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Abstract

Let M be a 2-torsion free prime I'-ring satisfying the condition aabfc = afbac,Va,b,c € M
and a, 8 € ', U be a Lie ideal of M and f be a generalized (U, M )-derivation of M. Then we
prove the following results:

1. If U is an admissible Lie ideal of M, then f(uav) = f(u)av + uad(v),Vu,v € U,a € T.

2. If wau € U,Vu € U,a € T, then f(uam) = f(u)am + vad(m),Yu € Uym € M,a € T,
where d is a (U, M)-derivation of M.
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1 Introduction

In [9], Herstein proved a well-known result in prime rings that every Jordan derivation is a deriva-
tion. Afterwards many Mathematicians studied extensively the derivations in prime rings. In [3],
Awtar extended this result in Lie ideals. (U, R)-derivations in rings have been introduced by Faraj,
Haetinger and Majeed [7], as a generalization of Jordan derivations on a Lie ideals of a ring. The
notion of a (U, R)-derivation extends the concept given in [3]. In this paper [7], they proved that if
R is a prime ring, char(R) # 2, U a square closed Lie ideal of R and d a (U, R)- derivation of R,
then d(ur) = d(u)r + ud(r),¥,u € U,r € R. This result is a generalization of a result in Awtar [3,
Theorem in section 3].

The notion of a I'-ring has been developed by Nobusawa [13], as a generalization of a ring. Follow-
ing Barnes [4] generalized the concept of Nobusawa’s I'-ring as a more general nature. Now a days,
I'-ring theory is a showpiece of mathematical unification, bringing together several branches of the
subject. It is the best research area for the Mathematicians and during 40 years, many classical ring
theories have been generalized in I'-rings by many authors.
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The notions of derivation and Jordan derivation in I'-rings have been introduced by Sapanci and
Nakajima [14]. Afterwards, in the light of some significant results due to Jordan left derivation of a
classical ring obtained by Jun and Kim in [11], some extensive results of left derivation and Jordan
left derivation of a I-ring were determined by Ceven in [6]. In [8], Halder and Paul extended the
results of [6] in Lie ideals.

In this article, we introduce the concept of (U, M)-derivation and generalized (U, M)-derivation,
where U is a Lie ideal of a I'-ring M . An example of a Lie ideal of a I'-ring and an example of
(U, M)-derivation and generalized (U, M)-derivation are given here. A result in [7, Theorem 2.8] is
generalized in I'-rings by the new concept of a (U, M)-derivation.

Let M and I' be additive abelian groups. If there is a mapping

M xT x M — M (sending (z,«,y) into zay) such that

(i) (z + y)az = zaz + yaz,

z(a+ By = zay + 2Py,

za(y + 2) = zay + zaz,

(i) (zay)B = za(yB2),

for all z,y,z € M and a, 8 € T', then M is called a I'-ring. This concept is more general than a ring
and was introduced by Barnes [4]. A T'-ring M is called a prime I'-ring if Ya,b € M,aT’'MTb = 0
implies @ = 0 or b = 0 and M is called semiprime if al' MTa = 0 (with a € M) implies a = 0. A
T-ring M is 2-torsion free if 2a = 0 implies a = 0,Va € M.

For any z,y € M and a € T', we induce a new product , the Lie product by [z,y]s = zay — yaz.
An additive subgroup U C M is said to be a Lie ideal of M if whenever u € U,m € M and « € T,
then [u,m], € U.

In the main results of this article we assume that the Lie ideal U verifies uau € U,Vu € U. A Lie
ideal of this type is called a square closed Lie ideal.

Furthermore, if the Lie ideal U is square closed and U is not contained in Z(M),where Z (M )denotes
the center of M ,then U is called an admissible Lie ideal of M.

Let M be a I'-ring. An additive mapping d : M — M is called a derivation if d(aabd) = d(a)ab +
aad(b),Va,b € M and a € T

An additive mapping d : M — M is called a Jordan derivation if

d(aaa) = d(a)aa + aad(a),Ya € M and o € T

Throughout the article, we use the condition aabfBec = afbac,Va,b,c € M and a, € T and this is
represented by (*).

We make the basic commutator identities:

[zay, 2] = [z, 2]gay + z[a, Bl.y + zaly, z]5.

and [z,yaz|s = [z,y]paz + yla, Bl.z + yalz, 2], Va,b,c € M and Va,B € T.

According to the condition (*), the above two identities reduces to

[y, 2]s = [2, 2]pay + zaly, 2]s.

and [z,yaz|g = [z, y]gaz + ya[z, 2], Va,b,c € M and Vo, € T.
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2 Generalized (U, M)-Derivation

2.1 Definition: Let M be a ['-ring and U be a Lie ideal of M. An additive mapping d: M — M is
said to be a (U, M)- derivation of M if d(uam + sau) = d(u)am + uad(m) + d(s)au + sad(u), Vu €
Um,s € M and a € T.

2.2 Definition: Let M be a I'-ring and U be a Lie ideal of M. An additive mapping f : M — M
is said to be a generalized (U, M)- derivation of M if there exists a (U, M)-derivation d of M such
that f(uam + sau) = f(u)am + uad(m) + f(s)au + sad(u),Vu € U,m,s € M and a € I

The existence of a Lie ideal of a T-ring, (U, M)-derivation and a generalized (U, M)-derivation are
confirmed by the following examples:

2.3 Example: Let R be a commutative ring with characteristic 2 having unity element 1. Let
M = MQ’Q(R) and
_ 111.1 n3.1 . _ . . _ _
= {( ol gl ) in; € (Z—22),i=1,2,3,4;n1 = ng,ny —’I’Lg}.
Then M is a I'-ring.

LetU:{(m y):m,yER}.
Yy oz

Then U is a Lie ideal of M.

Let us define a mapping f : M — M by
a b a 0 a b

(5 0))=(0 5 )v(s g )em

Then there exists a (U, M)-derivation, d of M which is defined by
a b 0 -b a b

f((22)= (2 5 )v(eg)en

Then f is a generalized (U, M )-derivation of M.

2.4 Lemma: Let M be a 2-torsion free I'-ring satisfying the condition (*). U be a Lie ideal of

M and f be a generalized (U, M)-derivation of M.Then

(i) fluampu) = f(u)ampPu + uad(m)Pfu + vampPd(u),Yu € U,m € M and o, 3 € T

(ii) f(uampo+vampfu) = f(u)ampo+uad(m)Bv+uamBd(v)+ f(v)ampPutvad(m)ButvamBd(u),Yu,v €
Ume M and o, €T.

Proof: By the definition of generalized (U, M)-derivation of M ,we have

fluam + sau) = f(u)am + uad(m) + f(s)au + sad(u),Vu € Uym,s € M and a € T.

Replacing m and s by (2u)fm + mB(2u) and let

w = ua((2u)fm + mpB(2u)) + ((2u)fm + mB(2u))au.

Then by using (*)

fw) =2(f(w)a(ufm + mpu) + vad(upm + mpu) + f(ufm + mPu)au + (ufm + mpBu)ad(u))

= 2(f(w)aufm + f(u)ampPu + uad(uw)fm + vaufd(m) + uad(m)Pfu + vamfd(u) + f(u)Smau +
ufd(m)au + f(m)Buau + mpd(u)au + ufmad(u) + mPuad(u))

= 2(f(w)aufm + f(u)ampu + uad(u)Bm + uvaufd(m) + vad(m)pfu + vampfd(u) + f(u)ampfu +
wad(m)pu + f(m)oubu + mad(u)Bu + vamBd(u) + maufd(u))......(1).

On the other hand
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fw) = f((2uau)fm + mp(2uau)) + 2 f(ufmau) + 2 f(uampfu)
(f (uw)auBm + vad(u) Bm + vauBd(m) + f(m)Buau + mBd(u)au + mBuad(u) + 4f (uampBu)
(f (w)aupm~+uad(u) fm+uaufd(m)+mad(u) fu+maufd(u) + f(m)aufu) +4 f (wampu)......(2)

By comparing (1) and (2) and since M is 2-torsion free, we obtain
fluampu) = f(u)ampPu + vad(m)pu + vampBd(u)......(3),
YueUméE M and o, €T.

If we linearize (3) on u, then (ii) is obtained.

=2
=2

2.5 Definition: Let d be a (U, M)-derivation of M, then we define ®,(u, m) = d(uam) —d(u)am —
uad(m)
Yu€eUmée M and a € T.

2.6 Lemma: Let d be a (U, M)-derivation of M, then

)Py (u,m) = =@ (m,u), Vu e Uym € M and a € T.

(i) ®o(u+v,m) = ®y(u,m) + @o(v,m),Vu,v € Uym € M and a € T.
(iii) @o(u,m +n) = ®4(u,m) + ®4(u,n),Yu € Uym,n € M and a € T.
(iv) ®uip(u,m) = ®4(u,m) + ®s(u,m),Yu € Uym € M and o, € T

The proofs are obvious by using the definition 2.5

2.7 Definition: If f is a generalized (U, M)-derivation of M and d is a (U, M)-derivation of M,
then we define ¥, (u,m) = f(uam) — f(u)am — uad(m),Yu € U,m € M and a € T.

2.8 Lemma: Let f be a generalized (U, M)-derivation of M, then

D) ¥s(u,m) = =¥y(m,u), Vvu e Uym € M and a € T.

(i) Oolu +v,m) = ¥o(u,m) + ¥ (v,m),Vu,v € Uym € M and a € I. (iii) ¥y(u,m +n) =
Y, (u,m) + ¥y(u,n),Yu € Uym,n € M and a € T.

(iv) ®oqrp(u,m) =¥y (u,m) + ¥g(u,m),Yu € Uym € M and o, 5 € T.

The proofs are obvious by using the definition 2.7

2.9 Lemma: Let M be a 2-torsion free prime I'-ring satisfying the condition (*), U an admissible
Lie ideal of M and f a generalized (U, M)- derivation of M then ¥, (u,v)Bw~y[u,v], = 0,Vu,v,w € U
and a, 3,7 € T.

Proof: Let © = 4(uavfwyvau + vaufwyuav).

Then by using Lemma 2.4(ii), we have

f(@) = f((Quaw)fwy(2uau) + (2vau)fwy(2uav))

= f(2uav)fwy2vau+t2uavfd(w)y2vau+2uavfwyd(2uau)+ f (2vau) fwy2uav+2vaufd(w)y2uav+
2uaufwyd(2uav)

On the other hand, by using Lemma 2.4(i),we have

f(@) = flua(dvBwyv)au + va(dufwyu)av)

= f(u)advBwyvau + vad(dvfwyv)au + vadvfwyvad(u) +
f W)adupwyuav + vad(dubwyu)av + vadufwyuad(v)

= 4f(u)avBwyvau + duad(v) Swyvau + duavBd(w)yvau +
duoavfwyd(v)ou + duavfwyvad(u) + 4f(v)aufwyuav +
dvad(u) fwyuav + dvaufd(w)yuav + vaufwyd(u)ov +
dvaufwyuad(v).
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Comparing the right side of f(z) and using the 2-torsion freeness of M

f(uaw) puyvautuavfwyd(vau)+ f (vau) fwyuav+vaufwyd(uav) = f(u)avfwyvautuad(v)fwyvau+
wowfwyd(v)autuovfwyvad(u)+ f (v)aufwyncv+vad(u) fwyuav+vaufwyd(u) ev+vaufwyuad(v).
Therefore

(f(uav) — f(u)av — uad(v))wyvau + (f(vauw) — f(v)au — vad(uw))fwyuav + uavfwy(d(vau) —
d(v)au — vad(u)) + vaufwy(d(uav) — d(u)av — uad(v)) =0

By using the definitions 2.5 and 2.7, we obtain

U, (u, v) fwyvau + ¥, (v, u) fwyuav

+ uavfuwy®, (v, u) + vaufwy®,(u,v) =0

Now using Lemma 2.6(i)and 2.8(i), we have

U, (u,v) Bwyu, v]a + [u, v]ofwyPy (u,v) = 0,Yu,v,w € U,a, 5,y €T

Since d is a (U, M)-derivation, we have ®,(u,v) = 0,Vu,v € U and « € I'. Using this we obtain the
desired result.

2.10 Lemma: Let U be a Lie ideal of a 2-torsion free prime I'-ring M and U is not contained
in Z(M). Then there exists an ideal I of M such that [I, M]r C U but [I, M]r is not contained in
Z(M).

Proof: Since M is 2-torsion free and U is not contained in Z(M), it follows from the result in [1]
that [U,U]r # 0 and [I, M]r C U,where I = IT[U,UlrI’'M # 0 is an ideal of M generated by [U, Ulr.

Now U is not contained in Z (M) implies that [I, M]r is not contained in Z(M); for if [I, M]r C
Z(M), then [I,[I, M]r]r = 0, which implies that I C Z(M) and hence I # 0 is an ideal of M, so
M = Z(M).

2.11 Lemma: Let U be a Lie ideal of a 2-torsion free prime I'-ring M satisfying the condition (*) and
U is not contained in Z(M). If a,b € M (resp.b € U and a € M) such that aaUBb = 0,Va, 8 € T,
then a =0 or b = 0.

Proof: By Lemma 2.10, there exists an ideal I of M such that [I, M]p C U and [I, M]r is not con-
tained in Z(M). Now take uw € U,c € I,m € M and a, 3,7 € I, we have [caafBu,m]r € [[,M]r CU
and so

0 = ad[caafu, m],pb,Vo,u € T

= ad[caa, m],fupb + adcaafu, m],ub, by using (*)
= ad[caa, m],fupb since af[u, m|,ub € afUub =0
= ad(caaym — mycaa)Buub

= adcaaympPuub — admycaafuub

= adcaaymPBuub, by using assumption aSuub =0

Thus adlaayMBU b = 0. If a # 0, then by the primeness of M, Upub = 0.
Now if u € U and m € M, then [u,m], € U,YVa € T.

Hence [u, m],fb =0,V € I'. Since maufb = 0,uamfb = 0.

Since U # 0, we must have b = 0.

In the similar manner, it can be shown that if b # 0, then a = 0.
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2.12 Lemma: Let M be a 2-torsion free prime I'-ring and U an admissible Lie ideal of M. Let
G1,Gs, ...,G, be additive groups, S : Gy x Gy X ... x Gy > M and T : Gy x Gy X ... x Gy, = M
be mappings which are additive in each argument. If S, (a1, ...,a,)BxvTo(a1,...,a,) = 0, for every
x €Ua; € Gyi=1,2,...n,a, 8,7 €T, then Sy(ay,...,a,)BzyTs(b1,...,b,) =0

Proof: It suffices to prove the case n = 1.

The general proof is obtained by induction on 7.

If So(a)BaxyTa(a) =0, for every u € U,a € Gy, we get
(To(a)BaySa(a))pyv(Te(a)BaxySy(a)) =0, for all z,y € U and p,v € T.

Then by Lemma 2.11, T,,(a)BzvS,(a) = 0, for every z € U,a € Gy and 3,y € I.
Now linearizing Ty, (a)Bz7S4(a) = 0 we obtain

Sa(a)BryT4(b) + Sa(b)fxyTy(a) = 0, for every z € U,a,b € G;.

Hence (Sa(a)BzyTa())pyv((Sa(a)BryTa (b))

= —Sa(a)BeyTa (b)uyvSa(b)BayTa(a) = 0,Ve,y € U.

By Lemma 2.11, S, (a)B2zyT,(b) =0

Similarly we can prove that T, (b)BzvS,(a) = 0,Ya,b € G; and «, 3,7 € T.
Putting a + ¢ for « in the equation S, (a)BzyT,(b) = 0 and using Lemma 2.6(iv), we have
Sa(a)BxyTs(b) + Ss(a)BayTa(b) = 0.

Therefore, we have (S, (a)BxyTs(b))uyv(Sa(a)BxyTs(b))

= S (a) By T3 (b)y(Ss(a) 2T (b) = 0

Hence by Lemma 2.11, S, (a)BzyTs(b) = 0.

2.13 Theorem: Let M be a 2-torsion free prime I-ring satisfying the condition (*), U be an ad-
missible Lie ideal of M and f be a generalized (U, M)- derivation of M, then ¥, (u,v) = 0,Vu,v € U
and a €T

Proof: By Lemma 2.9, we have ¥, (u,v)Swy[u,v], = 0,Vu,v,w € U and «, 3,y € T.
Using the Lemma 2.12 in the above relation, we obtain

U, (u,v)Bwylz,yls = 0,Yu,v,w,z,y € U and a, 5,7, € T.

Since U is not contained in Z(M), [z,y]s # 0

So by Lemma 2.11, we get ¥, (u,v) = 0,Vu,v € U and « € T.

Remark: If we replace U by a square closed Lie ideal in the theorem 2.13, then the theorem
is also true.
Now we are in position to prove the main result.

2.14 Theorem: Let M be a 2-torsion free prime I'-ring satisfying the condition (*), U a square
closed Lie ideal of M and f be a generalized (U, M)- derivation of M, then f(uam) = f(u)am +
uad(m),Yu € U m € M and a € T.

Proof: From Theorem 2.13 and the Remark after the Theorem 2.13, we have ¥, (u,v) = 0,Vu,v € U
and a € T......(A)

Replace v by ufm — mpu in (A), we get

U, (u,ufm — mpPu) = 0.

Since ufm —mpu € U,;Yu € U, m € M and o, 5 € T.

Therefore 0 = ¥, (u, ufm — mpu)

= f(ua(ufpm — mpu)) — f(u)a(ufm — mpu) — uad(ufm — mfBu)

= f(uaufm) — fluampBu) — f(uw)aufm + f(u)ampPu — uad(u)fm — vaufd(m) + vad(m)fu +
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uampfd(m)

= f(uauBm) — f(u)amBu — vad(m)fu — vampBd(u) — f(u)auBm + f(u)ampBu — uvad(u)Bm —
uaufd(m) + vad(m)Bu + uvampBd(m)

= f(uaufm) — f(u)aupm — vad(u)Sm — vauBd(m)

This implies that

flwaufm) = f(u)aufm — uad(u)Bm — uauBd(m)......(B)

Now let z = uaufm + ufmau.

Then by the definition of generalized (U, M )-derivation, we have

f(z) = f(u)aufm + vad(ufm) + f(ufm)au + ufmad(u)

= f(w)aupm + uvad(u)m + vaupd(m) + f(ufm)ou + ufmad(u)......(C)

On the other hand

f(x) = f(uaupm) + f(ufmau)

= f(u)aufm + uad(u)fm + uaupd(m) + f(u)Bmau + ufd(m)au + ufmad(u)......(D)
Comparing (C) and (D)

(f(uBm) — F(w)Bm — uBd(m))au = 0

This gives

Us(u,m)au =0,Yu € U,m € M and o, € I'......(E)
Linearize (E) on u and using equation (E), we get

Vg (u, m)av + ¥g(v,m)au = 0......(F)

Replace v by vyv in equation (F), we obtain

U5 (u, m)avyv + ¥g(vyv, m)auw = 0.

Since ¥g(vyv,m) =0,Yv € Uym € M and 3,y €T

This is seen in the equation (B) for vyv in place of uawu.
Therefore, we have
Yg(u,m)avyv = 0,Yu,v € Uym € M and «, 3,7 € I'......(G)

If U is noncentral, then replace v by u + v in equation (G) to obtain
Ugs(u, m)a(u + v)y(u+v) =0

This implies that ¥g(u, m)avyu = 0,Yu,v € Uym € M and o, 3,y €I
By Lemma 2.11, ¥3(u,m) = 0, since U is noncentral.
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