Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) !'J-.i.l
Vol.9, No.11, 2019 IIS'E

Action of Direct Products of Four Alternating
Groups on Cartesian Product of Four Sets

Stephen Kadedesya,'** Jane Rimberia,” Lewis Nyaga
'Pan African University, Institute for Basic Sciences, Technology and Innovation,
Nairobi, Kenya,
*Busitema University, Tororo, Uganda
% Kenyatta University, Nairobi, Kenya
4 Jommo Kenyatta University of Agriculture and Technology, Nairobi, Kenya

* E-mail of the corresponding author: stephenkadedesya@aims.ac.za

Abstract

In this paper, transitivity, primitivity, ranks and subdegrees associated with the action of
direct product of four Alternating groups A, where n is a positive integer atleast 2 on
the Cartesian product of four sets are investigated. It is shown that for n = 2, the action
15 both transitive and imprimitive. It is further shown that the rank associated with this
action is a constant of 16 and the subdegrees are 1, n — 1, (n —1)%, (n — 1), (n — 1)%.
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1. Introduction

The action Alternating groups on seis on sets has been explored by various authors
including Nyaga (2018b,a); Gachimu et al. (2015). The results have been helpful
in giving valuable information to graph theorists with applications such as; in daily
life (e.g. to optimize the distance between two places, model social networks), in
communication networks (such as modeling call graphs), in information networks
{e.z. to model web graphs) in Chemistry (to define the natural model for molecules),
in Physics (staustics on graph-theoretical properties on topology of atoms enhance
quantitative study of three-dimensional structure of complicated simulated atoms in
condensed matter physics) and in Computational biochemistry (in resolution of conflicts
between cell samples). Unfortunately, a study investigating the action of the direct


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) !ﬂi.l
Vol.9, No.11, 2019 IIS'E

product of four Alternating groups on the Cartesian product of four sets has to the best
of our knowledge not been investigated and there fore this presents a research gap.

Definition 1.1. [Product Action](Cameron et al., 2008, p.3) Let (G, Xy ) and (G2, X2)
be permutation groups. The direct product &, x (7 acts on the the Cartesian product
..li:]_ X .‘:3 b}" the rule

(91, 92)(T1, T2) = (1T1, g2x2) Vin € G192 € Gzand 1, € Xy, 72 € X2,

Remark 1.1. Through out this paper, the group action defined is in a similar way as in
Definition 1.1 as

Eg]:gﬂi"- ;9'.1}(.1‘]_,1':_,"' .'I"’:I = |:_|I_§'11"1ig'11‘§_,"' :Hird]'ﬂ'lﬂ“l;gh“' ;04 € Gﬂ.'l'l.dl‘f € X

where & = A, x A, x ... x Aqgand, X; = {1,2,--- . n}, Xo = {n+1n+
2.2}  Xy={nln—1)+1,nn—-1)+2--- 0}

1.1 Definitions and Preliminary results

Definition 1.2. Let 7 act on X. The orbit of = € X, denoted Orbg(r) is defined as the
el
Orbgz(z) = {gr : g € G}.

Definition 1.3, Let 7 act on X, and let # & X. The Stabilizer of = in (&, denoted -
(sometimes Stabg(x)) is set all elements in & that fix =. Thus

G:={geG:gr=r1}

Definitlon 1.4. The action of a group & on the set X is said to be transitive if for each
pair of points =,y £ X, there exists g € & such that gr = v; in other words, if the
action has only one orbit

Definition 1.5, Suppose that (7 acts ransitively on X'. For each subset Y of X and each
ge G letgy ={gy:ye Y} T X. Asubset Y of X is said to be a block for the
action if foreach g € &, either gY = Y or gY N'Y = §; In particular, , X, and all
l-element subsets of X are obviously blocks, called the trivial blocks. If these are the
only blocks, then we say that & acts primitively on X'. Otherwise, & acts imprimitively.

Definition 1.6. Suppose ' is a group acting transitively on a set X and let ;. be
the stabilizer in G of a point ¥ € X . The orbits Ay = {z}, Ay, Aa, - -- Dy
of (¢ on X are known as suborbits of (7. The rank of & in this case is k. The
sizes iy = |8 (i = 0,1,2,--- k& — 1) are known as the subdegrees of <. It
was proved by Ivanov et al. (1983) that the rank and subdegrees of the suborbits
S (i=0,1,2,--- ,k — 1) are independent of the choices of r € X.
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Definition 1.7. Let &+ act on the set X. The set of all elements of X fixed by g € (15
called the fixed point set of g, denoted by Fix(g). Thus

Fir(g)={re X : gr =z}.
The character 7 of permutation representation of & on X is defined as
m(g) = |Fizr(g)], Vg € G.

Definition 1.8. Let £ be an orbit of &, on X. Define &°* = {gr: g € G, r € g},
then A* is also an orbit of (71 and is called the & -orbit paired with A, Wielandt (1964)

proved that if A° = A then A is called a self-paired orbit of &1

Theorem 1.1. [Orbit-Stabilizer Theorem]Rose (1978) Let & be a group acting on a
finite set X and = € X. Then |Orbg(z)| = |G : Stabg(z)|.

Lemma 1.1. [Cauchy-Frobenius Lemma]Harary (1969) Let (& be a finite group acting
on a set X. The number of orbits of 7 is given by %I > gec |Fiz(g)l.

2, Main Resulis

Lemma 2.1. The action of Ay x Ay x Az % Az on X x X x X3 x Xy is not rransitive
where X; = {1,2}, Xz = {3,4}, X5 = {5,6}, and X; = {7,8}.

Proof Let G = A x A x Ay x A It suffices to show that |Orbg(1,3,5,7)| #
| Xy % Xg x Xz x Xy|. Let K = X; x Xox Xy x X,

Then

K ={(1,3,57),(1,358),(1,3,6,7),(1,3,6,8), (1,4,5,7), (1,4,5,8), (1,4,6,7),
(1,4,6,8),(2,3,5,7),(2,3,5,8),(2,3,6 )[2355)[21 7),(2,4,5,8),(2,4,6,7),

4 a2 a7 :l a7 :l a2 4= = a7 :l 4 = :l

(2,4,6,8)}. Also, since Az = {()}. then G = {()}. By Definition 1.3, G(1357, = {()}-
Using Theorem 1.1, |Orbg(1,3,5,7)| = 1 = 1 # | x Xz % X3 x X4|.
Moreover

Orbg(1,3,5,7) = {(1,3,5,7)}. Thus, the action is intransitive. O

17 J

Lemma 2.2. The action of Az x Az = Ag x Az on X; ® X x X3 x Xy Is ransitive
where X; = {1,2,3}, Xz = {4,5,6}, X5= {7,809}, and X; = {10,11,12}.

Proof Let(G = Az x Agx Agx Agand K = X x X3 x X3= X;. By using the Groups,
Algorithms Programming (GAP) software, G = ({(123),(456),(789), (10 11 12)}}
with |7| = 81 ({7 is shown in the Appendix). Also by Definition 1.3, G 4710y = {()}
=0 that |G[1I4:?:1D]| = 1. B}" Theorem I.I, |Drb.5-[l.-'-1.'|’l J.':]jl = % = Bl = Ed =
|.:{] KX;KISK.X,:.

O
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Lemma 2.3, The action of Ay = Ay x Ay x Agon X1 x Xax Xqx X415 ransiiive where
X, =1{1,2,3,4}, Xo=1{5,6,7,8}, X3 ={0,10,11,12}, and X; = {13, 14, 15, 16}.

Proof LetG = Ay x Ay x Ay x Ajand K = X; ®x X3 x A3 x X;. Then by using
GAP software, & is a permutation group with 8 generators and |G| = 20736. Also,
G{'I.,E,B,]B:- = {{l:l-4 16 15-]1 I{].D 12 1“'. [E B T]l,l:? 4 3-]}} with |G[]:5:g113]| = §1. UEiI’Ig
Theorem 1.1,|Orbg(1,5,9,13)] = ZE — 256 — 4° = | X} x X3 % X3 % X;. Thus,
the action has one orbit and hence transitive. O

Lemma 2.4, The action of Az = Az x As x As on Xy x Xg » X3 = Xy iy ransitive
where X; = {1,2,3,4,5}, X; = {6,7,8,0,10}, X3 = {11,12,13,14,15}, X, =
{16,17, 18,19, 20}, and X5 = {21,22, 23, 24, 25},

Proof Let G = Az » As % A x Asand M = X, x X3 » X3 = X;. Then by using
GAP software, (7 is a permutation group with 8 generators and |G| = 207360000, Also,
((1,6,11,18) 15 a permutation group with 8 generators and |71 611,16 = 20736. Using
Theorem 1.1,|Orbg(1, 6,11, 16)| = S = 625 = 5% = | X x X3 % X3 x Xy Thus,
the action is transitive since it has one orbit 0

Theorem 2.1. Letn = 2 The acrion of A, x A, x Ay = Ay on Xy x X = X3 x Xy
is rransitive where X; = {1,2,--- n}, Xo = {n+1n+ 2 .- In} Xy =
f2n+1,2n+2,--- ,3n},--- ,and X3 = {3n+ 1,3n + 2,--- ,dn}

Proof Let G = A, = A, x A, x A,. We show that for n > 2, the cardinality of
Orbzil,n + 1,2n + 1,3n + 1) is equal to the cardinality of X1 x X2 x X3 = Xa.
Now, by Definition 1.3, gy, g2, 93, g4 € G fixes £, T, Tq, Tg € Xy x X x Xgx X —4
if and only if (g, g2, g3, u)(x1, T2, T3, 74) = (71, T2, T3, 74). By Definition 1.1, we
have g7y = 71,9272 = T2,43T3 = T3 and g4y = 4. Hence ry, 72, r3, 74 comes
from a l-cycle of g(i = 1,2,3,4). Therefore, G(1 ni12n+13n+1) 18 isomorphic to

1717

.rtn_] x> .-d-n_] X .d-n_]_ 4 A:l't—'l.* T]'I.'LIE, |G[1,n+1,h—]],h—]| - [';ﬂ;zlujd'. B]r' Theorem 1.1,
ynlyd

|Orbg(1,n+1,2n+1, 3n+1)| = c (37)
Hence the action is transitive. -

_ — md
T = mXRXnXR =0t = | X % Xax Xgx Xyl

Lemma 2.5, A; x Az x Az ® As acis on Xy x Xa x X3 x Xy is neither primifive nor
mprimiive.

Proof From Theorem 2.1, this action is intransitive. Thus, we can not have either
primitivity nor imprimitivity. O

Lemma 2.6. Acrion of of Az = Az % Az x Agon X x X3 x X3 = Xy is imprimitive.

10
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Proof LetG = Agx A3 x Az x Az and K = X x X5 x X3 = X;. From Theorem 2.2,
this action is transitive. Let ¥ to be any non-trivial subset of K such that |Y| divides
|K| by 222223 e |Y| = 3. Foreach element of Y, there exists g = (z,y, 2,w) € G
with 3-cycles permutations such that g © & moves an element of ¥ to another element
not in Y. Hence g MY = @ implying that ¥ is a non-trivial block of the action. By
Definition 1.5, the result follows. O

Lemma 2.7. Action of of Ay = Ag = Ay x Agon X7 x X3 x Xy = Xy is imprimitive.

Proof LetG = Ay x Ay x Ay x Ay and K = X x X5 x X3 = X;. From Theorem 2.3,
this action is transitive. Let ¥ to be any non-trivial subset of K such that || divides | K|
by 222202 je., |[¥| = 4. For each element of Y, there exists g = (z,y, 2, w) € G with
3, 4-cycles permutations such that g € & moves an element of ¥ to another element
not in Y. Hence g MY = @ implying that ¥ is a non-trivial block of the action. By
Definition 1.5, the result follows. -

Lemma 8. Action of af As = As x As x As on X7 x X3 x Xy = Xy is imprimitive.

Proof Let G = Az x Ag x Az x Az and K = X; x X5 x X3 = X;. From Theorem 2.4,
this action is transitive. Let ¥ to be any non-trivial subset of K such that |Y| divides
| K| by 2222323 je |¥| = 5. For each element of Y, there exists g = (r,y, z,w) € G
with 3, 4, 5-cycles permutations such that g € & moves an element of ¥ to another
element not in ¥. Hence g¥ MY = 0 implying that ¥ is a non-trivial block of the
action. By Definition 1.5, imprimitively of As = As x Ag x A on X % Xo % X3 x Xy
follows. O

Theorem 2.2 Forn > 2 A, = A, x Ay x Ay acts imprimitively on X % Xa = Xz = Xy

Proof LetG = Ay x Ay x Ay x Ay and K = X % X5 x X3 = Xy. From Theorem 2.1,
this action is transitive. Let ¥ to be any non-trivial subset of K such that |} divides
| K| by B2B2820 j e |[V| = n. Foreach element of Y, there exists g = (z,y,2,w) € G
with 3, - - - , n-cycles permutations such that § € & moves an element of ¥ to another
element notin Y. Hence g¥' MY = @ implying that ¥ is a non-irivial block of the action.
By Definition 1.5, imprimitively of A, = A, x A, = Ay on X = X5 =2 X3 = Xyx
follows. O

Lemma 2.9. Action of A3 x Az x Ag x Azon X; x X x X3 x X, has a rank afﬂd_
Proof LetG = Az x Az x Ay x Azand K = X; x X3 x X3 x Xy. By Theorem 77,

this action is transitive and ', = {{()}}. Thus, the permutations in (73 4 7,10y are of the
form () since (31 47,10y 18 identity permutation. Therefore, the number of elements of

11
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K fixed by each g £ Gy 47,10y 15 81 since identity element fixes all elements of a set.

Using Theorem 1.1, the number of orbits of &y 4 710, on K is

1
G

Let A = {1,4,7, 10}
The suborbits of of & are those which contain exactly 4, 3, 2, 1, and no element from A
and they are;

{a) Orbits containing exactly four Elements of A are;

‘jrﬁﬂ[,,.,?lm]ﬂ;" 7,107 = {(1,4,7,10)} = Aq
(b) Orbits containing exactly three Elema'nts of A ame;

Drﬁﬂ[:.d,?.iu]ﬂ 7,11) = {(1,4,7,11)} = A,
Drﬁg[jnmﬂl 7,12) = -[[1 :l 7,12)} = Aa.
Drﬁg[“”u][ 4 B 10) = -[[1,-!,'?’ 10)} = As.

[“Hu][l 4,9,10) = {(1,4,9,10)} = A
Drfu;[“”u]l:l 5,7,10) = {(1,5,7,10)} = As
DrﬁG[“HDJ[I 6,7,10) = {(1,6,7,10)} = A
GTE"G[“HD][E 4,7,10) = {(2,4,7,10)} = An
Drb,g[“Hu] (3,4,7,10) = {(3,4,7,10)} = As

(c)

Orbits containing exactly two elements of A are;

N |Fiz(g1, g2, 93, 3)| =

FU-52.0, 1 S5 14,5, 1)

::rrﬁG[“m](u 8,11) = {(1,4,8,11)} = Ag.

Ei

'*T'*T'fﬂﬂﬁ

x'.-:ua.uuummmmtthf:tf:thh
-1-1@11

5,12) = {(1,4,8,12)} = a..u.
11) = {[1,4,9 11)} =

7,12) = {(1,4,7,12)} .:_w..g
A1) = {(1,5,7,11)} = Ay,
,12) = {(1,5,7,12)} = A,

,10) = {(1,5,8,10)} = A,

,10) = {(1,5,9,10)} = A,

A1) = {(1,6,7,11)} = Ay
12) = {(1,6,7,12)} = Ays
,10) = {(1,6,8,10)} = Ajq.
,10) = {(1,6,9,10)} = Ay,
A1) = {(2,4,7,11)} = Ag.
12) = {(2,4,7,12)} = An.
,10) = {(2,4,8,10)} = A
,10) = {(2,4,9,10)} = Aa,.
,10) = {(2,5,7,10)} = A

12
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10) = {(2,6,7,10)}
11) = {(3,4,7,11)}
12) = {(3,4,7,12)}
10) = {(3,4,8,10)}
10) = {(3,4,9,10)}
10) = {(3,5,7,10)}
10} = {(3,6,7,10)}

DDDE‘DDD

B

Bo R

B8

{d) Orbits containing exactly one element of A are;

Drbﬂ[:,m,iu] El

6
6

5

5,8,11) =
5,8,12) = {(1,5,8,12)} =
.5,0,11) = {(1,5,9,11]
,5,0,12) = {(1,5,9,12)
,6,8,11) = {(1,6,8,11)
.6,8,12) = {(1,6,8,12)
,6,0,11) = {(1,6,9,11)
.6,9,12) = {(1,6,9,12)
4,8, 11) = {(2,4,8,11)
(4,8,12) = {(2,4,8,12)
,4,0,11) = {(2,4,9,11)
,4,0,12) = {(2,4,9,12)
5,7,11) = {(2,5,7,11)
5,7,12) = {(2,5,7,12)
5,8,10) = {(2,5,8, 10)
5,0,10) = {(2,5,9, 10)
7, 11) = {(2,5,*,11]
,7,12) = {(2,6,7,12)
.6,8,10) = {(2, 6,8, 10)
,6,9,10) = {(2,6,9, 10)
4,8,11) = {(3,4,8,11)
,4,8,12) = {(3,4,8,12)
,4,0,11) = {(3,4,9,11)
,4,0,12) = {(3,4,9,12)
,7,11) = {(3,5,7,11)
5,7,12) = {(3,5,7,12)
5,8,10) = {(3,5,8, 10)
5,0,10) = {(3,5,9, 10)
6,7,11) = {(3,6,7,11)
6,7,12) = {(3,6,7,12)
6,8,10) = {(3,6,8, 10)

13
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Orbe,, 45 10 (36,9, 10) = {(3,6,9,10)} = Aga.

{e) Orbits containing no element of A are;
Orbay, 4510, (2:5,8,11) = {(2,5,8,11)} = Ass.
Grﬁ'ﬁ'[i,u:.r,m](z::" 8,12) = {(2,5,8,12)} = Ags.
2

Orbey 4 nan(2,5,9,11) = {(2,5,9,11)} = Aer.
Grﬁﬁ'[“*m] 2: EI ITJ 2,"':9,1'}]} = Hgs.
Orbay, s 10 (2:6,8,11) = {(2,6,8,11)} = Ags.
Orbay, 4 10 (2:6,8,12) = {(2,6,8,12)} = Am.

2,6,9,11)} = Aq.

(

(

(

(

(

(2,6,9,
(2,6,9,12)} = Am.
(3,5,8,11)} = A
(3,5,8,12)} = Aqy.
(3,5,9,11)} = Ags.
(
(
(
(
(

3,5,9,12)} = A

a J a

3,6,8,11)} = A,

3,6,8,12)} = A

LR R |

3,6,9

4=

3,6,9

a=r =

2

3:'
3

11} = Am.
12)} = Agg.

{
{
{
=1
=1
=1
=1
=1
=1
=1
=1
=1
=1

Thus, rank of Ay x Agx Az on Xp % X2 % Xais 3* and the subdegreesare 1,1,--- . 1. [0
o ——_ —

1 times
Lemma 210, The group Ay = Ay = Ay x Ag acis on X = Xz x X3 = Xy with a rank
of 24,

Proof LetG = Ayx Ay x Ay = Ayand K = X x X3 x X3 x X,. From Theorem 2.3,
this action is transitive and Gy 5,915, = ({(14 16 15), (1012 11), (6 8 7}, (2 4 3)}) with
G513 = 81

Also,(7 ) 5,013, is isomorphic to Ay % Ay x Az with Az = {(), (1 23),(1 3 2)} having
permutations of types (I) and (ahe) which are 1, and 2 respectively in number. Thus
the number of elements in X; x X3 x X, fixed by each g,, g2, 92 € G(1.59,13) are given
in Table 1

14
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Table 1: Permutations in (&} ¢ 5 15, and number of fixed points

Type of ordered quadraple permutations in &) ; 5,5 | Number of quadraple permutations in & 550 | 1FiE(a), 95, 95, 2]
ILLLI) 1 256
(1,1, 1, [abe]) 2 a4
(1,1, {abe), 1) 2 a4
(1, 1, {abe), {mbe)] | 18
{1, {abey, 1,1) 2 a4
(1, fabe), 1, (b)) i 18
(1, (b}, (o), 1) i 18
(1, (b}, (mbe), (eba)) 8 i
({abe), 1,1, 1) 2 64
(fabe), 1,1, (b)) | 18
[{abe), 1, (mhe), 1) | 18
({abe), 1, (mbe), (b)) ] 1
{{abe), (obe), 1,1) | 18
{{abe), (abe), 1, (b)) ] 1
{{abe), (obe), (mbe), 1) ] 1
{{abe), [abe), (ahbe), (abe)) 18 1

By applying Lemma 1.1, the number of orbits of &', 55 1) acting on K is;

R S Fiz(gy, - ,g4)] = —={(1 x 256) + (2 x 64) + (2 x 64)
Gsom| . 21

L, EG L B 9 13)
(4 x16)+ (2 x 64) + (4 % 16)
(4% 16) + (8 x 4) + (2 x 64)
Fidx16)+ (4= 16)+ (B x4)
+ (4 % 16) + (8 x 4) + (B x 4)
+ (16 x 1)}

1206
81

r;.-l.

Let A = {1,5,9,13}.
The orbits of (5} 5013 on K include the following:

{a) Orbits containing exactly four elements of A are;
Orbg, x5 (1,5,9,13) = {(1,5,9,13)} = Ay

{a) Orbits containing exactly three elements of A are;
Orbg, (1,5,9,14) = {(1,5,9,14),(1,5,9,15), (1, 5,9, 16)} = A,.
Orbg, (1,5,10,13) = {(1,5,10,13),(1,5,11,13), (1,5, 12 13}} = Aa.
Orbe, g9 (1:6,9,13) {(1,6,9,13),(1,7,9,13),(1,8,0,13)} = A,
Orbg, (2,5,9,13) = {(2,5,9,13),(3,5,9,13), (4,5,9,13)} = A,.

1,8.3,13) =

1,5.3,13)

1,5,9,13)

{a) Orbits containing exactly two elements of A are;
Orbg, (1,5, 10,14)

1,5.9,18)

15
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(b}

{(1,5,10,14), (1,5, 10,15), (1, 5,10, 16), (1,5, 12, 14),
(1,5,11,14), (1,5 1;2;113),[1, 5,12,15), (1,5, 11, 15), (1,
Orbg,, g, (1, 6,9, 14)

{(1,6,9,14), (1,6,9,15), (1,6,9,16), (1,7,9, 14), {
(1,7,9,16), (1,8,9,14), (1,8,9,15), (1,8,9,16)} =
Orbg,, , .15 (1,6,10,13)
{(1,6,10,13),(1,6,11,13),(1,6,12,13), (1,7, 10, 13),
(1,7,11,13),(1,7,12,13), (1,

Orba, g gg (2, 5,9, 14)

{(2,5,9,14),(2,5,9,15), (2, 5,9, 16), (3, 5,9, 14), {
(3,5,9,16), (4,5,9, 14), (4,5,9, 1), (4, 5, g 16) )} =
ﬂrbﬂ[mmiz 5,10,13)

{(2,5,10,13),(2,5,11,13),(2,5,12,13), (3,5, 10, 13),
{3;5;11,13 (3,5 12;3),[4, 5,10,13), (4,5, 11, 13), (4,
Orbg,, 5,0 (26,9, 13)

{(2,6,9,13),(2,7,9,13), (2,8,9,13),(3,6,9,13),(3,7,9, 13),
(3,8,9,13), (4,6,9,13), (4,7,9,13), (4,8,9,13)} = An.

=1

Orbits containing exactly one element of A are;
Orbg, y 513 (1,6,10,14)
{(1,6,10,14),(1,6,10,15), (1,6, 10, 16), (1,6, 11, 14)

(1,6,11,15), (1,6,11,15), (1,6,

(1,7,10,15), (1,7, 10, 16), (1,7,

(1,7,12,15), (1,7,12, 16), (1,8,

(1,8,11,15), (1,8, 11, 15), (1,

Drbg[”gﬂ (2, 5,10, 14)

{(2,5,10,14), (2,5, 10,15), (2, 5, 10, 16), (2,5, 11, 14),
{2;5;11,1.::],{2, 5,11,16), (2, 5,12, 14), (2,5, 12, 15), (2,
(3,5,10,15), (3,5, 10, 16), (3,5, 11, 14), (3,5, 11, 15), (3,
(3,5,12,15), (3, 5,12, 16), (4,5, 10, 14), (4,5, 10, 15), (4
(4,5,11,15), (4,5, 11, 16), (4,5, 12, 14), (4,5, 12, 15), (4,

DTE"G[:,H& 13) ': 6, 9, 14)
{[E,E,ﬂ, 14),(2,6,9,15)
'[E; ?; Q; lﬁjl [21 E'J ﬂ:l l ]1 llll
(3,7,9,14), (3,7,9, 15),
(4,6,9,15), (4,6,9,16),
'[4: E: Q': lﬁ ] - ﬂls"
Orbay, s 515 (2.6,10,13)

{(2,6,10,13), (2,6, 11,13), (2,6,12, 13)(2,7, 10, 13),

2

(

2,8,9,15), (2, 8,9, 16)
3,7,9,16), (3, 8,09, 14)
4,7,9,14), (4,7,9,15), (4,

a

k]

15),

15),

,5,10,16), (4,5
,16)} = ﬂ.l?.

2,6,9,16), (2,7,9,14),(2,7,9, 15),
(3,6,9,14), (3,6,9, 15), (3,6,9, 16),

1
11, 16), (3,
1
12

5,11, 16)} = As.
8,10,13), (1,8, 11,13), (1,8,12,13)} = Aq.

5,12, 13)} = Ag.

12, 14), (1,6, 12, 15), (1,6,12, 16), (1, 7, 10, 14),
11, 14), (1,7, 11, 15), (1,7, 11,15), (1, 7, 12, 14),
10, 14), (1,8, 10, 15), (1,8, 10, 16), (1, 8, 11, 14),
8,12, 14), (1, 8,12, 15), (1, 8,12, 16)} = Aqy.

5,10, 14),
5,12, 14),
5,11, 1

1),

.(3,8,9,15),(3,8,9,16), (4,6,9, 14),
7,9,16), (4,8,9,14), (4,8,9, 15)

2

(2,7,11,13), (2,7, 12, 13), (2, 8, 10,13), (2, 8, 11, 13), (2, 8, 12, 13), (3,6, 10, 13),

16
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(3,6,11,13), (3,6,12, 13)(3,7, 10, 13), (3,7, 11,13), (3,7, 12, 13), (3, 8, 10, 13),
(3,8,11,13), (3, 8,12, 13), (4,6, 10,13), (4,6, 11, 13), (4, 6,12, 13)(4, 7, 10, 13),
(4,7,11,13), (4,7,12,13), (4,8, 10,13), (4,8, 11, 13), (4,8,12,13)} = Ay,

2

{c) Orbits containing no element of A are;
Grba[:l.!,‘i,l!] (2: ﬁ': 10, 14]’ =
{(2,6,10,14),(2,6,10,15), (2,6, 10, 16), (2,6, 11, 14)

(2,6,11,14), (2,6, 11, 14), (2,6, 12, 14), (2,6, 12, 15), (2, 6,12, 15), (2, 7, 10, 14),
(2,7,10,15), (2,7,10,16), (2,7, 11, 14), (2,7, 11, 14), (2,7, 11, 14), (2, 7, 12, 14),
(2,7.12,15), (2,7,12, 15), (2,8, 10, 14), (2,8, 10, 15), (2, 8, 10, 15), (2, &, 11, 14),
(2,8,11,14), (2,8,1 4},[2,5,12, 14), (2, 8,12, 15), (2, 8,12, 15), (3, 6, 10, 14),
(3,6,10,15), (3,6,10, 16), (3,6, 11, 14), (3.6, 11, 14), (3,6, 11, 14), (3, 6, 12, 14),
(36,12, 15), (3,6,12, 15), (3,7, 10, 14), (3,7, 10, 15), (2, 7, 10, 16), (3,7, 11, 14),
(3,7,11,14), (3, 7,11, 14), (3,7, 12, 14), (3, 7,12, 15), (3,7, 12, 15), (3, &, 10, 14),
(3,8,10,15), (3,8, 10, 16), (3,8, 11,14), (3.8, 11, 14), (3,8, 11, 14), (3, 8, 12, 14),
(3,8,12,15), (3,8,12, 15), (4,6, 10, 14), (4,6, 10, 15), (4,6, 10, 15), (4, 6, 11, 14),
(4,6,11,14), (4,6,11, 14), (4,6, 12, 14), (4,6, 12, 15), (4,6,12, 15), (4, 7, 10, 14),
(4,7,10,15), (4,7, 10, 16), (4,7, 11, 14), (4,7, 11, 14), (4,7, 11, 14), (4, 7, 12, 14),
(4,7.12,15), (4, 7,12, 15), (4,8, 10, 14), (4,8, 10, 15), (4,8, 10, 15), (4, §, 11, 14),
(4,8,11,14), (4,8, 11, 14), (4,8, 12, 14), (4, 8,12, 15), (4,8,12,15)} = As.

Therefore the rank of A x Ay x Ay x Ay on Xy x Xg % Xg % Xy is 2* and the subdegrees
are 1,3,3---.3,9,..- 9,27 ... 27 8L O
""—.U,—l'\—qh,_l'

4 faciors B faciors 4 factors

Lemma 2.11. Rank of A5 x As x As x Asactingon X; x X3 % X3 x X, is 24,

Proof Let G = Ag x Az x A5 x As and K = X; x X3 x X3 x X;. By Theorem 2.4,
the action of & on K is transitive with || = 12060000 and |5 g 11 16)| = 20736,

We notice that (51 g 11) i1s isomorphic to Ay x Ay x Ay with

A, —
{(),(12){34),(14)(23),(13)(24),(123),(132),(124),(142),(134),(143)
.(234),(2 4 3)} having permutations of types (), (ab)(ab), and (abc) which are 1, 3,
and & respectively in number. Thus the number of elements in X7 = Xz » X3 fixed by
each g1, g2, 93, g1 € G181y are given in Tables 2, 3, and 4.
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Table 2: Permutations in (% 4 13 15 @nd number of fixed points

Type of orden: d quadraple permutations in &, -

MNumber of quadraple permustations in () ¢ g0

Fix(gy,--

.M

(LLDL1) ] 625
(L1 L, (ab){ab)) 3 125
(L, 1,1, [abe)) 8 25
(1, 1, (ab)dab), 1} 3 125
(1,1, {ab)iab), |ch) i i 25
1, (1, {abjiab), [ebe)) p | 5l
(1,1, {abe), 1) B 25
(L, 1 faabe), [ cabibfab} ) | 5
(1,1, {abe), (mbe)) fd 10
(1 3 125
{1 i q 15
(1, (e b, 1, [ mbe) ) p | 5l
(1, fabf by, {abp{ad), 1) o 25
(1, (e b}, [ad), (ab)iah)) 0 5
(1, (e mb), b)) T2 10
(L, (b ab). M 5
(1, (b b}, {bec], feab}{ b)) T2 10
(1, faabif by, {eabaz), (abe}y 192 20
(L, (abe), 1. 1) B 5
(1, fabeh, 1, (mb}ab)) p | 5
(L il 10
(L 5

5 ), e md )

b
- — —
il Flaf], (o) 2
(1, faabe), [mbam), 1} 10
(1, faabel, [adaz), (b} b)) 20
(1, faab), [mhaz), (B} ) |
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Tahb

e 3 Permutations in & g 1, 15 and number of fixed points

Type of ordensd quadragle permattions in £ 2 114

MNumber of quadrapls permustations in 7, ¢ 150

Fiz{g, -

175

{fabifehy, 1,1, 1}

(feab)ieh), 1, 1, [ eb)p(ak)) g 25
{fabiieb), 1,1, (e | 5l
{eabi =h), 1, (mk) g 25
{fabijeh). 1, | ab)iab)) 7 5
[l ab), (1, k) aba)) 2 10
{feab)i mbh, 1, (mhe), 1) | 5

{{abi{ah), 1, {mbe), (abliiah)) T2 10
(bl mbh, 1, (mhe], (abe)) 192 20
{{ab){eb), (ob)al), 1, 1) g 25
{{eab) b, &), 1, (ab){ab)) I 5
(b mh) B, 1, (abe)) T2 1

(b mh), (), {eab){mhy, 1) w 5
(Wb ah), [akab), (ab)(=h), (ak)ak)) A1 1
{fab)i{mb), 5], (ab){@h), [af 216 2
b mh}, 1), (abe) 1) T2 10
[ {ab) (b} B, (abe), [af){ab) 216 2
{feab)f h )., (abe), (abel) S5T6 |
(eab)i =b), [ade), 1, 1) ] 5l
{{abifeb), (abe), 1, (abiieh)) T2 10
{feabyi b, (mha), 1, (abal) 192 20
[eabi b, (e (cbli k), 1) 72 10
{eab i b, (=], [ @bl mb) 216 2
{eab)i b, [adse), (@b} ah), [ob 576 ]
{faab i mh), (ad], (@he), 1) 192 a0
(eab) =b), (adse), (mhe), (ab){ab)) 576 2
[ faab i by, [obe), (mhe), (abe)) 1536 3

19
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Table 4: Permutations in (7, 4 ;1 15, and number of fixed points

Type of ordensd quadrple permatations in {7 2 1, 15 | Member of quadraple permustations in O ¢ 0 | [ Fizlay, - 95
{{ambea}, 1,1,1) " 250
{{ahe}, 1,1, (mb){ad) M Al
{{ehe), 1,1, (mbe]) 4 100
{{ehe}, 1, |r'-_| 1 M Al
{{ehe}, 1, [ad), {ab){ah)] T2 10
{{eabel, (1, (h){ak), (abe)) 192 20
{{ehe}, 1, (ade), 1) 4 100
{{eahe}, 1, [abe), (b ab) 192 20
{{ehe}, 1, (abe), (b 512 40
{{eahe), (ab){ak), 1,1} p| 500
{{eahe), [ab){ak), 1, {ab){ab)] T2 10
{{eabe), [ab]{ak), 1, {abo)) 192 20
{{eabe), (b {abk), (=b)ab), 1] 10
{{abe), [of]{ab], (ab){ak), (of){ab)} 7]
[ e | afy |'-Jr| b im), [ : |
|_'-'.|l.=':.:|r|'-1r| [mhe), 1) 20
[ e | afy |'-Jr 1, Lmhal, '-'Jr'-_l abl) |
{{abe), [ob]{ab], (aba), (abe)) ]
{{abe), (abe), 1,1) 100
{{abe), (o), 1, (e '.- ik} 20
{{abe), (abe), 1, (abe) i
{{abe), [abe), (ab)ak) 20
{{abe), [abe), (ab)ak) Jr'-_l {ab] |
{{abe), (afe), (ab)(ak), (abe)) ]
{{abe), (abe), |-'.,'.|' 1,10 i
{{abe), [(abe), (abe), (ab){ab)) 3
{{abe), [afe), (abe], (abe)) 18

Applying
acting on K as;

Lemma 1.1 on Tables 2, 3, and 4, gives the number of orbits of & 5

11,18)

¥

3, .
1,6,11,18) gu E Ty A 11 1

Let A = {1,6,11, 16}.

The suborbits of & are those with exactly 4,3, 2

|f-15'_'|'l:_|":,l'| e

331776

841 Homag

.1 and no element of A and these

include;

{a) Orbits containing exactly four elements of A are;
{(1,6,11,16)} = Ay,

{.}rn'}l-;:

1,8,11, 18] )

ib)
Orbg,,
(1,6,11,20)} = A,.
Orbg, &4y el L6,
(1,6,15,16)} = A,
Orbg,, (1,7,11,16)

(B.11,18) b

(1,6,11,16)

esaaa(1,6,11,17)

12, 16)

{(1,6,12,16), (1,

{(1,7,11,

Orbits containing exactly three elements of A ame;
f(1,6,11,17),(1,6,11,

18],
6,13, 16). (1,6,

16),(1,8, 11,

20

(16,11,

16),(1,9,11,

19),

14, 16},

16},
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(c)

(d)

(1,10,11,16)} = As.
Orbg,, o 11 10 (2.6, 11,16) = {(2,6,11,16), (3,6, 11,16), (4,6, 11, 16),
(5,6,11,16)} = Ay

Orbits containing exactly two elements of A are;

Orbg, ¢ 11111 6,12, 17) =
{(1,6,12,17),(1,6,12,18),(1,6,12,19), (1,6, 12, 20),

(1,6,13, l'ﬂ (1,6, 13 18),(1,6,13,19), (1,6, 13,20), (1,6, 14, 17), (1, 6, 14, 18),
(1,6,14,19), (1,6, 14, 20), (1,6, 15,17), (1,6, 15, 18), (1,6, 15, 19), (1, 6, 15, 20} }

= .&5.

Grbc,-[,““a{l 7. 11,17} =
{(1,7,11,17),(1,7,11,18),(1,7,11,19), (1,7, 11, 20,

(1,8, 11,1? (1,811, 18), (1,8 11,19),(1,8,11,20), (1,9, 11,17), (1,9, 11, 18),
(1,9,11,19), (1,9, 11,20),(1,10,11,17), (1 l'D 11,18),(1,10,11,19), (1,10, 11,20)}
= Ag.

Orbg,, ¢ 41.1(1: 7,12, 16) =
{(1,7,12,16),(1,7,13,16), (1,7, 14,16}, (1,7, 15, 16),

(1,8,12,16), (1,8, 13, 16), (1,8, 14,16}, (1, 8,15, 16), (1,9, 12 16), (1,9, 13, 16),
(1,9, 14, 16), (1,9, 15 16),(1,10,12 16), (1,10, 13, 16), (1, 10, 14, 16), (1, 10, 15, 16)}
= .&',r.

Orbg, g1 11 2: 6, 11,17} —
{(2,6,11,17),(2,6,11,18),(2,6,11,19), (2,6, 11, 20),

(3,6,11,17),(3,6,11, 18),(3,6,11,19),(3,6,11,20), (4,6, 11,17), (4,6, 11, 18),
(4,6,11,19), (4,6,11,20), (5,6,11,17), (5,6, 11, 18), (5,6, 11, 19), (5, 6,11, 20)}

= Ag.

Orbg, ¢ 11.112: 6,12, 16) —
{(2,6,12,16),(2,6,13, 16), (2,6, 14, 16), (2, 6, 15, 16),

(3,6,12, lﬁ] (3,6,13, 16), (3,6, 14, 16), (3,6, 15, 16), (4,6, 12, 16), (4, 6, 13, 16),
(4,6, 14, 16), (4,6, 15, 16), (5,6, 12, 16), (5, E 13, 16}, (5, 6, 14, 16), (5, 6, 15, 16) }
= Hg.

Orbg, g 111812, 7, 11, 16}
{(2,7,11,16),(2,8,11,16),(2,9,11,16), (2, 10, 11, 16),
(3,7,11,16), (3,8, 11; 16),(3,9,11,16), (3,10, 11, 16), (4, 7, 11, 16), (4, §, 11, 16),
(4,9,11,16), (4,10, 11, 16), (5, 7, 11, 16), (5, 8, 11, 16), (5,9, 11, 16), (5, 10, 11, 16) }
= M.

a ]

o
3
4

i

Orbits containing exactly one element of A are;

Cl'rfr;_;[, eanaml s T 12,17) =
{(1,7,12,17),(1,7,12,18),(1,7,12,19), (1,7, 12, 20),

(1,7, 13, 17),(1,7,13,18),(1,7,13,19), (1,7,13,20),(1,7,14,17),(1, 7, 14, 18),

21
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(1,7,14,19), (1,7,14,20), (1,7,15,17), (1, 7,15, 18), (1,7, 15, 19), (1, 7, 15, 20),
(1,7.12,17), (1,8,12,18), (1,8,12,19), (1, 8,12, 20), (1, 8,13, 17), (1, 8,13, 18),
(1,8,13,19), (1,8,13,20), (1,8,14,17), (1,8, 14, 18), (1,8, 14 m], (1,8, 14,20),
(1,8, 15, 17), (1,8, 15, 18), (1,8, 15,19), (1,8, 15, 20), (1,9,12,17), (1,9, 12, 18),
(1,9,12,19), (1,9,12, 20), (1,9, 13,17), (1,9, 13, 18), (1,9, 13, 19), (1,9, 13, 20),
(1,9,14,17),(1,9,14, 18), (1,0, 14, 19), (1,0, 14, 20), (1,9, 15, 17), (1,9, 15, 18),
(1,9,15,19), (1,9,15,20), (1,10,12,17), (1, 10, 12, 18), (1, 10,12, 19), (1, 10, 12, 20),
(1,10,13,17),(1,10,13,18), (1, 10, 13, 19), (1, 10, 13, 200, (1, 10, 14, 17), (1, 10, 14, 18),
(1,10,14,18), (1,10, 14, 20), (1,10, 15, 17), (1, 10, 15, 18), (1,10, 15, 19}, (1, 10, 15, 20)}
= fy.

Orbg,, g 1, 10 (2.6,12 1?}

{(2,6,12,17), (2,6,12,18),(2,6,12,19), (2,6, 12, 20),

(2,6,13,17), (2,6, 13, 18), (2, 6,13, 19), (2,6, 13, 20), (2,6, 14,17), (2, 6, 14, 18),
(2,6,14,19), (2,6, 14, 20), (2,6, 15,17), (2,6, 15, 18), (2,6, 15, 19), (2, 6, 15, 20),
(3,6,12,17), (3,6,12, 18), (3, 6,12, 19), (3,6, 12, 20), (3,6,13,17), (3,6, 13, 18),
(3,6,13,19), (3,6, 13,20), (3,6, 14,17), (3,6, 14, 18), (3,6, 14 lﬁ],{ﬂ,ﬁ,lai;il]j,
(3,6,15,17), (3,6, 15, 18), (3,6, 15, 19), (3,6, 15, 20), (4,6,12,17), (4,6, 12, 18),
(4,6,12,19), (4,6,12,20), (4,6,13,17), (4,6, 13, 18), (4,6, 13, 19), (4, 6, 13, 20),
(4,6, 14,17), (4,6, 14, 18), (4,6, 14, 19), (4,6, 14, 20), (4,6, 15,17), (4,6, 15, 18),
(4,6,15,19), (4,6, 15; 0), (5,6,12,17), (5,6,12, 18), (5,6, 12, 19), (5, 6, 12, 20),
(5,6,13,17), (5,6, 13, 18), (5,6, 13, 19), (5,6, 13, 20), (5,6, 14, 17), (5,6, 14, 18),
(5,6,14,19), (5,6, 14,20), (5,6,15,17), (5,6, 15, 18), (5,6, 15, 19), (5, 6, 15, 20}
= Aja.

Orbg,, g 1, 10)(2.7, 11,17)

{(2,7,11,17),(2,7,11,18),(2,7,11,19), (2, 7, 11, 20),

(2,
{Ei
(3,
{3:
(3,
(4,
(4,
(4,
(5,
(5,
= A

Orbg,, g 1, 10)(2.7,12,16)
{(2,7,

8,11,17), (2,8, 11, 18),
0,11,19), (2,9, 11, 20)
7,11, 17), (3,7, 11, 18),
8,11,19), (3,8, 11, 20),

(2,

2,8,
2,0,
3,7,

2

S, i,

10,11, 19), (4, 10, 11,

8,11,17), (5,8, 11, 18), (5,
0,11, 10), (5,9, 11,20), (5

2,8

LR |

2,10,11,17
3,7

LI |

11,19), (2,8, 11,20), (2,9,11,17), (2,9, 11, 18),
), (2,10, 11,18), (2 ,
11,19), (3,7, 11, 20), (3, 8,11, 17),

,10,11,19), (2,10, 11,20),
(3,811, 18),

3,9,11,17),(3,9,11, 18), (3,9, 11, 19), (3,9, 11, 20),

10,11, 17), (5,

22

10, 11,17), (3,10, 11, 18), (3, 10, 11, 19), (3, 10, 11, 20), (4,
7,11,10), (4,7, 11,20), (4,8,11,17), (4,8, 11, 18), (4,8, 11, 19), (4,8, 11, 20),

0,11, 17), (4,9, 11, 18), (4,9, 11, 19), (4,9, 11, 20), (4, 10, 11, 17), (4, 10, 11, 18),
20), (5,7, 11,17), (5,7, 11, 18), (5,7, 11, 19), (5,7, 11, 20),
8,11,19), (5,8, 11, 20), (5,9, 11, 17)

12,16), (2,7, 13, 16), (2,7, 14, 16), (2, 7, 15, 16)
(2,8,13,16), (2,8, 14, 16), (2, 8, 15, 16), (2,9, 12, 16),

7,11,17), (4,7, 11, 18),

,(5,9,11,18),
10, 11, 18), (5, 10, 11, 197, (5,10, 11, 20)}

15}

JE
(2,9,13,16), (2,9, 14, 16),
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mi
nSTe

(2,
3,
{Ei
{Ei
(4,
{4i
{4i
(5,
(5,

(e)

7,12, 16), (3,7, 13, 16), (3,

Orb 6111027 12 1?}

10,12, 16), (5

Orbits containing no element of A are;

0,15, 16), (2,10, 12, 16), (2, 10, 13, 16), (2, 10, 14, 16), (2
7,14,16), (3,7, 15, 16), (3,8, 12, 16), (3, §, 13, 16),
8,14, 16), (3, 8, 15, 16), (3,9, 12, 16), (3,9, 13, 16), (3,9, 14, 16), (3, 9, 15, 16),
10,12, 16), (3, 10,13, 16), (3, 10, 14, 16), (3, 10, 15, 16), (4,7, 12
7,14, 16), (4,7, 15, 16), (4,8, 12, 16), (4,8, 13, 16), (

0,12,16), (4,9, 13, 16), (4,9, 14, 16), (4,9, 15, 16}, (4, 10, 12, 16), (4, 10, 13, 16),
10, 14, 16), (4, 10, 15, 16), (5, 7, 12, 16), (5, 7, 13, 16), (5,
8,12, 16), (5,8, 13, 16), (5,8, 14, 16), (5, 8, 15, 16), (5,9, 12, 16), (5, 9, 13, 16),
0,14, 16), (5,9, 15, 16), (5
= Mg,

,10,13, 16), (5

, 10,15, 16),

7,14,18), (5,

4,8, 14, 16), (4, 8, 15,

16),

18)
20)
18)
20)
)
)

a
]
]
]

18

]

20

]

18),

2

]

18)
20)
18)
20),
]'EIIJ
20),
18),
,20)

2

20),
18

]

20),

]

20

,16), (4,7, 13, 16),

7,15, 16),

.10, 14, 16), (5, 10, 15, 16)}

10,14, 17), (2,10, 14, 18),

17, (4,7, 12, 18),

{(2,7,12, 17), (2,7,12,18), (2,7,12,19), (2,7, 12, 20),

(2,7,13,17), (2,7, 13 8),(2,7,13,19),(2,7,13,20),(2,7,14,17),(2, 7, 14,
(2,7,14,19), (2,7, 14,2 j,[E,T, 5, 17), (2,7, 15, 18), (2, 7, 15, 19), (2,7, 15,
(2,7,12,17), (2,8, 12, 18), (2,8, 12, 19), (2, 8, 12, 20), (2,8, 13,17), (2, 8, 13,
(2,8,13,19), (2,8, 13,20), (2, ,14 17), (2,8, 14, 18), (2,8, 14,19), (2, 8, 14,
(2,8,15,17), (2,8, 15, 18), (2,8, 15, 19), (2, 8, 15, 20), (2,9,12,17), (2,9, 12,
(2,9,12,19), (2,9,12,20), (2,9, 13, 17), (2,9, 13, 18), (2,9, 13, 19), (2,9, 13,
(2,9,14,17), (2,9, 14, 18), (2,9, 14, 19), (2,9, 14, 20), (2,9, 15,17), (2,9, 15,
(2,9,15,19), (2,9, 15,20), (2, 10,12, 17), (2,10, 12, 18), (2, 10, 12, 19), {2, 10, 12, 20),
(2,10,13,17), (2, 10, 13, 18), (2, 10, 13, 19), (2, 10, 13, 20), (2

(2,10, 14, 19). (2, 10, 14,20), (2, lﬂ,la,lr];{ﬂ 10, 15, 18), (2, 10, 15, 19), (2, 10, 15, 20),
(3,7,12,17), (3,7,12,18), (3,7, 12, 19), (3,7, 12, 20), (3, 7, 13,17), (3, 7, 13,
(3,7,13,19), (3,7,13,2 ],[3,7, 4 17), (3,7, 14, 18), (3,7, 14,19), (3, 7, 14,
(3,7,15,17), (3,7, 15,18), (3,7, 15, 19), (3,7, 15, 20), (3,7, 12,17), (3,8, 12,
(3,8,12,19), (3,8,12,20), (3,8, 13,17), (3,8, 13, 13} (3,8,13,19), (3,8, 13,
(3,8,14,17), (3,8, 14, 18), (3,8, 14, 19), (3, 8, 14, 20), (3,8, 15,17), (3, 8, 15,
(3,8,15,19), (3,8, 15,20), (3,9, 12,17), (3,9, 12, 18), (3,9,12,19), (3,9, 12,
(3,9,13,17), (3,9, 13,18), (3,9, 13, 19), (3,9, 13, 20), (3,9, 14,17), (3,9, 14,
(3,9,14,19), (3,9, 14,20), (3,9, 15, 17), (3,9, 15, 18), (3,9, 15, 19), (3,9, 15,
(3,10,12,17), (3, 10,12, 18), (3, 10, 12, 19), (3, 10, 12, 20), (3, 10, 13, 17), (3, 10, 13, 18),
(3,10,13,19), (3, 10,13, 20), (3, 10, 14, 17), (3, 10, 14, 18), (3, 10, 14, 19), (3, 10, 14, 20),
(3,10,15,17), (3, 10, 15, 18), (3, 10, 15, 19), (3, 10, 15, 20), (4, 7, 12

(4,7,12,19), (4,7,12,20), (4,7, 13,17), (4,7, 13, 18), (4,7, 13,19), (4,7, 13,
(4,7,14.17), (4,7, 14, 18), (4.7, 14, 10), (4,7, 14, 20), (4.7, 15.17), (4,7, 15,
(4,7,15,19), (4,7, 15,20), (4,7,12,17), (4,8, 12, 18), (4, §,12,19), (4, 8,12,
(4,8,13,17), (4,8, 13, 18), (4,8, 13, 19), (4,8, 13, 20), (4,8, 14,17), (4,8, 14,
(4,8,14,19), (4,8, 14,20), (4,8, 15,17), (4,8, 15, 18), (4,8, 15,19), (4,8, 15,

23

)
)
18)
)

]
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,17), (4, 10,12, 18),

(4,10, 13, 20),
(4,10, 15, 18),

’r, 12, 20),

¥ 13]"‘
5,20)
3,18),
iEI:':I:'
18)
3,20)
5, 18)

0,12, 20),
(f 10, 14, 18),

(4,9,12,17),(4,9,12,18), (4,9,12,19), (4,9, 12, 20), (4,9, 13, 17), (4,9, 13, 18),
(4,9,13,19), (4,9,13,20), (4,9, 14,17), (4,9, 14, 18), (4,9, 14, 19), (4,9, 14, 20),
(4,9,15,17), (4,9, 15, 18), (4,9, 15, 10), (4,9, 15, 20), (4, 10, |

(4,10,12, 19), (4,10, 12, 20), (4, 10, 13, 17), (4, 10, 13, 18), (4,10, 13, 19),
(4,10,14,17), (4, 10, 14, 18), (4, 10, 14, 19), (4, m 14, 20), (4, 10, 15, 17),
(4,10, 15, 10), (4, 10, 15,20), (5,7, 12, 17), (5, 7, 12, 18), (5, ’.‘ 2.19), (5,
(5,7,13,17), (5,7, 13, 18), (5,7, 13, 19), (5, 7, 13, 20), (5,7, 14, 17), (5, 7,

(5,7, 14, 19), (5,7, 14,20), (5,7, 15, 17), (5,7, 15, 18), (5, 7, 15,19), (5, 7, 1
(5,7,12,17), (5,8, 12, 18), (5,8, 12, 19), (5,8, 12, 20), (5, 8, 13, 17), (5, 8,
(5.8,13,19), (5,8, 13,20), (5,8, 14,17), (5,8, 14, 18), (5, 8, 14, 19), (5, §,
(5,8,15,17), (5,8, 15, 18), (5,8, 15, 19), (5,8, 15, 20), (5,9, 12, 17), (5,9, 12
(5,9,12,19), (5,9,12,20), (5,9, 13,17), (5,9, 13, 18), (5,9, 13, 19), (5,9,
(5,9,14,17), (5,9, 14, 18), (5,9, 14, 19), (5,9, 14, 20), (5,9, 15, 17), (5,9,

(5,9, 15,19), (5,9, 15,20), (5, 10,12, 17), (5, 10, 12, 18), (5, 10, 12, 19), (5,
(5,10,13,17), (5, 10, 13, 18), (5, 10, 13, 19), (5, 10, 13, 20), (5, 10, 14, 17),
(5,10, 14, 19), (5, 10, 14, 20), (5, 10, 15, 17), (5, 10, 15, 18), (5, 10, 15, 19),

— ﬂlq.

(5,10, 15,20)}

Thus the rank of A5 = A5 % A5 % As acting on X x Xax Xz = Xyis 2* with subdegrees

1,4,--- ., 4,16,---

4 factomns

16,64, - --

i
& factors

T
1 factars

64, 256,

O

Theorem 2.3. Forn = 3, the rank of Ap = Ap = Ap % Ap acting on X x X x Xax Xy

is M where X, =
2,00

{1,2,--

Proof Let G = A, x Ay ®x Ap x Ay and K =

fIln+1,2n+1,3n+ 1}.

nh, Xy={3n+1,3n+2,.--

Jdn}.

nl Xa={n+1ln+2---

2l Xs={2n+1,2n+

.E]KXgﬁxax_XQEﬂdE:

The suborbits of & include those with exactly 4,3,2. 1 and no element from 5. The
number of suborbits of (¢ are given in Table 5.

Table 3: Rank of action of 4, = A, ® Ap * A, on Xy » Xo 2 X = X,

Suborhit Number of suborbits
Orbit containing exactly 4 elements of B [:]
Orbit containing exactly 3 elements of B [3}
Orbits containing exactly 2 elements of B [;]
Orbits containing exactly 1 element of B [':']
Orbits containing no elements of B [3}
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From Table 5. the rank of action of A, = A, = A, = A, on X; = Xqg = X3 = X;is

R(4) = @ + (;) ° (3) N (?) N (3)

=1+4+6+4+1
= 16
Y

These 2* suborbits of the action include;

{a) Orbits containing exactly four elements of & are;
Orbayy niiamsigney (L L 2N+ 130+ 1) = {(L,n+1,2n+1,3n+ 1)} = Ap

(b) Orbits containing exactly three elements of B are;
Grﬁﬂ[i.nﬂ&n—:.s-u]'Zl:-”"" 1,2rn+1,3n+2) = {(1,n+1,2n+1,3n+2),(1,n+
L,2n+1,3n+3),---,(Ln+1,2n+ 1,4n)} = A,.
Orbay iianstgmiy(1L,R+1,20+2,3n+1) = {{1,n+1,2n+2,3n+1), (1,n+
L2n+3,3n+ 1), ,(Ln+1,3n,3n+1)} = A,
GTE‘G[,I,H‘%_,I!_H][l,ﬂ--l-‘lﬂﬂ-l-1,3n-|—1] ={(l,n+2,2n+1,3n+1),(1,n+
3,20+ 1,3n+1),---,(1,2n,2n + 1,3n + 1)} = As.
Orbay piranitamey (2,041,204 1,30+ 1) = {(2,n+1,2n+1,3n+1), (3,n+
L2n+1,3n+1),--- ,(n,n+1,2n+ 1,3n+ 1)} = A,

{c) Orbits containing exactly two elements of B are;

G"E'G[:,,.H,h_:,s.m':1:-”"" 1,2n+2,3n+2) = {(1,n+1,2n+2,3n+2),(1,n+
1,2n+3,3n+2),---,(1,n+1,3n,3n+2),--- , (L,n+1,2n+2,3n+3), (1, n+
L2n+23n+4),---,(I,n+1,2n+2,4n),(1,n + 1,3n,4n)} = As.
GTE‘G[,I,,Hh_,I!_H]|:1,ﬂ-+‘3,‘3ﬂ+2,3n+1] = {(1,n+2,2n+2,3n+1),(1,n+
3,2n+2,3n+1), -, (1, 2n, 2n+1,3n+1),--- , (1,n+2, 2n+3,3n+1), (1,n+
222n+43n+1),---,(L,n+2,3n.3n +1),(1,2n,3n,3n + 1)} = A,
G"E'G[:,,.H,h_:,s.uj':1:-”'"'212”"'113”"'2] = {(1,n+2,2n+1,3n+2), (1,n+
3,2n+1,3n+2), -, (1, 2m, 2n+1,8n+2), - .-, (1,n+2, 2n+1,3n+3), (1,n+
2.2n+1,3n+4),---,(L,n+2,2n+ 1,4n),(1,2n,2n + 1,4n)} = Aq.
G"E"G[:,,.H,h_:,s.uj':Ezﬂ'"'lg”"'113”"'” = {(2,n+2,2n+1,3n+1),(3,n+
22n+13n+1),---,(nn+2,2n 4+ 1,3n+ 1),--- ,(2,n+3,2n+ 1,3n +
1),(2,n+4,2n+1,3n+1),--- . (2,20, 2n+1,3n+1), (n,2n, 2n+1,3n+1)} =
ﬂg.

Orbayy it 2metsnsny (2,n+1,2n+2,3n+1) = {(Z,n+1,2n+2,3In+1), (3, n+
1.2n+2.3n+1),--- (nyn+1,2n+2,3n+ 1),--- ,(2,n+ 1,2n + 3,3n +
1),(2,n+1, 2n+4, 3n+1),--- , (2,n+1,3n, 3n+1), (n,n+1,3n, 3n+1)} = Ag.
Grﬁﬂ[j,n+l,‘}n—1,3n+1](23H+ 1,2n+1,3n+2) = {(2,n+1,2n+1,3n+2), (3,n+
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1.2n + 1, 3n +2),---,inn+1,2n+ L, 3n+ 2),--- ,(2,n+ 1,2n + 1. 3n +
3), (2,n+1,2n+1,3n+4),--- ,(2,n+1, 2n+1, 4n), (n,n+1,n+1,4n)} = Ay,

{d) Orbits containing exactly one element of B are;
Orbayy s amssmiy (L+H2,20+2,3n+2) = {(1,n+2,2n+2, 3n+2), (1,n+
3;2n+2,ﬂn+2],--- AL2n,2n+2.3n+2),(L,n+2,2n+3,3n+ 2),(L,n+
2n+43n+2),--- ,(I,n+23n3n+2),(l,n+2,2n+23n+3),(l,n+
2n+23n+3),-- |:11'1+? In+ 2 4n), (1, 2n, 3n, 411]—&1.
G""'E'G[:,n+L,h_:,s..+1]':2 n+1,2n+2,3n+2) = {(2,n+1,2n+2,3n+2), (3,n+
1,2n+2,3n+2),--- ,(n,n+1,2r+2,3n+2), (2,n+1,2n+3,3n+ 2), (1, n+
22n+4,3n+2),--- ,(2,n+1L3n3n+2),2,n+1,2n+2,3n+3),(2,n +
1,2n +2,3n+ 4),-- I:Eﬂ.+15"n+2 in), (n,n+ 1,3n,4n)} = HAga
Grﬁﬁ'[:.nu.h—:.snmEEJ’H—E‘ 2n+1,3n+2) = {(2,n+2,2n+1,3n+2), (3,n+
2n+1,3n+2),--- ,(n,n+2,2n+1,3n+2), (2,n+3,2n+1,3n+ 2), (2, n+
4 n+1,3n+2),--- (2,20, 2n+1,3n+2),(2,n+2,2n+ 1,3n+ 3), (2, n+
2+ 1.3n+4),---,(2,n+22n+ 1 4n),(n,2n 2n+ 1, 4n)} = Ays.
Orbay s amstsmsny (2,n+2,2n+2,3n+1) = {(2,n+2,2n+2,3n+1), (3, n+
2,2n+2,3n+1),--- ,(n,n+2,2n+2,3n+1),(2,n+3,2n+2,3n+1), (2,n+
42n+2,3n+1),---,(2,2n,2n+2,3n+2), (2,n+2,2n+ 3,3n+ 1), (2,n+
2m+4.3n+1),---,(2,n+2,3n,3n+1),(n,2n3n3n+ 1)} = Hyg.

{e) Orbits containing exactly one element of B are;
Grﬁﬂ[i,n+l,‘1ﬂ—1,5n+l] (2,m+2,2n+2,3n+2) = {(2,n+2,2n+2,3n+2), (3, n+
2,n+2,3n+2),--- ,(in,n+2,2n+2,3n+2), (2,n+3,2n+2,In+2), (2, n+
4 Mmn+23n+2),--- (220, 2n+2.3n+2), (2n+2,2n+3,3n+2), (2, n+
2m+4,3n+2),--- ,(2n+23n.3n+2),(2,n+2,2n+2.3n+3),(2,n+
2Mn+4+23n+4),---,(2,n+2 2n+2 4n), (n, 2n, 3n)} = Ays.

Thus, for n = 3 the action of A, x A, * A, on X, % X5 x X3 x X, has rank 2*

with respective subdegrees

Ln—1,--- . n—Lin-1% - (n-1%n-10 - (n-1)"@-1)% O
dfa:tm ﬂf:m d.i;;ur:

3. Conclusion

For n = 3, the action of A, = A, = A, = A, x A, on X = Xo x X x Xy = Xgis
transitive and imprimitive but for n > 4, the associated rank is 2° and subdegrees are 1,
n—1n—-12(n-1)(n-1)%
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