of:
B (U,Z—Z) =0. r€T, (4)

where A,B,f(r) and I' are a general differential operator, a boundary operator, a known
analytical function and the boundary of the domain Q, respectively. Generally speaking, the
operator A can be divided into a linear part L(u) and a nonlinear part N(u). (3) is therefore
re-written as:

L)+ N@w) — f(r) =0 (5)
By the homotopy technique, we constructed a homotopy v(r,p):Q x [0,1] = R  which
satisfies:

H(,p) = (1 =p)[L(W) — L(up)] + p[A(v) = f(1)] =0, (6)
p € [0,1],r € Q,
or
H(v,p) = L(v) — L(uo) + pL(up) + p[N(v) = f(1)] =0 (7

where p € [0,1] is an embedding parameter, while u, is an initial approximation of (3),
which satisfies the boundary conditions. Obviously, from (6) and (7) we will have:

H(v,0) = L(v) — L(uy) =0, (8)

H(w,1) = A(v) - f(r) = 0, (9)
The changing process of p from zero to unity is just that of v(r,p) from u, to u(r). In
topology, this is called deformation, while L(v) — L(u) =0, and A(v) — f(r) are called
homotopic. According to the HPM, we can first use the embedding parameter p as a “small
parameter”, and assume that the solutions of (6) and (7) can be expressed as:

v =vy + pv;, +p?v, + p3vs + - (10)
Setting p = 1 yields in the approximate solution of (3)
u=lin}v=v0+v1+v2+~-- (11)
p—)

The combination of the perturbation method and the homotopy method is called the HPM,
which eliminates the drawbacks of the traditional perturbation methods while keeping all its
advantages. The convergence of the series given by (11) has been proved in He (1999). The
series (10) is convergent in most cases, and the convergence rate depends on A(u) — f(r) =
0, JH. He(1999).

Note that in the HPM in order to obtain an approximate solution, the components v; for i =
0,1,--- must be calculated. Specially for for i > 3, it needs large and sometimes complicated
computations and, in the case of non linearity, the use of He’s polynomials in Ghorbani
(2009) is employed. To obviate this problem, the MHPM is introduced, in which v, is
calculated in such a way that v; = 0 for i > 1. So the number of computations decreases in
comparison with that in the HPM.

2.1 Problem Considered
In this work, the following problems were considered:

Integro-differential equations
In this work, an analytical scheme based on the modified homotopy perturbation method for
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the following kind of integro-differential equation were present:

Fredholm Integro-differential equations the form:

y( ) g 1YV + @y oy P+ a3y ot Y + agy (12)

+/’1f JS K(x, t)y(t)dt = f(x)

subject to the following conditions
y@=a, y'@=a, - y" V(@) =an, (13)
where a;,s are constant coefficients, g(x) and h(x) are the limit of integration, A is a constant
parameter, and K (x, t) is a function of two variables x and t called the kernel of the integral
equation, f(x) is a known function. Where both the lower and upper bounds of the region of
the integration are fixed numbers.

Volterra Integro-differential equations

Volterra Integro-differential equation of the form (12), where the lower bound of the region of
integration is a fixed number and the upper bound is not, were also considered

Volterra-Fredholm integro-differential equation of the form:
any ™ + ay_ 1y + an_ oy + an_sy ™I + o+ ary’ +agy (14)
ALy e s ) K(x, O)y(©)dt = f(x)
subject to the foIIowmg conditions
y@=a, y@=a, - y" V(@) =an, (15)
where a;,s are constant coefficients, g(x) and h(x) are the limit of integration and are fixed

numbers, f(x) is a known analytic function and K (x, t) is a function of two variables x and t
called the kernel of the integral equation.

2.2 Construction of Canonical polynomial

In this section the generalized form of canonical polynomial which served as the basis
function to the approximate of all the problems considered in this work were generated .
Consider the general integro-differential equation of the form:

a y(”) + 1YV +a, o y@ D +a, sy 4+t ay +agy (16)

Af o) K(x t)y(t)dt + g(x)
From (16), operator L is define as :

dn dn—l dn—Z dn 3
LyE(anm+an_1m+an_2m+an 3dn3+a1d—+a0)y (17)
Let,
LQ;(x) = x/ (18)
So that _
L{LQ;(x)} = Lx/ (19)
Thus,
dn 1 dTL 2 dTL—3
L{LQJ('X)} = (an dxn + an 1 dxn— 1 + an 2 dxn— 2 + an—3 dxn—3 +
+ay -+ ag) ¥/ (20)
n-1 n-2 n-3

d d :
x) + a,_, x/ +a,_ 3mx1+---

dn
J=q. 2
Lx (Jdex+an1 pry

dnl
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+a, ;—xxf + agx’ (21)

Thus the expansmn of (21) leads to
J = anl_[ (G—r)axlU™ +a,_ 1_[ G—r)xVUD 4 q,_ 1_[ G —r)xU—+2)

+ et [1028 (G —1)xU™D + qox/ (22)
Since LQ(x) = x/, (22) becomes

Lx/ = an [1725 (G = MLQj—n(X) + aneq [T'25 (G = PLQjnsr () +
n-3

ana | | G-DLG e ®
r=0

+ o ta 1720 G —1)LQj—1(x) + agLQ;(x) (23)

Thus, implies
Lx) = L{an '—T)Q] n(x) + an_ 1H ._r)Qj—n+1(x) +
an—2 [1725 (G — 7")Q;—n+2(x) + -+ ag [P0 U r)Qj_1(x) + aij(x)} (24)

Here, it is assumed that L~ exists and hence (24) becomes
x) = an . T)Qj n(X) +ap_4 n 2 . T')Q] n+1(X) +
an2[I728 G = 1)Qjns2(®) + -+ a IIFS8 G —1)Qja(x) + a0Q;(x)  (25)

Therefore the recurrence relation of (25) is

Q) = o) = an 12 G = 1IQon () = apor I8 G = 1Qjons () =
an—2 H?;g | — T)Qj—n+2(x) = 720 G — T)Qj—1(x)} (26)

Forj >0, ay # 0.
From (26), forcasen = 1

1 i .
Qj = a_o{xj - a1]Qj—1} (27)
Few terms of the canonical polynomials for the case n = 1 are given as;
_ 1 _x _a _ﬁ_Zalx 2a?
QO_aOJQl_aO a%'QZ_ao a(z) +a3’
_ x® 3ayx? 6a’x  6a3
Qs = ao a? + a3 ag (28)
For thecasen = 2
1 1 .y .
Q; = a—o{x] — ayj(G — 1)Qj-z — a1jQj_1} (29)
Few terms of the canonical polynomial for the case n = 2 are given as;
_ _ x?  2a, 2a1x 2a1 x3 _ 6apx | 12a;ap
Q - Ql - 2 'QZ ag ao Q3 a(z) + a(?),
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3a,x2 6a1x 6a1 x*  12a,x% | 24a% | 48aja;x 72aza?  4a;x°
a2 a3 Q4___ a2 +a3 + a3 T T x 22
0 0 0 0 0 0 0
12a%x? 24a3x 24a1x
a ak as (30)
0 0 0
For the case n = 3,
Q; = a—o{x] —azj— DG - 2)Qj—3 —aj(j — 1)Qj—2 - a1]Qj—1} (31)
Few terms of the canonical polynomial for the case n = 3 is given as;
1 _X _ x> 2a; 2a1x Za1 x3  6axx | 12a;a;  3ayx?
Qo = Ql - aZz % " ay  a? a(z, PEE a? + a3 a? t
6aix 6a1 Q 4 _ 24azx | 48aza;  12apx? 24(12 48a1a2x _ 72aaf  4a;x3 n
ad 4 a? ad a? ad al ag a?
12a1x2 _ 24a x n 24a1
ag ag as
(32)
For the case n = 4
1. .
Qj = a—{xJ —a,jG -G -2)G - 3)Qj—4 —a3jG— D[ - 2)Qj—3
0
—ayj(j — 1)Qj—2 - alej—l} (33)
Few terms of the canonical polynomial for the case n = 4 is given as;
2 2 3
__ __ﬂ _x__Zﬂ_Zalx Zﬂ _x__6a2x 12a1a2_
Qo = Q1 - a? 702 ay a2 a? + a3 Qs ag a? + a3
3a,x2 n 6a1x _ % ﬁ _24a,  24azx | 48aza; 12a,x% | 24a% | 48aja,x _
a? ad at ** 7 q, a? a? ad a? a3 a3
72a,a? 4a,x3  12a?x? 24a3x  24a}
at - a2 a2 at as (34)
0 0 0 0 0

For the case n = 8
Q= ~aeji ~ DG =G ~3)G ~ DG ~6)( ~ Qs
—a;jG =D -2)G-3)(-HG -50—-6)Q;—,
—a6j(( — DG =2)G—=3)(J —DG —5)Cj-s
—asj((—1D( =2)G=3)( —DQj-5s —aj( — DG —2)( — 3)Qj-4
—az;jG— D[ - 2)Qj—3 —ayj(j — 1)Qj—2 - ‘11ij—1} (35)

Few terms of the canonical polynomial for the case n = 8 is given as;

x3

-1 X _ 4 _x__zﬂ_zalx 2af __6&_6“2"
Qo—ao.Q1—a0 aZ‘QZ_aO 2 a2 + 3’Q3— P +
12a,a; 3a.x%  6aix _ 6;1% - ﬁ _ 24ay 24a3x 48a3a1 _ 12a,x% = 24a%
al a? + ad ag’ Q4_a0 a? a? + a3 a? + a3 +
48a1a,x  72aaf  4a.x® | 12afx*  24aix | 24a} (36)
ag ag ag ag ag ag
2.3 Description and Implementation of the proposed method
Consider the following integro - differential equation
X
y® + fy () + [y k(x, )y®)dt = g(x), (37)
with initial conditions
y(0) = Bo,y'(0) = By, ++,y™(0) = Bn (38)
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Solving (37) by MHPM we construct the following convex homotopy
1= P)VP ) = yo(0) +p(VD + OV (x) + [ k(x, )y (O)de — g(x)) = 0
or equivalently
V() = yo(x) = po(®) + FIV () + f; k(x, D)y(t)dt — g(x))

Applying the inverse operator, L™! = fox fon fOT (-)dé& - dudn
to both sides of (40) we obtain

V() = V(0) +2V'(0) + 2 V"(0) + -+ ZV™(0)

+ Iy Iy Jy 0o(®) = pe(©) + FEVE)

+J; k(G OV (E)dt - g(x))) dE - dudn,

where V(0) = B,,V'(0) = 1, V"(0) = Ba, -+, V™ (0) = By
Suppose the solution of (41) have the following form
V(x) = Vo(x) + pV1(x) + p*Vo(x) + -+,
(42)
where V;(x),i = 1,2,3, -+ are functions which are to be determined.
Now suppose that the initial approximation to the solutions y,(x) is of the form
Yo(x) = XjZo a;P;(x)
where a; are unknown coefficient, Py(x), Py (x), P,(x), -+ are specific function
depending on the problem.
Substituting (43) into (42) and equating the corresponding coefficients of p with the
same power leads to
Tizo PMVa(x) = V(0) +aV'(0) + 5V (0) + -+ + 2V (0)

+ 5L JT () = po(©) + £(8) Titmp PV (O)
+ 3 k(&) o PVa(t)dt — g(x)) ) dE - dpd,

PO: Vo (x) = V(0) +xV'(0) +277(0) + -+ + V™ (0)

+ o Sy Jy @o(§)dé - dpd,

pLvi() == [7 [ [T (70(©) + FEOV(E) + [ k(E OVo(Ddt —
9(x))dé -+ dpdn,

PVa() == fy Jy o fy (FEOVE) + [ k(€ OVi(Ddt)ds -+ dudn,
PAVs() == J7 J) o Jy (FEOV(E) + [§ k(& OVo(6)dt)dE -+ dpudn,

x 7 T x
pivw == |- (f(f)Vj—l(f)+ | k(f,t)vj_l(t)dt>df---dudn,

Now if these equations are solved in a way that V; (x) = 0, then (63) resulted
to V,(x) = V3(x) = --- = 0, therefore the solution is obtained by using
2 3 n
Y() = Vo(x) = Bo + Prx + B 5+ Bs S+ Bo o+ fy J o fy yo€dE -+ dpdn
It is worthwhile to note that if V; (x) is analytic at x = x,, then their Taylor series
Vi(x) = Xnzo (x — x0)™,

is used in (46) where B, 51, B2, -+ are known coefficients and a,, a; a5, as, -+, are unknown to

be determined.
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3 Demonstation of proposed method on some problems

In order to demonstrate the efficiency and applicability of the new method proposed, the

following examples were considered.

Numerical Example 1
Consider the following integro-differential equation
yP(x) — y(x) = x(1 + e*) + 3e* — fox y(t)dt,
with the initial conditions
y(0) =1,y'(0) = 1,y"(0) = 2,y"'(0) = 3,
The exact solution is y(x) = 1 + e*.
For solving this equation by MHPM we construct the following convex homotopy

(48)

(1 =PV = yo(0)) + p(V¥(x) = V(x) — (x + xe* + 3e¥) + [ V(t)dt) = 0 (49)

we therefore simplify (49) to have

V() = yo(x) = pYo(x) + PV () + p(x + xe* +3e*) —p [ V(t)de
By integrating (50) we have

V() = V(0) +xV'(0) + 2 V"(0) + TV (0) +

LS00 yo()dedpdndr
—p [5ITTL2 yo(©dedgpdnd +p [ [T [T [P V(§)dedpdndr
o 5T T2 (€ + €ef + 3ef)dedpdnde

—p Iy 5 I3 I3y v(©)dtdidpdndr
where
V(0) =1,V'(0)=1,V"(0) =2,V"(0) = 3,
Now suppose that the solution of (51) is in the following form
V(x) = Vo(x) + pVi(x) + p*Vo(x) + p>V3(x) + -
Substituting (52) into (51) to have

20 PVR() = T x+x2 + 24 [ [T [1 (@ yy(6)dgdpdnds
o X7 [T S yo(©dededndr

+p 5T [T [P S5, pVa()dEdpdndr

+p 50T [T IS (& + et + 3ef)dedgdnda

¢ voo
—p Iy I3 S S 08 S pVa(D)dtdEdpdnde
Equating the coefficient of p in (53) with the same power leads to

POVo(0) = 1+ x+ 22+ 4 [ [T [7 (¢ yy(£)dgdpdnds
PV ) == f7 o [T yo(§)dedpdndr

+ LTI P S, Vo(§)dEdgdndr

LT LTI (6 + £ef + 3ef)dEdpdndr

— LA TSP 0E vo(tydedgndr

PV = [ I 1 I V@ =1 I 1) 8 S Ve ©dedédgdnde
Now assume that
J’O(x) = 21010=0 anQn(x)'

22

(50)

(51)

(52)

(53)

(54)

(55)


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) ol
Vol.10, No.1, 2020 I E

where Qy (x) is the Canonical polynomials generated in (34) for the case of n = 4. We have

Yo(x) = aoQo(x) + a1Q1(x) + a2Q2(x) + a3Q3(x) + a4 Q4(x) + - (56)
Now comparing (48) with (16) we have a, = —1,a; = a, =az; =0and a, = 1.
Therefore
Qo(x) =—1
Q:(x) = —x
Q2 (x) = —x? (57)
\ Q3(x) = —x°
Qs(x) = —x*—24

Then,
Yo(X) = —ag — a1 x — ayx? — azx® — a,(x* + 24) (58)
Substituting (58) into (54) and solve results in

1 asx®  azx?  ayx®  agx®
Vo) =14+x+x?+-x3 -2 -2 -2 =
2 1680 840 360 120
1

+Z(—%ao—4a4)x4 (59)

Solving for V; (x) such that V/,(x) = 0 in (54), we have the Taylor series as

— (L DVt (L f )5 o (L 22,06
Vit = (24 Qo + &y + 6) X"+ (24 + 120) X"+ (120 + 360) X
1 a3\ 7 __% 1 \,84..—
+ (720 + 84-0) X"+ ( 40320 + 10080) X+ 0 (60)
So, to find ay,a;, a,, a; and a, in (60), we equate to zero, the coefficients of various power
of x to have

(ia0+a4 %) =0

(G + 1) = 0
1 [24]
(E 360) (61)
(725 +30) = 0
720 840
(_& + 1 ) =0
40320 10080

Solving the above simultaneous equations using MAPLE18, we obtain

a0=4‘,a1=_5,a2=_3,a3=_£;a4=_§; (62)

we substitute (62), into V,(x) in (59).
Therefore the exact solution of integro-differential equation (48) can be expressed as

8 6
y(x)zVO(x)=1+x+x2+%x3— +

1 1
G 4ay)xt
= THx+x?+ox% Foxt b xS+ = S
2 120 720 504—0
=1+x(1+x+1x2+ St xS T )
2 720 5040
o X"
=(1+x2n=0;)

=1+ xe*

asx azx”  dayx a x5
1680 840 360 120

%8

Numerical Example 2
Consider the Fredholm integro-differential equation

Y8(x) — y(x) = —8e* +x% + [, x?y'(t)dt, (63)
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with the initial conditions
y(0) =1,y'(0) =0,y"(0) = -1,y""(0) = -2,
y*¥(0) = =3,y"(0) = —4,y™(0) = —5,y"(0) = -6,
The exact solution is y(x) = (1 — x)e*.
For solving this equation by MHPM we construct the following convex homotopy

(1= P)(VE@) — 7o) +p (VE(x) —V(x) — (22 — 8e¥) — [} x2V'()dt) =0 (64)
We therefore simplify (64) to have

VE() = Yo (x) — pyo(x) +pV(x) + p(x? — 8e*) +p [ x?V'(t)dt (65)
By integrating (65) we have

V(x) =V(0) + xV'(0) + = V”(O) +< V”’(O) + V“’(O) + —V”(O) +
ZY0) + V) + [ 7 Y fo NN f;’ yo(6)ddpdgdododgdnds

XTI [P yo()dédpdpdodwdpdnde

o [T 10 [ P v(©dedpdpdodwddndr (66)

o X ITIT L E ST Y [P (8% - 8ef)dedpdpdadwddndr

wp Iy J5 00 IS0 0 87 0 €2 (0)dedgdpdgdodwdpdndr
where
V() =1V'(0)=0,V"(0)=-1,V""(0) = -2,
V®(0) = —3,V¥(0) = —4,VV(0) = —5,V¥¥(0) = —
Now suppose that the solution of (66) is in the following form
V(x) = Vo(x) + pVa(x) + p2V5(x) + p*Vs(x) + - (67)
Substituting (67) into (66) to have

Yn=o p"V (x) = V(O) +xV’ (0) += V”(O) += V”’(O) + V”’(O) +
120 Vv (0) +om 720 VW(O) + 50w 5040 Vv” (0)

+j; J;) J;) j; J;) J;) fo foyo(f)dfdpdq.’)dadwdd)dndr

[T [P yo(x)dédpdpdodwdddnd
o [T TP I 1Y [P e, pY(§)dedpdpdadwdpdndr
o X IITLE 8 ST I [P (8% - 8ef)dedpdpdadwddndr

0 Jy Sy B ID I T 0D (5 S €2V (Ddt) dédpddodwdpdndr (68)

Equating the coefficient of p in (68) with the same power of x leads to
2 3 4 .
p%:Vo(x) = V(0) + xV'(0) + V" (0) +=V"'(0) + V™ (0) +

%V"(O) + 2y (0)+ 20y + [F T [T [P L ST Y P yo(§)dédpdgdodwdgdr
X T N ¢ 0 o Y orp
LV = — fo fo fo fo fo fo fo fo Yo(€)dédpdddodadpdndr
LTI 1 1Y [P ve(§)dedpdpdadwdpdnde
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LT IE 1 [ [P (87 - 8ef)dedpdddodwddndr
+f0x fOT fon f0¢ fow foa f(;p fop (fof Ezvlo(t)dt) dfdpd¢dadwd¢dndr

PV (x) = fox fofon f:) fow f: fow fop Vi_y (§)dedpdpdodwdpdndr

IR 2V tde) dédpdgdodwdgdndr
Now assume that
Yo(x) = Zf:o anQn(x),
where Qy (x) is the Canonical polynomials generated in (36) for the case of n = 8. We have
Yo(x) = agQo(x) + a1Q1(x) + a,Q2(x) + a3Q3(x) + a4Q4(x) + asQs(x) +

a6Q6(x) + a7Q7(x) + agQg(x) + -
Now comparing (63) with (16) we have ay = —1,a; = a, = a3 =+ =a;, =0and ag = 1.
Therefore
Qo(x) = -1
Qi1(x) = —x
Q2 (x) = —x?
Q3 (x) = —x*
Qs(x) = —x*
Qs(x) = —x°
Qs (x) = —x°
Q7(x) = —x’
Qg(x) = —x® — 40320
Then,
Yo(x) = —ag — ayx — ayx? — azx® — ay — asx® — agx® — a;x” — ag(x® +
0320)
Substituting (73) into (69),then imposing the conditions and solve results in
Vo(x) = 1—%962 —§x3 —%x“ —%xS —%—%
(e~ B0 ) X — S~ et ~ aeaans ~ Tosssam oo
agxt a;x15 agxl®

121080960 259459200 518918400

Solving for V; (x) such that I/; (x) = 0 in (70), we have the Taylor series as

a 1 1 a a
s o A S 6V S M Y ¥ Y
40320 5760 45360 362880 73156608000

a 22679 1814399 ay az
658409472000 9144576000 3292047360000 12070840320000
ay as [ 518918401 ag
36212520960000 94152554496000 219689293824000 941525544960000
_ az x10
470762772480000

(_ 1 3 ) 11 (_ 1 4 G ) 12
3991680 @ 6652800 43545600 = 19958400

(-5 + )+ (s )
518918400 51891840 6706022400 121080960
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+ (- i)+ (- s
93405312000 259459200 20922789888000

1
—) x16 4+ ...
2615348736000

=0

So, to find the value of a's in (75), we equate to zero, the coefficients of various power of x to
have

a 1
(2 gy ) =0
40320 5760

1 a
(-t es) =0
45360 362880

(- 7eee
73156608000

aq 22679 1814399 a, as
658409472000 9144576000 3292047360000 12070840320000
ay as Qg 518918401 ag

36212520960000 94152554496000 219689293824000 941525544960000

ar ) _
470762772480000

as _
3991680 6652800) 0 (76)

Ay )_
43545600 19958400 o

426 )—
6706022400 121080960/
a 1 a
i TR e

518918400 51891840 6706022400 121080960

(-
(-
(- s * rooa) = O
(-
(-
(-

ar _
93405312000 259459200) -

( Qo _ 1 ) _
. 29922789888000 26_1534873_6000 - ]
Solving the above simultaneous equations using MAPLE18, we obtain

— -3 -8 =2 _5, =0 -1 - 13 L
@o = 1’ @1 =9 G =75 B=50 =7 =15 %6 =75 77 360
g = % (77)
We substituted (77) into Vy(x) in (74).
Therefore the exact solution of integro-differential equation (63) can be expressed as
_ 11,2 1,3 1,4 1,5 x° A
y(x) =Vo(x) =1 2% T3 7Y T3X T T sao
1 ag s X’ a,x10 azx!t ayxt?
PRV T S _ _
8 5040 362880 1814400 6652800 19958400
asx!3 agxt* a,xtd agxl®
51891840 121080960 259459200 518918400
1ty 1,3 _1oa_1,s_x0_ x7 X0
2 3 8 30 144 840 5760
x9 xlO xll le x13
45360 403200 3991680 43545600 518918400
x14- x15 x16

- — — - (78)

. . 6706022400 93405312000 . 1394852659200
which is the Taylor series of the exact solution
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Numerical Example 3

Consider the mixed Volterra-Fredholm integro-differential equation

17, _ 20 2 3 x rl 2 2
) =-S+5x° + Jy I, @t =r?Hu(t)dtdr, (79)
with the initial conditions
u(0) = 2,u'(0) =3,

The exact solution is given by 2 + 3x — 13—Ox2.

For solving this equation by MHPM we construct the following convex homotopy

Ve + (5 -2x%)

3

1— V" _ +
(A =p)(V7(x) —ue(x)) +p N f_11 (rt? = r*’t)V(t)dtdr

=0 (80)

We therefore proceed as before to obtain
V() =V(0)+xV'(0) + f5 fy uo(§)dédr —p [ f; uo(§)dédr

—pfy Is (B-28%)dsar+p ) [ ( NI r20)V(t)dtdr) dédr  (81)
where VV(0) = 2 and V'(0) = 3.
Now suppose that the solution of (81) is in the following form
V(x) = Vo(x) +pVi(x) + p?Vo(x) + p*Va(x) + - (82)
Therefore (81) becomes

Yoo PV (x) =24 3x + [ [T uo(O)dédr —p [) [T uo(§)dédr —

[} Iy (B-23)agar+p [y f7 (f5 12, @rt? = 120 Sy p™Va(t)dtdr) dédr (83)
Now, equating the coefficient of various power of p leads to
PO Vo(x) = 2+ 3x + [ [T uo(§)déde (84)
PV = = J) J7 uo(©dgdr — [ [ (B -2¢%) dgar
+ 5 0y (55 12, ort? = r20) N Vo(tdtdr) dédr (85)

V() = [ fy (5 2, @t =120 B Vaoa (6)dedr) dédr

Now assume that

Yo(x) = Z?zo=0 an Qn(x),
where Q, (x) is the Canonical polynomials generated in (36) . We have

Yo(X) = apQo(x) + a1Q1(x) + a2Q02(x) + a3Q3(x) + @, Qs(x) + -+ (86)
Now comparing (79) with (16) we therefore re-structure (79) into the form (16) to have
() +u@) = ux) - 3+ 213 + [ 1 (rt? = rPou(t)dtdr, (87)

then, we have
a,=1,a, =0anda, = 1.

also
Qo(x) =1
Q:1(x) =x
Q2 (x) = x* =2 (88)
Q3(x) = x3 — 6x
Qu(x) = x* —12x2 + 24
therefore,

U (§) = ag + axé + a(§% —2) + as(§° — 6 ) + @y (§* — 12 8% + 24) (89)
Substituting (89) into (84) and solve results in
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Vo(x) =2+ 3x+3—10a4x6 +%a3x5 +%(§a2 —4a4)x4
1/1

+3(Gar -3 a5)x® +1 (@ — 2y + 24 @y)x? (90)

Solving for V; (x) such that V/; (x) = 0 we have the
1 10 1
Vi(x) = (—an +a,—12a, —?)xz + (—g% + a3)x3
+(_499a2 26953a4+ﬂ+ 1)X4

5040 22680 120 18
_S8tes a\,5 _ 1 .64 ..
+( 1400 900) e 0 (81)
So, to find the value of a's in (91), we equate to zero, the coefficients of various power of x
to have

(—%a0+a2—12a4—13—0)=0

(—%al +a3) =0

(=0 * S0 T35 T 15) = O (%2)
6la a
(=505 —35) =0
—%(Ll - 0
Solving the above simultaneous equations using MAPLE18, we obtain
CZO:—?, a1=0, a2:0, a3:O,a’4_:0,"‘ (93)

We substituted (93) into V,(x) in (90).
Therefore the exact solution of integro-differential equation (79) can be expressed as

1 1 1/1
u(x) =Vo(x) =2+ 3 x + - aux® +5a3x5 +Z(§a2 —4a4)x4

1/1 1
+3(Gar =3 a5)x® + 2 (2o - 2@y + 24 a,)x? (94)
=2+3x—13—0x2 (95)

4. Conclusion

The MHPM has been presented and illustrated to solve high-order IDEs. The advantage of this method
is that only once iteration is required to get the exact solution of a given problem. Canonical
polynomial is used as the basis function for the solution of example 1, 2 and 3. Both methods
performed creditably well for the examples considered. Examplel and 2 shows that high-order IDEs
with initial conditions can be solved without linearization or discretization.
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