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Abstract 

Bayesian Model Averaging (BMA) is a variable selection approach that takes model uncertainty into account by 

averaging over the weights by their posterior model probabilities. Of concern are the priors to be used for the 

quantities of interest and the model choice. Using uniform prior for the model choice as supported by the literature, 

this study elicits a modified g- parameter prior in BMA in a normal linear regression models to model CO2 

emissions in Nigeria. The functional form,  
1

2

( )

( )

js

n




 of the g-prior, 

5

1
g

n
=  was elicited by taking the number 

of regressors constant aimed at capturing information for increasing sample size. The modified prior show 

consistency with models in literature. Five sub samples (50, 100, 1000, 10,000 and 100,000) generated from 

normal distribution each replicated 100 times were used to investigate the predictive performance and sensitivity 

of the modified prior. The asymptotic properties of the prior were derived. The best model for CO2 emissions in 

Nigeria with 53% Posterior Model Probability (PMP) involves the Industrial, Residential & Commercial and 

Agricultural sector. And among these, the industrial sector contributed most with 99.98% Posterior Inclusion 

Probability (PIP). 

Applying the modified g-prior with LPS 2.3260 from the prediction which is the close to the threshold of 2.335, 

industrial sector, residential & commercial sector and agricultural sector are best used for modeling CO2 emissions 

in Nigeria.  

Keywords: Variable Selection, Industrial Sector, Posterior Inclusion Probabilities. 

 

1. Introduction 

Carbon dioxide (CO2), a greenhouse gas (GHG) is a gas essential for life - animals exhale it through respiration and 

plants sequester it to conduct photosynthesis. It exists in Earth's atmosphere in comparably small concentrations, 

but it is vital for sustaining life. It is a gas that uses up and discharges heat energy, forming the 'greenhouse effect'. 

Including other greenhouse gases on the earth surface, like nitrous oxide and methane, CO2 is useful in sustaining a 

habitable temperature for the planet, that is, if there were absolutely no GHGs, our planet would simply be too cold. 

In actual sense, carbon dioxide appears on the earth surface through burning fossil fuels (coal, natural gas, and oil), 

solid waste, trees and wood products, formed from the remains of plants and animals, and also as a result of certain 

chemical reactions (like manufacture of cement). Carbon dioxide, being used up by plants as part of the biological 

carbon cycle during photosynthesis is removed from the atmosphere through this process. While CO2 emissions 

come from different natural sources, various forms of human activities that are emissions related are causal factors 

for the rise that has occurred on the planet since the advent of technology and industry. There exists both natural 
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and human sources of carbon dioxide emissions. Natural sources include decomposition, ocean release and 

respiration. Human sources come from activities like cement production, deforestation as well as the burning of 

fossil fuels like coal, oil and natural gas. Due to variety of human actions, the atmospheric concentration of carbon 

dioxide on the planet surface has been on the rise in large amounts since the advent of technology and industry and 

has now achieved harmful levels not seen in the last 30 thousand centuries. Human sources of carbon dioxide 

emissions are much smaller than natural emissions but they have disrupt the natural balance that existed for many 

thousands of years before the influence of humans. 

This study elicits a new modified g-parameter prior to examine uncertainties in the phase of big data analytics 

when there is rapid increase in sample size and applied it to model CO2 emissions in Nigeria. 

 

2. Bayesian Model Averaging 

Bayesian Model Averaging (BMA) is an empirical tool to deal with model uncertainty in various milieus of 

applied science. In general, BMA is employed when there exist a variety of models which may all be statistically 

reasonable but most likely result in different conclusions about the key questions of interest to the researcher. 

BMA assigns probabilities on the model space and deals with model uncertainty by mixing over models, using the 

posterior model probabilities as weights. Typically, though not always, BMA focuses on which predictors to 

include in the analysis. The implementation of BMA, which was first proposed by Leamer (1978), for linear 

regression models is as follows. Consider a linear regression model with a constant term, 0  and s explanatory 

variables 1 2, ,..., sx x x ,  

0 1 1 2 2 ... s sy x x x    = + + + + +  ……                                     (1) 

where y denotes the observed data on the dependent variable.   is the error term which is independent and 

identically distributed as 
2(0, )N   . In matrix form, it can be best written as 

'y X = +  …….                                                   (2) 

Given the number of regressors, we will have 2s different combinations of right hand side variables indexed by Zj 

for j = 1, 2, 3 … 2s. Once the model space has been constructed, the posterior distribution for any coefficient of 

interest, say h  , given the data D is 

:

( | ) ( | ) ( | )
h j

r h r h j r j

j Z

P D P Z P Z D


 


=   …….. (3) 

BMA uses each model's posterior probability, Pr(Zj|D), as weights. The posterior model probability of Zj is the 

ratio of its marginal likelihood to the sum of marginal likelihoods over the entire model space and is given by 

( ) ( ) ( )
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Where, 

( ) ( )| = ( | ,Z ) |r jr j j jj r jP D Z P dP D Z   ……                            . (5) 
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and 
j  is the vector of parameters from the model Zj, Pr( j |Zj) is a prior probability assigned to the parameters of 

model Zj, and Pr(Zj) is the prior probability that Zj is the true model. It indicates how probable the researcher thinks 

model Zj is before looking at the data. Pr (D|Zj) reflects the probability of the data given the model Zj. 

 

2.1. The Modified Parameter Prior 

Prior elicitation can be extremely critical for the outcome of BMA analyses. The g - parameter prior elicited must 

be positive and should be as small as possible so that data information can spread across the models (i.e. 0 < g < 1). 

Literature reveals that some g - classes in existence can still be improved upon. Thus, we elicited a modified g - 

parameter prior which explained information of the prior as contained in a single observation and approximated by 

the SIC, BIC or HQ. The modified prior elicited for the rth term of the sample size is 

1
, 3

r
g r

n
=   ……………………  . (6) 

The rationale behind the modification is for capturing information for fast increasing sample size. It has a mean of 

zero and always approximate to SIC or BIC. Since g is neither greater than one nor less than zero especially for a 

large sample size (n). Using FLS (2001a), we are of the assumption that  

1( )

( )

js
g

n




=   with 

2 ( )lim
n

n
→

=   ………………  … (7) 

Now, the assumption that there is a true model Zs in Z generates the data under the following conditions. 

'

2 ( )
0

( )lim
n

n

n



→

= ……………   …… (8) 

together with either  

2

[0, )
( )

lim
n

n

n→

  …………….  .. (9) 

or 1(*)  is a non-decreasing function. 

 are satisfied, which ensures that the posterior distribution of the models is consistent. Where, 1  is the 

numerator function, 2  is the denominator function and 
'

2( )n  is the first order derivative of the function 

2 ( )n  . 

In comparison with the elicited parameter prior, it is shown that the numerator function 1  = 1 and its 

denominator function,
2( ) rn n =  then the first derivative for the denominator function is 

' 1

2( ) rn rn −=  . That 

is, 
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For 3r   , the conditions are satisfied as established below, 

a. 
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And either, 

b. 
1

2

1
0 [0, )

( )
lim lim limr r

n n n

n n

n n n −
→ → →

= = =    ……                      .. (12) 

Or, 

c. 1(*) 1 =  (Constant) is a non-decreasing function. 

The asymptotic properties of the modified parameter prior is derived as follows 

I. Distribution of the modified parameter prior 

2 ' 11
| ~ (0, ( ) )j j jr
g N X X

n
  −

 ……                                         . (13) 

where,    is the precision for the model; 
'

j jX X  is the standardized design matrix of n    k for 

model j; and n is the number of observations. 

II. Posterior Probability of the Parameter 

From (4)  

| , ~ ( , , ( | , ))js

j t j jD Z f c V D Z   …                                        .. (14) 

Where ~js

tf  a multivariate t distribution, and c = degree of freedom. 

Mean =
' 1 '1
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Then, 
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III. Marginal Likelihood of Model j 

The marginal likelihood of model j is defined as 

1
/2 ' 2

1 1 1
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11 1
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 ……  ….. (17) 

IV. Posterior Model Probability 

Each prior model probability is assumed for both models (j, q), then we have 
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V. Bayes Factor for Models in (j, q) models in BMA 

Equal hyper parameter prior is assumed for the two models (j and q), then we have 
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VI. Relationship of the modified g to information criterion 
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VII. Predictive Distribution of Model q 

The log predictive score follows a multivariate student’s t distribution 

* '1 1
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 ……                  . (21) 

3. Simulation and Analysis 

Using literature works of Hoeting et al. (1999), Fernandez et al. (2001a), Ley and Steel (2008), Eicher et al. (2011) 

and Olubusoye and Akanbi (2015) as guide, the simulation experiments are performed by designing a matrix H, for 

the regressors is an n   S matrix where S = 15 is a fixed number of regressors for sample size n, derived as 

follows: the first 10 columns in H, represented by (h(1),..., h(10)) are drawn from independent Normal density and the 

subsequent five columns (h(11),..., h(15)) are built standard form. 

(h (11),…, h(15)) = (h (1)... h(10))(0.3 0.5 0.7 0.9 1.1)’(1 1 1 1 1)+   ……                      . (22) 

where = n   5 matrix of independent standard normal variable. It is observed that (3.1) shows a correlation 

between the first five regressors and the last five regressors. The last five has the form of small to moderate 

correlations between (h (1)... h(5)) and (h(11),..., h(15)). Each of the regressors will be demeaned after generating H, 

hence leading to matrix X* = (X*(1)... X*(15)) which satisfies i'X* = 0. A vector of size n is generated using one of 

the models: 

Model 1: 

y = 4 + 2X*(1) - X*(5) + 1.5X*(7) + X*(11) + 0.5X*(13) +   ………                          . (23) 

Model 2: 

y = 1 + , 
2(0, )N   ……..                                                 (24) 

where 
2  is assumed known to be an arbitrary value of 2.52. A uniform prior is used over the model space Z such 

that the model prior is: 

P (Zj) = 2-S, j = 1... S………………..                                               (25) 
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where S is the number of available regressors. 

Sample sizes of 50, 100, 1,000, 10,000 and 100,000 are used in the simulation experiment for each replication. 19 

different vectors of regressors are generated for the forecast of model 1 with 100 replications. The Markov Chain 

Monte Carlo with 50,000 iterations after a burn-in drawing of 20,000 are used for the model simulation. 

3.1. Posterior Model Inference 

The posterior probability, which is a conditional probability of an unknown quantity, assigned to the model 

generating the data usually determine the performance of the Bayesian methodology. The true model probability is 

expected to be high for small or moderate values of sample size and it usually converges to 1 as sample size 

increases. Table 3.1 shows the means and standard deviations across the 100 replications for the true model 1 

posterior probability. The row displays each of the rth term of the modified g- prior from r  3. It is obvious from 

this table that Model 1 is consistent. The prior performs well from n = 1000. It is seen that the prior performs best 

when r = 5. This implies that, as r increases the higher the rate of convergence to the true value of the parameter for 

Model 1. 

 

 

Table 3.2 shows the quartiles of the ratio between the posterior probability of the correct model and the highest 

posterior probability of any other model. The quartile ratio increases as sample size increases for the model 1. This 

shows how best the true model is as compared to the next best model. 

 

 

 

Table 3.3 displays means and standard deviations of the number of visited models over the 100 replications in the 

50,000 iterations in the model space. As the sample size increases, knowing the model which produced the data is 

           Table 3.1: Means and Stds of the Posterior Probability of True Model 1 using the modified prior 

N 50 100 1000 10000 100000 

Prior Mean Std Mean Std Mean Std Mean Std Mean Std 

3
1

n
  

0.5648 0.2079 0.7735 0.1893 0.9996 0.0008 0.9999 0.000 1.000 0.000 

4
1

n
 

0.6301 0.2129 0.8217 0.1724 0.9997 0.0011 1.0000 0.000 1.000 0.000 

5
1

n
 

0.7137 0.2009 0.8304 0.1963 0.9998 0.0476 1.0000 0.000 1.000 0.000 

Table 3.2 Quartiles of ratio of Posterior Model (1) Probability; True model vs Next best Model using the modified 

prior 

N 50 100 1000 10000 100000 

Prior Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 

3
1

n
  

0.4 1.6 3.87 1.7 4.9 9.96 15 120 320 150 2500 5302 1050 11210 23334 

4
1

n
 

0.5 1.6 3.89 1.7 4.9 10.97 15 130 397 155 2532 5693 1051 11212 23410 

5
1

n
 

0.6 1.7 3.89 1.7 4.9 10.97 17 140 409 160 2559 5899 1060 12203 25667 
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one of the 215 = 32,768 possible models investigated, it is expected to be as small as possible. The MC3 sampler 

visits lesser models as n increases. At n = 100,000 the number of models visited is 8 as compared to thousands 

being visited when the sample size is 50.  

 

 

Table 3.4 shows the degree of errors when the posterior model probability is allocated to the wrong sampling 

model. Notably, these tables indicate the means and standard deviations of the posterior probabilities of including 

each of the regressors. Since, model 1 contains regressors 1, 5, 7, 11 and 13 (indicated with asterisks in the table 

below). When n= 50, regressors 1 to 7 are usually included but as the sample size increases from 1000, the true 

regressors are usually included. Generally, the PIP of regressors not included in the correct model is approximately 

very small especially for large samples using the modified prior. It is also observed that the prior performs best 

when r = 5. 

 

Table 3.5 shows the mean and standard deviations of the model 2 (null model) posterior probability. It is observed 

that the modified prior performs even when the sample size is small as compared with model 1 in Table 3.1. Also, 

like model 1, It is seen that the prior performs best when r = 5. This implies that, as r increases the higher the rate of 

convergence to the true value of the parameter for Model 2. 

 

Table 3.6 displays the quartile ratios of the correct null model compared to any other models among the visited 

models for the elicited g- prior across the various sample size. The table below shows that as the sample size 

increases for the g- prior, the quartile ratio also increases for model 2. This shows how best the true model is as 

compared to the next best model. 

                           Table 3.3: Means and Stds of Model 1 visited using the modified priors 

 

N 50 100 1000 10000 100000 

Prior Mean Std Mean Std Mean Std Mean Std Mean Std 

3
1

n
  

4105.42 2212.142 1976.02 1701.635 16.21 9.675 8.79 1.372 8.53 1.141 

4
1

n
 

3258.95 2161.26 1359.89 1543.604 11.11 11.820 8.53 1.141 8.53 1.141 

5
1

n
 

2609.77 2013.68 1356.60 1462.843 13.61 7.418 8.53 1.141 8.53 1.141 
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Table 3.4: Means and Std of Posterior Probabilities of including each regressor, using the best modified prior 5
1

n
 

 

N 50 100 1000 10000 100000 

Prior Mean Std Mean Std Mean Std Mean Std Mean Std 

*1 0.59 0.41 0.969 0.109 1.000 0.000 1.000 0.000 1.000 0.000 

2 0.00 0.41 0.000 0.109 0.000 0.000 0.000 0.000 0.000 0.000 

3 0.00 0.41 0.000 0.109 0.000 0.000 0.000 0.000 0.000 0.000 

4 0.01 0.41 0.011 0.109 0.003 0.000 0.003 0.000 0.000 0.000 

*5 0.00 0.41 0.018 0.109 0.997 0.000 1.000 0.000 1.000 0.000 

6 0.00 0.41 0.000 0.109 0.000 0.000 0.000 0.000 0.000 0.000 

*7 0.17 0.41 0.614 0.109 1.000 0.000 1.000 0.000 1.000 0.000 

8 0.00 0.41 0.000 0.109 0.000 0.000 0.000 0.000 0.000 0.000 

9 0.00 0.41 0.000 0.109 0.000 0.000 0.000 0.000 0.000 0.000 

10 0.00 0.41 0.000 0.109 0.000 0.000 0.000 0.000 0.000 0.000 

*11 0.39 0.41 0.865 0.109 1.000 0.000 1.000 0.000 1.000 0.000 

12 0.03 0.41 0.009 0.109 0.000 0.000 0.000 0.000 0.000 0.000 

*13 0.11 0.41 0.062 0.109 0.992 0.000 1.000 0.000 1.000 0.000 

14 0.02 0.41 0.008 0.109 0.000 0.000 0.000 0.000 0.000 0.000 

15 0.02 0.41 0.019 0.109 0.000 0.000 0.000 0.000 0.000 0.000 

           Table 3.5: Means and Stds of the Posterior Probability of True Model 2 using the modified prior 

n 50 100 1000 10000 100000 

Prior Mean Std Mean Std Mean Std Mean Std Mean Std 

3
1

n
  

0.8929 0.0941 0.9564 0.0523 0.9993 0.0021 0.999 0.000 1.000 0.000 

4
1

n
 

0.9819 0.0285 0.9941 0.0237 0.9999 0.0000 1.0000 0.000 1.000 0.000 

5
1

n
 

0.9980 0.0048 0.9995 0.0028 1.0000 0.0000 1.0000 0.000 1.000 0.000 
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Table 3.7 depicts the means and standard deviations of the number of visited models sing the null model. The 

modified g- prior shows that the number of models visited decreases as sample size increases. The prior performs 

best when r = 5. 

3.2. Predictive Inference 

In statistical inference, predictive inference is the prediction of future observations based on past observations. For 

this study, we conditioned our predictions on the values of the regressors by choosing 19 different vectors for the S 

= 15 regressors and focus especially on the vectors that lead to the minimum for the model 1. Table 3.8 below 

presents the median of the Log Predictive Score, computed across 100 samples for different sample sizes. The LPS 

is only a Monte Carlo approximation based on 100 draws, therefore, the lower bound is not always strictly adhered 

to. The modified prior performs best at n =1000, while as the sample size increases the prior is already over 

predicting at all levels.  

Table 3.6 Quartiles of ratio of Posterior Model (2) Probability; True model vs Next best Model using the modified 

prior 

n 50 100 1000 10000 100000 

Prior Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 Q1 Q2 Q3 

3
1

n
  

3.2 6.8 15.1 9.3 15.6 29 19.1 84.3 289 29.1 104.3 3602 191 843 26358 

4
1

n
 

3.5 7.2 16.5 9.3 15.9 33 19.1 84.3 302 29.1 114.3 3675 191 845 28402 

5
1

n
 

4.0 8.1 18 9.7 17.3 38 19.1 84.3 321 29.1 124.3 3876 197 847 29973 

                     Table 3.7: Means and Stds of Model 2 visited using the modified priors 

N 50 100 1000 10000 100000 

Prior Mean Std Mean Std Mean Std Mean Std Mean Std 

3
1

n
  

1077.69 950.804 438.58 493.241 25.81 24.510 13 1.907 12.67 1.441 

4
1

n
 

190.51 260.135 78.73 214.628 12.95 1.708 12.72 1.583 12.65 1.441 

5
1

n
 

39.39 46.36 19.64 24.684 12.59 1.436 12.7 1.541 12.65 1.441 
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Table 3.8: Conditional Medians of LPS point prediction 

using the modified priors 

n 50 100 1000 10000 100000 

Prior X*
min X*

min X*
min X*

min X*
min 

3
1

n
 

2.357 2.401 2.249 2.395 2.402 

4
1

n
 

2.357 2.401 2.388 2.396 2.402 

5
1

n
 

2.357 2.401 2.388 2.401 2.402 

 

To compare the differences between the predicted density and the sampling density of Model 1, we plot both 

densities for different sample sizes as shown in Figure 3.1. The figures shows the comparison for different values 

of n and the predictives for 25 of the 100 generated samples. The dark line corresponds to the actual sampling 

density while the green lines represent the predictive densities. It is observed from the figures that as the sample 

size increases, the predictive densities merge closer together in the direction of the actual sampling density. 

 

 
Figure 3.1: The modified g prior when n = 100000 

 

Comparing the overall predictive performance from the Log Predictive Score for the 19 different values of the 

regressors and the 100 samples of replications. This is displayed in the Table 3.9 below, where the medians are 

recorded for the modified prior and different sample sizes. At n = 50, the modified prior predicts well at r = 5 

because it is close to the threshold of 2.335. 
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Table 3.9: Medians of LPS overall prediction using the 

modified priors 

N 50 100 1000 10000  100000 

Prior X*
min X*

min X*
min X*

min X*
min 

3
1

n
 

2.301 2.401 2.249 2.395 2.402 

4
1

n
 

2.313 2.402 2.295 2.397 2.402 

5
1

n
 

2.326 2.426 2.331 2.402 2.402 

 

4. Application of BMA with the Best Modified Prior to CO2 Emissions in Nigeria. 

One of the main greenhouse gases in the atmosphere is CO2. It is emitted to the atmosphere through many ways, 

but the larger emissions of the gas in the atmosphere leads to higher concentration in the atmosphere thereby 

altering the global carbon cycle and causing global warming of the earth planet. Emissions from a number of 

growing economies have been increasing rapidly over the last few decades. Fast-forwarding to annual emissions in 

2014, we can see that a number of low to middle income nations are now within the top global emitters. In Nigeria, 

CO2 gas is emitted from a lot of sources. To this end, BMA approach is applied to CO2 emissions to account for the 

uncertainties embedded in both the parameters and the model itself. The data used are yearly which spans through 

1975 to 2015 (41 years) and were sourced from World Bank website and EDGAR database reported by UN. The 

study variable is Annual CO2 emissions while the predictors are the sectorial emissions groupings which are 

International Bunkers (INTBK), Waste (WST), Resident and Commercial (RESCOM), Industry (INDST), 

Transport (TRPT), Agriculture (AGR), Forestry (FRST), Land Use (LDUS), Energy (EGY), Fossil Fuel 

(FOSFUEL), Gaseous Fuel Consumption (GFC), Liquid Fuel Consumption (LFC), Solid Fuel Consumption (SFC) 

and Other Sources (OTS). The MC3 sampler uses 50,000 draws after the burn-ins of 20,000 with uniform 

distribution as the prior model and the modified g-prior g = 5
1

n
 for parameters. Therefore, the CO2 emission 

model is given as: 

2 0 1 2 3 4 5 6CO emissions INTBK WST RESCOM INDST TRPT AGR      = + + + + + +   

 7 8 9 10 11 12 13 14FRST LDUS EGY FOSFUEL GFC LFC SFC OTS        + + + + + + + + +   

Where,   is a stochastic error term, independent and identically distributed as
2(0, )N  . 

Table 4.1 represents the means and standard deviations of the Posterior Inclusion Probabilities (PIP) of each 

regressors in the CO2 emission model. Post Mean displays the coefficients averaged over all models, including the 

models wherein the variable was not contained (implying that the coefficient is zero in this case). The covariate 

Industrial Emissions with PIP of 99% has a comparatively large coefficient band seems to be the most important. 

Other covariates Residential and Commercial Emissions with PIP of 78.7% and Agricultural Emissions with PIP 

of 75.06% are also important variables in modelling Nigeria CO2 emissions. This shows that for any CO2 emission 
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model selection, Industrial, Residential & Commercial and Agricultural sector plays a crucial role. The posterior 

mean of the important variables are negative which conforms to the theory. The negative sign is clearly explained 

by the conditional posterior sign in the 5th column of Table 4.1. In Table 4.1, all other PIPs are less than 50% and 

also, the posterior standard deviations are all greater than the posterior means. 

Table 4.1: Posterior Probabilities of including the Regressors in the CO2 emission model 

 

Regressors PIP Post Mean Post SD Cond.Pos.Sign Index 

INDST 0.999 -0.59 0.102 0.000 4 

RESCOM 0.787 -0.25 0.143 0.000 3 

AGR 0.751 -0.27 0.162 0.000 6 

LDUS 0.171 0.06 0.142 1.000 8 

SFC 0.111 -0.03 0.078 0.000 14 

GFC 0.014 -0.00 0.025 0.021 12 

FRST 0.012 -0.00 0.024 0.000 7 

FOSFUEL 0.011 -0.00 0.017 0.000 10 

LFC 0.011 -0.00 0.017 0.000 13 

INTBK 0.006 0.00 0.011 1.000 1 

TRPT 0.005 -0.00 0.009 0.000 5 

OTS 0.004 -0.00 0.006 0.000 11 

EGY 0.004 0.00 0.006 0.136 9 

WST 0.004 0.00 0.009 0.458 2 

 

It is seen that the number of explanatory variables is 14 and observations of interest is 41 years. The number of 

model space is 16384 and the number of models visited is 12672 which indicates 76% of the models was visited. 

The best modified g-prior 
5

1

n
 used for the application to CO2 emissions in Nigeria established that the shrinkage 

factor close 1 which denotes over fitting. Table 4.2 shows the posterior probabilities of the best five models among 

the 2672 models visited for both the MCMC (MC3) and the exact samplers. This table indicates that the best model 

with probability of 53% represents CO2 emissions in Nigeria which includes the Industry, Resident & Commercial 

and Agriculture as the predictor for the model. The table indicates that the true CO2 emission model (0d00) is 

always favored compared to any other model. 

 

Table 4.2: Best 5 models of 12672 models visited 

 PMP (Exact) PMP (MCMC) Predictors 

0d00 0.53179 0.55026 RESCOM, INDST and AGR 

0d01 0.10311 0.10508 RESCOM, INDST and AGR 

0440 0.08914 0.08104 INDST and LDUS 

0500 0.06664 0.06240 INDUST and AGR 

0c40 0.06096 0.06170 RESCOM, INDST and LDUS 

 

Figure 4.1 is a visualization of the mixture marginal posterior density for the important regression coefficients. 

(Industry, Residential & Commercial, Agriculture and Land Use Sector). The dotted vertical lines in red shows the 

corresponding standard deviation bounds from the MCMC approach, the red and green vertical line shows the 
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conditional expected value and median respectively. It is observed from the plots that the values of the conditional 

expected value and the median are close to each other. The density in each of the graphs describes the posterior 

distribution of the regression coefficient given that the corresponding variable is included in the regression. 

 

Figure 4.1: Posterior Density of Important Coefficients 

 

Figure 4.2 shows the cumulative model inclusion probabilities based on the best 50 models. It also depicts the 

inclusion of a regressor with its sign in the model selection process. The red color corresponds to a negative 

coefficient, the blue color corresponds to a positive coefficient and the white to a non-inclusion of the respective 

variable. The horizontal axis is scaled by the models' posterior model probabilities. 

 

 

           Figure 4.2: Cumulative Model Probabilities. 

 

5. Conclusion 

For this study, a g-parameter prior was elicited which is partly non informative in structure related to a Normal 

conjugate g-prior. The asymptotic properties (parameter prior distribution, marginal likelihood of the model, Bayes 

factor, posterior parameter distribution, posterior model probability, predictive distribution, relationship to an 

information criterion) for the modified prior was derived. The empirical results on both the posterior model and 
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predictive inferences seem to indicate that the modified prior 1
rn

 is a sensible choice parameter prior in the 

BMA technique. The modified g-priors 1( , 3,4,5)rjg r
n

= =  performed better in model selection whenever 

informative prior is unavailable compared with the priors of FLS (2001a) and Olubusoye and Akanbi (2015). 

Applying the best modified prior 5
1

n
 to CO2 emissions in Nigeria shows the sectors that contribute more to CO2 

emissions in Nigeria. The research established that the larger the r of the g-parameter prior, the more the posterior 

probability values and the better the performance of the model.  

• Industrial Sector emissions with a PIP of 99.98% is important in modelling CO2 emissions in 

Nigeria. 

• Resident and Commercial Sector emissions with a PIP of 78.73 % is important in modeling CO2 

emissions in Nigeria.  

• Agricultural Sector emissions with a PIP of 75.06 % is important in modelling CO2 emissions in 

Nigeria. 

As important as CO2 is, in sustaining a habitable temperature, continuous increase in the emissions can disrupt the 

global cycle and thereby lead to a planetary warming impact. Since CO2 emissions is rapidly increasing in Nigeria, 

and through this study we have been able to discover that the Industry, Agriculture, Resident and Commercial 

sector plays the most important role in the emission to the environment, there is need for the concerned authorities 

to restructure these sectors and provide necessary adjustment to reduce carbon emission being released to the 

environment or to provide ways by which the carbon emitted will be properly sequestered. 
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