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ABSTRACT 

In this paper, an algorithm as an alternative tool for solving system of linear congruences (SLC) is developed. this 

algorithm involves finding LCM of the moduli of reduced SLC, in view of cancellation law, identifying the largest 

moduli, and obtaining the solution of the linear congruence with largest modulus. Then it involves checking 

whether the solution satisfies the remaining linear congruences in the system of linear congruences. The advantage 

of this algorithm is the simplicity of its computation since it uses algebraic concepts which are easy to understand. 

Some illustrative examples are given to show the validity of this method for solving SLC’s. The application of the 

developed algorithm on solving system of linear congruences is also used to solving higher order congruences 

(HOC) with composite moduli and system of higher order congruences (SHOC).  
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1. Introduction  

Finding solutions to congruences has received remarkable attention in the past several decades. The problem has 

been studied intensively by numerous authors. There are several methods to solve linear congruences and system 

of linear congruences. In solving linear congruences, (Gold N.E, 2002) made use of remodularization method as a 

vehicle to characterize the condition under which the solution exist and then determine the solution space. (William 

Stein, 2009) also presented an approach which translate the given congruence ax=c (mod b) into Diophantine 

equation ax+by =c to solve the linear congruences. Koshy (2007) also Presented an algorithm making use of 

multiplicative inverses of a modulo min solving linear congruences. (Smarandache, 2007)developed a generalized 

algorithm in solving linear and system of linear congruences with more than one variable, on the basis of conditions 

under which existence of solutions and the number of them ascertained. (Polemer M. Cuarto, 2014) devised an 

algebraic algorithm for finding solutions of linear congruences, converting the given congruence into linear 

equation and solve algebraically. And he applied it in cryptography using the RSA cryptosystem. (John Frederic 

Chionglo, 2016)also made use of conversion of linear congruences to equivalent linear equations, and reduced the 

co-efficients of the induced variables, iteratively, until one of them reached unity. He used division algorithm in 

the reduction with respect to the smaller co-efficient in the successive equations; in such a way that the last larger 

co-efficient and the constant have got reduced. (Eugel Verdal, 2006) developed a method for solving non-linear 

congruences of higher degree reducing them into either linear or quadratic congruences.  

Although there are already several approaches developed, finding solutions to system of linear congruences (SLC), 

higher order (HOC), and system of higher order congruences (SHOC) still remain pedagogically difficult. This is 

because the methods make use of complex algorithms. Thus, in this paper we strive to devise an algorithm for 

solving the anterior classes of congruences, that is advantageous over the already used ones that follow an 

exhaustive, gradual and incremental method which entertain a definite risk of computation complexity. 

 In this context, this piece of work can help Mathematics students especially the beginners who are taking up 

Number Theory to easily solve problems on system linear congruences since it uses the concept of algebraic 

principles which every Mathematics students is familiar with. Utilizing the algorithm presented in this paper will 

help them realize that Mathematics can be made simpler because the algorithm does not make use of complex 
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notations and operations which other algorithms do. Likewise, this would benefit Mathematics instructors and 

professors for this may serve as a reference material in teaching the concept of congruences in Number Theory. 

 This algorithm could also give programmers insights in developing a program based on this technique that can 

automatically solve problems on systems of linear congruences. This study would also provide input for future 

researchers who will conduct researches and studies related to the topic as this could be a basis for developing 

another algorithm that can solve problems on linear congruences, system of linear congruences (SLC), higher order 

(HOC), and system of higher order congruences (SHOC). 

 In the light of the foregoing perspectives, we felt the need of this algorithm. The study aims to develop an algebraic 

algorithm for solving system of linear congruences. Specifically, the study seeks to develop an alternative 

algorithm for solving system linear congruences; to validate the developed algorithm through illustrative examples; 

to apply the developed algorithm in solving HOC and System of HOC.   

 

2. Preliminaries: Congruences 

In order to effectively understand the concept of system linear congruences and higher order congruences, it will 

be necessary to become familiar with the following definitions, theorems and properties which will be used further 

in the development of this paper. 

2.1. Definition of congruences 

Definition 2.1.  For positive integer n, and for a, b∈Z, we say that a is congruent to b modulo n if n|(a-b), and we 

write a≡b (mod n). If n∤(a-b), then wed write a≢b (mod n). 

Note 2.1.  The relation a≡b (mod n) is called a congruence relation or simply, a congruence. The number 𝑛  
appearing in such congruence is called modulus of the congruence.  

2.2. Basic properties congruences 

Theorem 2.1. let a, b, c, and k are integers, then the following hold. 

i. Reflexive Property: If a is an integer, then a ≡a (mod n). 

ii. Symmetric Property: If a≡ b (mod n), then b≡ a (mod n).  

iii. Transitive Property:  If a ≡ b (mod n) and b ≡ c (mod n), then a c (mod n). 

iv. Simplification Property:  If k divides a, b and n, then a≡ b (mod n) is congruent to a/k ≡b/k (mod 

n/k)  

v. Cancellation Property:  If gcd (k, n) = 1, then ak≡bk (mod n) is congruent to a≡ b (mod n). More 

generally, if d=gcd (k, n), then ak≡bk (mod n) if and only if a≡ b (mod n/d). 

vi. Addition Property:  If a≡ b (mod n), then a + k≡b + k (mod n).  

vii. Subtraction Property: If a≡ b (mod n), then a - k≡ b - k (mod n) 

viii. Multiplication Property: If a ≡b (mod n), then ak≡bk (mod n) 

2.3. Polynomial congruences  

In any commutative ring with unity, the equation f(x) =0 with f(x)∈R[x] is called polynomial Equation. if deg f=1, 

it is called linear; if deg f=2, it is called quadratic; if deg f=3, it is called cubic, etc. In particular for ℤ𝑚, we have 

the above terminologies. Instead of saying f(x) =0 is an equation in ℤ𝑚, we sometimes write f(x) ≡0 (mod m) and 

we say it is congruence of degree n, n= deg f. When deg f=1, it is called a linear congruence, if deg f=2, quadratic 

congruence, etc. A higher degree congruence is a congruence with 𝑑𝑒𝑔 𝑓 ≥ 2.  

2.4. Solving Linear Congruences 

For a positive integer n, and  𝑎 ∈ ℤ, we say that 𝑎’ ∈ ℤ is a multiplicative inverse of a modulo n if  𝑎 𝑎’ ≡
1(𝑚𝑜𝑑 𝑛). 

Theorem 2.2.  Let a, n∈ℤ with n>0. Then a has a multiplicative inverse modulo n if and only if 𝑎 and 𝑛 are 

relatively prime. 

Note that the existence of multiplicative inverse of a modulo n depends only of the value of a modulo n; that is, if 
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a≡b (mod n), then a has an inverse if and only if b does. Indeed, by theorem 3, if 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛), then for any 

integer a’, 𝑎𝑎’ ≡ 1 (𝑚𝑜𝑑 𝑛) if and only if  𝑏𝑎’ ≡ 1 (𝑚𝑜𝑑 𝑛). 

Theorem2.3. Let a, b, n∈ ℤ with n>0, and let d=gcd (a, n). If 𝑑|𝑏, the congruence  ax≡ b (mod n) has a solution 

𝑥0; moreover, any integer x is a solution if and only if x≡𝑥0 (mod 𝑛/𝑑).If 𝑑 ∤ 𝑏, then the congruence 

ax≡𝑏 (𝑚𝑜𝑑 𝑛)has no solution z. 

Corollary 2.4. Let a, b, n∈ ℤ with n>0. If a is relatively prime to n, then the congruence ax≡ b (mod n) has a solution 

𝑥0; moreover, any integer x is a solution if and only if x≡𝑥0 (mod n). 

Example 2.1.  Solve 6x≡7 (mod 8). Since (6,8) =2∤7, there are no solutions. 

Example 2.2. Solve 3x ≡ 7(mod 4). Since (3,4) =1|7, there will be 1 solutions mod 4. We will find it in three 

different ways.  

 Using Linear Diophantine Equations:3x≡7 (mod 4) implies 3x +4y =7 for some y. By inspection 𝑥0 =
1, 𝑦0 = 1 𝑖𝑠 is a particular solution. (3, 4) =1, so the general solution is  

 x≡1 (mod 4) 

 Using the Euclidian algorithm. Since (3, 4) =1, some linear combination of 3 and 4 is equal to 1. In fact, (-

1).3+ 1.4 = 1. 

 Using inverse mod 4. Here is the table of multiplication mod 4: 

Table 1: multiplication modulo 4 

We see that 3.3≡1 (mod 4), so, multiply the congruence by 3:3x≡ 7 (mod 4), x≡21≡1(mod 4). ∎ 

 The Euler Method 

This is a method to solve a linear Diophantine equation 𝑎𝑥 + 𝑏𝑦 = 𝑐 .It is equally a way of solving 

congruence   𝑎𝑥 ≡ 𝑐(𝑚𝑜𝑑𝑏). The Euler method for solving 𝑎𝑥 + 𝑏𝑦 = 𝑐  involves taking congruences, and also 

changing congruences to equations. 

Procedure:  Euler’s method for solving linear congruences.  

In solving a linear congruence 𝑎𝑥 ≡ 𝑏 (𝑚𝑜𝑑 𝑐). 
i. Change congruence to an equation.: ax=b+cy 

ii. Take the equation and change it to congruence modulo the smallest coefficient.  

iii. Simplify and repeat as many as necessary, till you get the solution x≡ d mod c. 

Example 2.3. Solve the Linear congruence 3x≡ 5(mod 7) 

Solution: (i) converting to equation, we get 3x=5+7y, for y in Z. 

 (ii) Changing to congruence of smaller co-efficient, we obtain the following congruence 7𝑦 ≡
−5(𝑚𝑜𝑑 3) 

  Then, (iii) simplifying the congruence in (ii), we have 𝑦 ≡ −2 (𝑚𝑜𝑑 3). Then y= -2.and 𝑥 =
5+7(−2)

3
= −

9

3
=

−3. Thus, any solution x of the congruence 3x≡ 5(mod 7) is given by 𝑥 ≡ −3( 𝑚𝑜𝑑 7) 

* 
0 1 2 3 

0 
0 0 0 0 

1 
0 1 2 3 

2 
0 2 0 2 

3 
0 3 2 1 
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Remark 2.1.  Recall  ℤ𝑛
∗ denotes the set of invertible elements of the ring ℤ𝑛1. The number of elements of   ℤ𝑛

∗ 

is denoted by φ (n). 

Definition 2.2. Euler’s totient function φ (n) is defined for positive integer n as the number of elements of ℤ𝑛
∗. 

Equivalently, φ (n) is equal to the number of integers between 0 and n-1 that are relatively prime to n.  

Example 2.4. φ (1) =1, φ (2) =1, φ (3) =2 and φ (4) =2.  

Remark 2.2.  we note that  ℤ𝑚
∗ is a group with φ(m) elements. It follows that if gcd (x, m) =1, �̅� is an element of 

 ℤ𝑚
∗ and by Lagrange’s theorem on finite groups,�̅�𝜑(𝑚) = 1 in ℤ𝑚 . Hence, we have 𝑥𝜑(𝑚) ≡ 1(𝑚𝑜𝑑 𝑚) for each 

x, gcd (x, m) =1. As consequence, we get:  

Theorem 2.5. (Fermat’s Little Theorem):  For every integer x and p, p prime, 𝑥𝑝 ≡ 1(𝑚𝑜𝑑 𝑝) .  

2.5. System of Linear Congruence 

Here under, we discuss system of linear congruences in one variable.  

Definition 2.3: Suppose 𝑚1 , 𝑚2 ………𝑚𝑛  are natural numbers, 𝑎𝑖,𝑏𝑖 , 𝑖 = 1,2,3, ……… , 𝑛 are integers. Then  

{

𝑎1𝑥 ≡ 𝑏1(𝑚𝑜𝑑 𝑚1  )

𝑎2𝑥 ≡ 𝑏2(𝑚𝑜𝑑 𝑚2  )
⋮

𝑎𝑛𝑥 ≡ 𝑏𝑛(𝑚𝑜𝑑 𝑚𝑛  )

                                                                (*) 

, is called a system of linear congruences in on variable. 

  Definition 2.4: An integer 𝑥0 is called a solution of the system (*) iff 𝑎𝑖𝑥0 ≡ 𝑏𝑖(𝑚𝑜𝑑 𝑚𝑖  ), for every i=1, 2, …, 

n. 

Remark 2.3.  In view of the cancelation law, each congruence of the system in (*) is equivalent to x≡ 𝑐𝑖 (𝑚𝑜𝑑 
𝑚𝑖

𝑑𝑖
)  

,  

Where 𝑑𝑖 = 𝑔𝑐𝑑 (𝑎𝑖 , 𝑚𝑖) and some appropriate integers  𝑐𝑖. Hence it suffices to develop a technique that solves 

the system  

x≡ 𝑐𝑖 (𝑚𝑜𝑑 
𝑚𝑖

𝑑𝑖
)  , i=1, 2, ………, n 

 for arbitrary but fixed integers 𝑐1 ,𝑐2 , ……… , 𝑐𝑛  and natural numbers𝑚1 , 𝑚2 ………𝑚𝑛 . 

Example2.5.  solve the following system of congruences 

{
2𝑥 ≡ 4(𝑚𝑜𝑑 9)
3𝑥 ≡ 15(𝑚𝑜𝑑 12)

 

Solution: Since (2, 9) =1|4 and (3, 12) =3|15, it is clear that each of the congruences in the system has a solution. 

Evidently, 2𝑥 ≡ 4(𝑚𝑜𝑑 9) is equivalent to 𝑥 ≡ 2(𝑚𝑜𝑑 9)  and 3𝑥 ≡ 15(𝑚𝑜𝑑 12) is equivalent to  𝑥 ≡
1(𝑚𝑜𝑑 4). Hence, the complete solution of  2𝑥 ≡ 4(𝑚𝑜𝑑 9) is given by  

    S1 = {2 + 9n|n ∈ ℤ},  

While that of 3𝑥 ≡ 15(𝑚𝑜𝑑 12) is given by  

    𝑠2 = {1 + 4𝑚|𝑚 ∈ ℤ}.  

Therefore, S1 ∩ 𝑆2 is the solution of the given system of congruences. Choosing n=-1 and m=-2, for instance, we 

notice that -7 is a solution of the system. It is easy to see that    {x/ x≡-7(mod 36)} is the complete set of solutions 

 
1 Fix a positive integer n. The set  𝑍𝑛 is denote a ring of residue classes modulo n under addition and multiplication modulo n,  

and  ℤ𝑛
∗ form a multiplicative group modulo n. 
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using the next theorem. 

2.6.  Properties of System of Linear Congruences 

Theorem2.6.  The system of congruences  

   {
𝑥 ≡ 𝑎(𝑚𝑜𝑑 𝑚)
𝑥 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

 

has a solution iff (𝑚, 𝑛)|(𝑎 − 𝑏). Moreover, if 𝑥0 is a solution of the system, any other solution is given by 𝑥 ≡
𝑥0(𝑚𝑜𝑑 [𝑚, 𝑛]). 

The integer 𝑥0 is a solution of the system iff 𝑥0 = 𝑎 +𝑚𝑦 and 𝑎 + 𝑚𝑦≡b (mod n), for some integer y. This is 

equivalent to saying that y is a solution of the linear congruence mx ≡b-a (mod n).  

  In view of a theorem of solving linear congruences, this holds iff(𝑚, 𝑛)|(𝑎 − 𝑏). To prove the second part of the 

theorem, suppose 𝑥0 and 𝑥 are any two solutions of the system. Then 𝑥 ≡ 𝑎 ≡ 𝑥0(𝑚𝑜𝑑 𝑚) and 𝑥 ≡ 𝑏 ≡
𝑥0(𝑚𝑜𝑑 𝑛). It follows that 𝑥 − 𝑥0 is a multiple of m and n, and hence 𝑥 ≡ 𝑥0(𝑚𝑜𝑑 [𝑚, 𝑛]). 

Lemma 2.7. If 𝑚1 , 𝑚2 ………𝑚𝑛 are natural numbers, a and are integers such that 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 (𝑚1, 𝑚𝑗)),   i=2, 

3, …, n, then 𝑎 ≡ 𝑏(𝑚𝑜𝑑 (𝑚1, [𝑚2 …𝑚𝑛 ])). 

Proof: Assume the hypothesis holds and let p be a prime such that 𝑝𝜃 divides (𝑚1, [𝑚2 …𝑚𝑛 ]).Then 𝑝𝜃|𝑚1 

and 𝑝𝜃|[𝑚2 …𝑚𝑛 ]. It follows that for some 𝑖0=2, 3, …, n  𝑝𝜃|𝑚𝑖0   and hence 𝑝𝜃|(𝑚1, 𝑚𝑖0). Since𝑎 ≡

𝑏 (𝑚𝑜𝑑 (𝑚1, 𝑚𝑖0)), we conclude that 𝑝𝜃 is a factor of  𝑎 − 𝑏 . As p is an arbitrary prime and θ is any non-negative 

integer, we conclude that  𝑎 ≡ 𝑏(𝑚𝑜𝑑 (𝑚1, [𝑚2 …𝑚𝑛 ])). 

Theorem 2.8. The system of linear congruences  

   {

𝑥 ≡ 𝑎1(𝑚𝑜𝑑 𝑚1  )

𝑥 ≡ 𝑎2(𝑚𝑜𝑑 𝑚2  )
⋮

𝑥 ≡ 𝑎𝑛(𝑚𝑜𝑑 𝑚𝑛  )

    

has a solution iff (𝑚𝑖 , 𝑚𝑗)|(𝑎𝑖 − 𝑎𝑗) for every i and j=1, 2, …., n. Moreover, if 𝑥0 is a solution of the system any 

other solution, x, is given by 𝑥 ≡ 𝑥0(𝑚𝑜𝑑 [𝑚1 , 𝑚2 …𝑚𝑛 ]). 

Proof: Suppose the system has a solution. Then for each pair I and j, the system  

   {
𝑥 ≡ 𝑎𝑖(𝑚𝑜𝑑 𝑚𝑖  )
𝑥 ≡ 𝑎𝑗(𝑚𝑜𝑑 𝑚𝑗  )

 

has a solution. In view of the above theorem, this true iff    (𝑚𝑖, 𝑚𝑗)|(𝑎𝑖 − 𝑎𝑗) .This completes the proof of the 

forward implication. 

To prove the converse of the theorem, we assume the result holds for any system consisting of 𝑛 − 1 linear 

congruences. Then the system  

                  𝑥 ≡ 𝑎𝑖(𝑚𝑜𝑑 𝑚𝑖  ) , 𝑖 = 1,2, … . . , 𝑛 − 1, has a solution 𝑥0. Now consider the system    

{
𝑥 ≡  𝑥0(𝑚𝑜𝑑  [𝑚1 , 𝑚2 …𝑚𝑛−1 ] )

𝑥 ≡ 𝑎𝑛(𝑚𝑜𝑑 𝑚𝑛 )
  and claim that the system has a solution. This assertion equivalent to saying 

([𝑚1 , 𝑚2 …𝑚𝑛−1 ], 𝑚𝑛 ) is a factor of 𝑥0 − 𝑎𝑛. We show that the latter holds. Indeed, since 𝑥0 ≡ 𝑎𝑖(𝑚𝑜𝑑 𝑚𝑖) for 

each i= 1, 2, ……., n-1, we notice that for each i= 1, 2, ……., n-1,   

   𝑥0 ≡ 𝑎𝑖  (𝑚𝑜𝑑 (𝑚𝑖 , 𝑚𝑛)).  

Thus   (𝑥0 − 𝑎𝑖) + (𝑎𝑖 − 𝑎𝑛) ≡ 0(mod (𝑚𝑖 , 𝑚𝑛)) 

yielding 𝑥0 ≡ 𝑎𝑛(mod (𝑚𝑖, 𝑚𝑛)), i=1, 2, ..., n-1. By the above lemma, it follows that  
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𝑥0 ≡ 𝑎𝑛(mod ([𝑚1 , 𝑚2 …𝑚𝑛−1 ]  ,𝑚𝑛)). 

Consequently, the system of congruences  

  {
𝑥 ≡  𝑥0(𝑚𝑜𝑑  [𝑚1 , 𝑚2 …𝑚𝑛−1 ] )

𝑥 ≡ 𝑎𝑛(𝑚𝑜𝑑 𝑚𝑛 )
  has a solution. This solution is clearly a solution of the 

system  𝑥 ≡ 𝑎𝑖(𝑚𝑜𝑑 𝑚𝑖  ), 𝑖 = 1,2,   .   .   . , 𝑛 . 

Finally, if  𝑥 and   𝑥0 are solutions of the system, then 

 𝑥 ≡ 𝑎𝑖 ≡  𝑥0(𝑚𝑜𝑑 𝑚𝑖  ), 𝑖 = 1,2,   .   .   . , 𝑛. Hence 𝑥 −  𝑥0 is a common multiple of 

𝑚1 , 𝑚2 ………𝑚𝑛 . it  follows 𝑥 ≡ 𝑥0(𝑚𝑜𝑑 [𝑚1 , 𝑚2 …𝑚𝑛 ]). 

Next, we consider system of linear congruences with respect to moduli that are relatively prime in pairs. The result 

we state here is known as the Chinese remainder theorem, and is extremely useful in a number of contexts. 

Corollary 2.9. (Chinese Remainder Theorem) suppose 𝑚1 , 𝑚2 ………𝑚𝑛  are natural numbers that are pair wise 

relatively prime and 𝑎1, 𝑎2 ,…, 𝑎𝑛 are arbitrary integers. Then the system      𝑥 ≡ 𝑎𝑖(𝑚𝑜𝑑 𝑚𝑖  ), 𝑖 = 1,2,   .   .   . , 𝑛 

has a solution. Moreover, if x and y are solution of the system then 𝑥 ≡ 𝑦(𝑚𝑜𝑑 𝑚1 . 𝑚2 …𝑚𝑛 ). 

Proof: since for every distinct i and j,(𝑚𝑖 , 𝑚𝑗) = 1, and hence [𝑚1 ,𝑚2 …𝑚𝑛 ]= 𝑚1 . 𝑚2 …𝑚𝑛  the corollary is 

immediate from theorem proved above. 

Remark 2.4.  The proof in theorem 10 does not only give a necessary and sufficient condition for existence of 

solutions for the system but also an algorithm that could be used to find a solution. Indeed, if we are given a system 

of congruences 

    𝑥 ≡ 𝑎𝑖(𝑚𝑜𝑑 𝑚𝑖  ), 𝑖 = 1,2,   .   .   . , 𝑛, 

then we first obtain a solution 𝑥0 to 𝑥 ≡ 𝑎𝑖(𝑚𝑜𝑑 𝑚𝑖  ), 𝑖 = 1,2, and solve the system  

{
𝑥 ≡ 𝑥0(𝑚𝑜𝑑 [𝑚1 , 𝑚2 ])

𝑥 ≡ 𝑥0(𝑚𝑜𝑑 𝑚3)
 

Obtaining a solution 𝑥1 of the last system, we again solve  

  {
𝑥 ≡ 𝑥1(𝑚𝑜𝑑 [𝑚1 , 𝑚2 , 𝑚3])

𝑥 ≡ 𝑎4(𝑚𝑜𝑑 𝑚4)
 

In this manner we obtain a specific solution to the system and use the theorem to find the complete solution of the 

system. 

Example 2.6.  Find the complete solution of the system of congruences  

{

𝑥 ≡ 3(𝑚𝑜𝑑 2)

𝑥 ≡ 4(𝑚𝑜𝑑 3)
𝑥 ≡ 2(𝑚𝑜𝑑 5)

𝑥 ≡ 5(𝑚𝑜𝑑 7)

 

Solution: Clearly the system has a solution. First consider the system  {
𝑥 ≡ 3(𝑚𝑜𝑑 2
𝑥 ≡ 4(𝑚𝑜𝑑 3)

 

𝑥0 is a solution of the system iff  𝑥0 = 3 + 2𝑡 = 4 + 3𝑞 for some integers t and q. From the Diophantine equation  

3 + 2𝑡 = 4 + 3𝑞 , we get t=2 and q= 1 to be particular solution. Thus 𝑥0 =
7 𝑖𝑠 𝑎 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚. 𝑠𝑖𝑛𝑐𝑒 [2, 3]=6, any solution of the system is given by  𝑥 ≡ 7(𝑚𝑜𝑑 6)  

Next we consider the subsystem  {
𝑥 ≡ 7(𝑚𝑜𝑑 6)
𝑥 ≡ 2(𝑚𝑜𝑑 5)

 

Using similar argument, we obtain -23 as a specific solution of the subsystem and the complete solution is given 
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by  

   𝑥 ≡ −23(𝑚𝑜𝑑 30). 

We obtain -2543 as a specific solution of the subsystem and the complete solution is given by   

 𝑥 ≡ −2543(𝑚𝑜𝑑 210) 

Since −2543 ≡ 187(𝑚𝑜𝑑 210), the complete solution of the system is given by 𝑥 ≡ 187(𝑚𝑜𝑑 210) 

2.7. Properties of the Euler’s Totient function  

Theorem 2.10. The Euler’s totient function, φ, is multiplicative.  

Example 2.7. consider m=56. Then, it is evident that 𝜑 (56) =  𝜑 (7). 𝜑 (8) = 6 × 4 = 24, where 7 and 8 are 

relatively prime. But, though 56 = 4 × 14 , 𝜑 (56) ≠  𝜑 (4). 𝜑 (14) = 12 because 4 and 14 are not relatively 

prime. 

Theorem2.11.  If p is prime and n is natural number, then φ (𝑝𝑛) = 𝑝𝑛−1(𝑝 − 1).In particular, φ (𝑝) = 𝑝 − 1. 

Corollary 2.12.  If 𝑝1, 𝑝2, …… , 𝑝𝑛 are distinct prime factors of the natural number m, then φ(m) =m 

𝑛

∏(1 −
1

𝑝𝑖
)

𝑖 = 1

. 

Theorem 2.13.  (Euler- Fermat’s Theorem): If m is positive integer and (a, m) =1, then 
 
𝑎
𝛼(𝑚)

≡ 1 (𝑚𝑜𝑑 𝑚). 

 Note that Euler- Fermat’s Theorem is the general case of Fermat’s little Theorem. 

2.8. Properties Higher Order Congruences 

What has been developed in the previous section of this chapter can also be used to solve higher order congruence 

f(x) ≡0(𝑚𝑜𝑑 𝑚). This is usually done by reducing the congruence to one of lower degree.  

Theorem 2.14. ( Factor Theorem) b is a solution of the congruence 𝑓(𝑥)  ≡ 0(𝑚𝑜𝑑 𝑚) iff 𝑓(𝑥) ≡
(𝑥 − 𝑏)𝑔(𝑥)(𝑚𝑜𝑑 𝑚) for some polynomial 𝑔(𝑥) with integer coefficients and 𝑑𝑒𝑔 𝑔 < 𝑑𝑒𝑔 𝑓. 

Corollary 2.15. If p is a prime, f is a polynomial of degree n and 𝑏1, 𝑏2, … , 𝑏𝑡  are incongruent solutions of 𝑓(𝑥) ≡
0(𝑚𝑜𝑑 𝑝), then there exists an integer coefficient polynomial 𝑔𝑡(𝑥) of degree 𝑛 − 𝑡 such that  

     𝑓(𝑥) ≡ (𝑥 − 𝑏1)(𝑥 − 𝑏2) … (𝑥 − 𝑏𝑡)𝑔𝑡(𝑥)(𝑚𝑜𝑑 𝑝). 

Lemma 2.16.  If f(x) =

𝑛
∑𝑎𝑘𝑥

𝑘

𝑘 = 0
, then 𝑓(𝑎 + 𝑏) = 𝑓(𝑎) + 𝑏𝑓′(𝑎) + 𝑏2𝑞 for some integer q and 𝑓′(𝑥) =

𝑛
∑𝑘𝑎𝑘𝑥

𝑘−1

𝑘 = 0
. 

Theorem 2.17. Assume the p is a prime number and ∝≥2. 𝑥0 is a solution of  𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 𝑝𝛼) iff  𝑥0 =  𝑏 +

𝑐𝑝𝛼−1 with b a solution of f(x)≡0(mod 𝑝𝛼−1) and c is a solution of 
𝑓(𝑏)

𝑝𝛼−1
 +𝑦𝑓′(𝑏) ≡ 0(𝑚𝑜𝑑 𝑝). 

Example 2.8. Find the solution of the congruence  

                    𝑓(𝑥) =𝑥3 − 𝑥2 + 7𝑥 + 1 ≡ 0(𝑚𝑜𝑑 200). 

Solution: Since200 = 23. 52, solving the congruence 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 200) 

Is equivalent to solving the system,  {
𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 8)

𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 25)
 

First, we solve each sub-congruence. Since 1 is the only solution of (𝑥) ≡ 0(𝑚𝑜𝑑 2) , a solution of 𝑓(𝑥) ≡

0(𝑚𝑜𝑑 4) is of the form 1+2c  where c is the solution of                    
𝑓(1)

2
+ 𝑦𝑓′(1) ≡ 0(𝑚𝑜𝑑 2)  

But, f(1)=8 and f’(1)=8. Hence, 0 and 1 are possible choices for c. Thus 1+2c=1 or 3 are solutions of  𝑓(𝑥) ≡
0(𝑚𝑜𝑑 4). 
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Case 1. Suppose we chooses b=1 as a solution of f(x) ≡0 (mod 4). Then we set 𝑥0 = 1 + 4𝑐, where c is a solution 

of the congruence. 

𝑓(1)

4
+ 𝑦𝑓′(1) ≡ 0(𝑚𝑜𝑑 2) 

We notice that c=0 and 1are also possible choices for c. Hence 𝑥0=1, 1+22 = 5 are solutions of  𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 8).  

Case 2. Suppose we chooses b=3 as a solution of f(x) ≡0 (mod 4). Then  

 𝑥0 = 3 + 4𝑐, with c is a solution of the congruence 
𝑓(3)

4
+ 𝑦𝑓′(3) ≡ 0(𝑚𝑜𝑑 2), is a solution of 𝑓(𝑥) ≡

0(𝑚𝑜𝑑 8).But 𝑓(3) = 40 𝑎𝑛𝑑 𝑓′(3) = 28. Thus, again, c=0 or1 are possible solutions of  𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 8). 

We conclude that 1, 3, 5, and 7 are solutions of 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 8) in a complete least residue system (mod 8). Of 

course, these could have been obtained by direct substitution. 

With regard to the congruence 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 25) ,we first solve 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 5) . by substitution, 3 is the only 

solution in the complete least residue system (mod 5). Then  𝑥0 = 3 + 5𝑐 is the solution of 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 25) 

where c is the solution of the congruence 
𝑓(3)

5
+ 𝑦𝑓′(3) ≡ 0(𝑚𝑜𝑑 5),. But 𝑓(3) = 40 𝑎𝑛𝑑 𝑓′(3) = 28. Hence, c 

is the solution of     28y +8≡0 (mod 5). We notice that c=4 is the solution of the linear congruence in the complete 

least of residue system (mod 5). Hence, 23 is the only solution of       𝑓(𝑥) ≡0(mod 25) in the complete least residue 

system (mod 25). Finally, we solve each of the following system of congruences 

 {
𝑥 ≡ 1(𝑚𝑜𝑑 8)
𝑥 ≡ 23(𝑚𝑜𝑑 25)

  {
𝑥 ≡ 3(𝑚𝑜𝑑 8)
𝑥 ≡ 23(𝑚𝑜𝑑 25)

{
𝑥 ≡ 5(𝑚𝑜𝑑 8)
  𝑥 ≡ 23(𝑚𝑜𝑑 25)

{
𝑥 ≡ 7(𝑚𝑜𝑑 8)
𝑥 ≡ 23(𝑚𝑜𝑑 25)

 

Since (8, 25) =1, each system has a solution and we find that 73, 123, 173, and 23 are the respective solutions of 

the system in the complete least residue system (mod 200). 

If the degree of the polynomial is larger than the modulus, we require the following theorem. 

Theorem 2.18. If p is a prime and 𝑑𝑒𝑔 𝑓 = 𝑛 ≥ 𝑝 , then there exists a polynomial 𝑟(𝑥) with degree less than p 

such that 𝑥0 is the solution of 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 𝑝)  if and only if it is a solution of 𝑟(𝑥) ≡ 0(𝑚𝑜𝑑 𝑝) . 

Proof: By long division method, let f(x)= (𝑥𝑝 − 𝑥)𝑞(𝑥) + 𝑟(𝑥) with 𝑑𝑒𝑔 𝑟 ≤ 𝑝 − 1 and r(x)=0. By Fermat’s little 

theorem, for every𝑥 = 0,1,2, …… , 𝑝 − 1, 𝑥𝑝 ≡ 𝑥(𝑚𝑜𝑑 𝑝).Hence, 𝑥0 is a solution of  𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 𝑝) iff it is a 

solution of 𝑟(𝑥) ≡ 0(𝑚𝑜𝑑 𝑝). This completes the proof. 

Example 2.9.  Solve the congruence 𝑥9 + 2𝑥6 − 𝑥5 − 𝑥2 + 4𝑥 ≡ 0(𝑚𝑜𝑑 25). 

Solution: we first solve the congruence f(x) =𝑥9 + 2𝑥6 − 𝑥5 − 𝑥2 + 4𝑥 ≡ 0(𝑚𝑜𝑑 5). 

Since 𝑥5 ≡ 𝑥(𝑚𝑜𝑑 5), solving 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 5) is equivalent to solving  

𝑥 + 2𝑥2 − 𝑥 − 𝑥2 + 4𝑥 ≡ 0(𝑚𝑜𝑑 5) 

    𝑥2 + 4𝑥 ≡ 0(𝑚𝑜𝑑 5) 

Hence, 0 and 1 are the solution of 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑 5). Using b=0, 𝑥0 = 5𝑐 is a solution of 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑25) 

where c is a solution of 
𝑓(0)

5
+ 𝑦𝑓′(0) ≡ 0(𝑚𝑜𝑑 5). But f (0) =0 and f’ (0) =4. Hence c =0 is a solution of {0,1,2, 

3, 4}. Hence 0 is a solution of the congruence  𝑓(𝑥) ≡ 0(𝑚𝑜𝑑25) . 

Using b=1, 𝑥0 = 1 + 5𝑐 is the solution of 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑25) where c is a solution of 
𝑓(1)

5
+ 𝑦𝑓′(1) ≡ 0(𝑚𝑜𝑑 5). 

But f (1) =5 and f’ (1) =18. Therefore, c=3 is the solution of the linear congruence 1+3y≡ 0(𝑚𝑜𝑑 5). It follows 

that 1+3(5) =16 is the solution of 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑25). Hence, o and 16 are the solutions of 𝑓(𝑥) ≡ 0(𝑚𝑜𝑑25). 
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3. Main Result  

In this section, we develop a modified algorithm for solving system of linear congruences without actually know 

that whether the system has solution or not, and we also use it in solving higher order congruences and their 

corresponding systems. 

 

Proposition 3.1.  Algorithm (Intelligent Inspection Type-I) 

 

(1)    Let {

𝑥 ≡ 𝑎1(𝑚𝑜𝑑 𝑚1)
𝑥 ≡ 𝑎2(𝑚𝑜𝑑 𝑚2)

⋮
𝑥 ≡ 𝑎𝑛(𝑚𝑜𝑑 𝑚𝑛)

 be a given system of linear congruences, where 𝑎1,, 𝑎2,⋯𝑎𝑛 are integers

and 𝑚1,, 𝑚2,⋯𝑚𝑛 are positive integers with 𝑚1 < 𝑚2 < ⋯ < 𝑚𝑛 . Let N=LCM (m1,, m2,⋯mn).  

Step-1: Find the N 

Step-2: Starting with the initial solution of  𝑥 ≡ 𝑎𝑛(𝑚𝑜𝑑 𝑚𝑛),  
Step-3: Obtain all consecutive solutions of the underlying linear congruence up to the largest, which is less 

than N. 

Step-4. Test whether each of the solutions of the congruence satisfy the remaining n-1 linear congruences in 

the system, or not. If we find one, that is the particular common solution of the system. Then we stop. 

Otherwise, we continue the same manner until we get the required solution, which is less than N.  

Note 3.1: if such a solution does not exist, it is possible to conclude that the system has no solution. 

 

Example 3.1. Solve the following system 

 

{
2𝑥 ≡ 3(𝑚𝑜𝑑 5)
3𝑥 ≡ 6(𝑚𝑜𝑑 7)

  

Solution: Using cancellation law, the above system is reduced to the system 

 {
𝑥 ≡ 4(𝑚𝑜𝑑 5)
𝑥 ≡ 2(𝑚𝑜𝑑 7)

 

In using the above algorithm, the largest modulus is 7 and LCM (5, 7) =35. Then we find and test the solutions 

of the congruence 𝑥 ≡ 2(𝑚𝑜𝑑 7) starting with the initial one, that is,𝑥0 = 2. Clearly, 2 is not solution of the 

other congruence. Then consider the next solution.  

Any solution x is given by  𝑥 ≡ 2(𝑚𝑜𝑑 7) . In view division algorithm, it is given by x=2+7t, where t=0, 1, 

2, 3, 4 so that x is less than 35. 

Table 2: Solution of System of Two Linear Congruences with One Variable  

t x=2+7t Is x solution of  𝑥 ≡ 4(𝑚𝑜𝑑 5? Remark 

0 2 No 9 is the solution of the system 

1 9 Yes 

2 16 No 

3 23 No 

4 30 No 

 Thus, the solution of 𝑥 ≡ 2(𝑚𝑜𝑑 7) which is also satisfies 𝑥 ≡ 4(𝑚𝑜𝑑 5), is 9. Then any other solution x of 

the system is given by 𝑥 ≡ 9(𝑚𝑜𝑑 35).  
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Example 3.2. Solve the following system  {

𝑥 ≡ 2(𝑚𝑜𝑑 3)
𝑥 ≡ 3(𝑚𝑜𝑑 5)

𝑥 ≡ 2(𝑚𝑜𝑑 7)

2 

Solution: We notice that the largest modulus in the system is 7 and LCM (3, 5, 7)  = 105. According to the 

algorithm, we start solving the congruence𝑥 ≡ 2(𝑚𝑜𝑑 7). In view of division algorithm, 𝑥 ≡ 2(𝑚𝑜𝑑 7) is 

written as 𝑥 = 2 +  7𝑡, where t= 0, 1, 2, 3, …, 14. 

Table 3: Solution of System of Three Linear Congruences with One Variable 

t x=2+7t Is x solution of   

𝑥 ≡ 2(𝑚𝑜𝑑 3)? 

Is x solution of   

𝑥 ≡ 3(𝑚𝑜𝑑 5)? 

Remark 

0 2 Yes No Not solution of the System 

1 9  No No Not solution of the System 

2 16     No No Not solution of the System 

3 23 Yes  Yes  Solution of the System 

4 30 No No Not solution of  the System 

5 37 No No Not solution of  the  System 

6 44 Yes  No Not solution of  the System 

7 51 No No Not solution of  the System 

8 58 No Yes  Not solution of  the System 

9 65 Yes No Not solution of  the System 

10 72 No No Not solution of  the System 

11 79 No No Not solution of  the System 

12 86 Yes  No Not solution of  the  System 

13 93 No Yes  Not solution of  the System 

14 100 No No Not solution of  the System 

           (*) <105= 𝐿𝐶𝑀 (3, 5, 7)3 

From the above analysis using the algorithm, the particular solution of the system is 23, and any solution x of 

the system is given by 𝑥 ≡ 23(𝑚𝑜𝑑 105). 
 

Proposition 3.2.  Algorithm (Intelligent Inspection type-II) 

Step-1: Find the immediate (initial) solution of the linear congruence 𝑥 ≡ 𝑎𝑛(𝑚𝑜𝑑 𝑚𝑛), clearly the solution 

is 𝑎𝑛. 

Step-2: Test whether 𝑎𝑛 is the solution at least one of the remaining n-1 linear congruences in the system, or 

not. 

 
2 ‘Sun Zi Suanjing (Problem 26' Volume 3) reads: "There are certain things whose number is unknown. A 

number is repeatedly divided by 3, the remainder is 2; divided by 5, the remainder is 3; and by 7, the remainder 

is 2. What will the number be?"’, it was the first problem that led to the development of Chinese Remainder 

theorem as cited by SHEN KANGSHENG.  
3 The inequality (*) refers to the fact that the values of x in the second column are the consecutive solutions of 

𝑥 ≡ 2(𝑚𝑜𝑑 7) which are  𝐿𝐶𝑀 (3, 5, 7) = 105. Note that they are not all the solutions of the system considered. 
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Step-3: if  𝑎𝑛 is the solution of  𝑥 ≡ 𝑎𝑛−1(𝑚𝑜𝑑 𝑚𝑛−1), we find the LCM(𝑚𝑛−1, 𝑚𝑛) and the successive 

positive solution 𝑎𝑛 + 𝑡. LCM(𝑚𝑛−1, 𝑚𝑛)  modulo LCM(𝑚𝑛−1, 𝑚𝑛) where 𝑡 = 0, 1, …  such that 𝑎𝑛 +
𝑡. LCM(𝑚𝑛−1, 𝑚𝑛)    is less than  LCM(𝑚𝑛−2, 𝑚𝑛−1, 𝑚𝑛)  , followed by application of  Step-2 on the linear 

congruence with modulus 𝑚𝑛−2. 

Step-4. Continuing the same manner, we get a particular common solution 𝑥0 of the given system (1). 

Moreover, any solution x of the system is given by 𝑥 ≡ 𝑎𝑛 + 𝑡. LCM(𝑚2, … ,𝑚𝑛)(𝑚𝑜𝑑 𝑁). 

Remark 3.1. If such a solution does not exist, it is possible to conclude that the system has no solution. 

The next example is already solved under section 2.5., in example #. here we solve it again for the purpose of 

making comparison between the former and the new algorithm developed in this paper. Thus, making use of the 

later algorithm we find the solution much more (significantly) quicker than the former one in which iterative 

grouping, conversion to system of linear equation and application of Euclid’s algorithm is required.  

Example 3.3. Find the complete solution of the system of congruences  

{

𝑥 ≡ 3(𝑚𝑜𝑑 2)

𝑥 ≡ 4(𝑚𝑜𝑑 3)

𝑥 ≡ 2(𝑚𝑜𝑑 5)

𝑥 ≡ 5(𝑚𝑜𝑑 7)

 

Solution:  We start with the linear congruence 𝑥 ≡ 5(𝑚𝑜𝑑 7). Clearly, the immediate solution is 5. According to 

the above algorithm, the next solution, which satisfies the second4 congruence   is of the form 5 + 7𝑡, 𝑡 =
0, 1, 2,3, 4 < 5 Thus, this solution is 12 =5+7(1). Again, we find the next solution in a similar manner, where the 

solution has the form 12+t. LCM (7,5) = 12+35t with  𝑡 = 0, 1, 2 < 3. Then the solution is 82 in modulo 105, 

because which satisfies the third congruence. The final solution which is the particular solution of the given system 

of the form 82+105t, with 𝑡 = 0, 1 < 2. Thus, the solution is 187 in modulo 210 =  𝐿𝐶𝑀(2, 3, 5, 7).    

4. Application to solving Higher Oder congruences and system of Higher Oder congruences 

In this section we use the above algorithm in solving Higher Order congruences and their corresponding systems. 

We examine the algorithm by giving the following couple of illustrative examples. 

4.1. Solving Higher order congruences 

Example 4.1.  Solve the following 

 

𝑓(𝑥) = 9𝑥17 + 3𝑥10 + 3𝑥9 − 2𝑥2 + 2 ≡ 0(𝑚𝑜𝑑 15). …………….………………………... (1) 

Solution: using theorem 2.1(iii), and definition of congruence, we obtain the following system  

  {
9𝑥17 + 3𝑥10 + 3𝑥9 − 2𝑥2 + 2 ≡ 0(𝑚𝑜𝑑 5)

9𝑥17 + 3𝑥10 + 3𝑥9 − 2𝑥2 + 2 ≡ 0(𝑚𝑜𝑑 3)
…………….………………………... (2) 

Now, using theorem 2.18, we find the solutions of each one of the sub-congruences solving them separately. It is 

found that the particular incongruent solutions (mod5) of 9𝑥17 + 3𝑥10 + 3𝑥9 − 2𝑥2 + 2 ≡ 0(𝑚𝑜𝑑 5) are  1 

and 2. Moreover, any solution x of this sub-congruence is given by: 

 𝑥 ≡ 1(𝑚𝑜𝑑 5) or  

𝑥 ≡ 2(𝑚𝑜𝑑 5)…………….………………………... (3) 

Similarly, by the same theorem used above, we possibly found the particular incongruent solutions (mod 3) of 

9𝑥17 + 3𝑥10 + 3𝑥9 − 2𝑥2 + 2 ≡ 0(𝑚𝑜𝑑 3) are  1 and 2. Moreover, any solution x of this sub-congruence is 

given by: 

𝑥 ≡ 1(𝑚𝑜𝑑 3) or  

𝑥 ≡ 2(𝑚𝑜𝑑 3)…………….………………………... (4) 

Now, we form the following four systems of linear congruences using the linear congruences in (3) 

and (4), and we obtain the solutions of these systems applying the new algorithm developed. 

(i) {
𝑥 ≡ 1(𝑚𝑜𝑑 5)
𝑥 ≡ 1(𝑚𝑜𝑑 3)

   (ii)   {
𝑥 ≡ 1(𝑚𝑜𝑑 5)
𝑥 ≡ 2(𝑚𝑜𝑑 3)

     (iii)  {
𝑥 ≡ 2(𝑚𝑜𝑑 5)
𝑥 ≡ 1(𝑚𝑜𝑑 3)

    (iv){
𝑥 ≡ 2(𝑚𝑜𝑑 5)
𝑥 ≡ 2(𝑚𝑜𝑑 3)

 

 

 
4 By the second solution we mean the solution which satisfies the linear congruence with lesser modulus (i.e. in this case, 𝑥 ≡
2(𝑚𝑜𝑑 5). 
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In each of the systems (i) to (iv), We start with the linear congruence with the modulus 5. According 

to the above algorithm, the next solution, which satisfies the second5 congruences   is of the form 1 +
5𝑡, 𝑡 = 0, 1, 2 < 3 ,and 2 + 5𝑡, 𝑡 = 0, 1, 2 < 3.Thus, As it can easily be seen, the systems (i) and (iv) take 

on  the solutions 1 and 2 ,that is, where t=0 in both cases. Whereas, in the case of systems (ii) and (iii) the 

solutions are found, respectively, when t=2 and t=1.Thus, the solutions are 11 and 7. Therefore, the 

incongruent solutions modulo 15 of the HOC (1), are 1, 2, 7, and 11. Any solution x of the Higher order 

congruence is given by: 

𝑥 ≡ 1(𝑚𝑜𝑑 15) or  

𝑥 ≡ 2(𝑚𝑜𝑑 15) or  

𝑥 ≡ 7(𝑚𝑜𝑑 15) or  

𝑥 ≡ 11(𝑚𝑜𝑑 15) . 
 

4.2. Solving system of Higher Order Congruences 

Example 4.2.  Solve the following  

{
𝑥2 + 5𝑥 + 4 ≡ 0(𝑚𝑜𝑑21)

𝑥2 + 5𝑥 ≡ 0(𝑚𝑜𝑑 46)
 …………………………… (1) 

Solution: As we have done in above examples, we first reduce  the given system into systems of 

sub-systems of sub- congruences of each of the congruences of the original system, as follows  

{
 

 {
𝑥2 + 5𝑥 + 4 ≡ 0(𝑚𝑜𝑑3)

𝑥2 + 5𝑥 + 4 ≡ 0(𝑚𝑜𝑑7)

{
𝑥2 + 5𝑥 ≡ 0(𝑚𝑜𝑑 2)

𝑥2 + 5𝑥 ≡ 0(𝑚𝑜𝑑 23)

……………………………(2) 

Solving each sub-system in (2), separately; again, by solving each quadratic congruence in the sub-systems using 

factor theorem and theorem 2.18, we obtain, consecutively, the following solutions:    

𝑥 ≡ 1(𝑚𝑜𝑑 3) or  𝑥 ≡ 2(𝑚𝑜𝑑 3)            

 𝑥 ≡ 2(𝑚𝑜𝑑 7) or 𝑥 ≡ 6(𝑚𝑜𝑑 7)          ……………………………. (3) 

𝑥 ≡ 0(𝑚𝑜𝑑 2) or  𝑥 ≡ 1(𝑚𝑜𝑑 2)           

 𝑥 ≡ 0(𝑚𝑜𝑑 23) or 𝑥 ≡ 18(𝑚𝑜𝑑 23)          …………………………….  (4) 

Using linear congruences in (3) and (4), separately, we form the following pair of four systems and we find their 

solutions using the new algorithm as follows: 

 (i) {
𝑥 ≡ 1(𝑚𝑜𝑑 3)
𝑥 ≡ 2(𝑚𝑜𝑑 7)

   (ii)   {
𝑥 ≡ 1(𝑚𝑜𝑑 3)
𝑥 ≡ 6(𝑚𝑜𝑑 7)

     (iii)  {
𝑥 ≡ 2(𝑚𝑜𝑑 3)
𝑥 ≡ 2(𝑚𝑜𝑑 7)

    (iv) {
𝑥 ≡ 2(𝑚𝑜𝑑 3)
𝑥 ≡ 6(𝑚𝑜𝑑 7)

  and  

 As to the algorithm, we start with the initial solutions of the linear congruences with larger moduli 

Table 4: Solution of System of Two linear Congruences in solving SHOC 

t x=2+7t 
Is x solution of 

  {
𝒙 ≡ 𝟏(𝒎𝒐𝒅 𝟑)
𝒙 ≡ 𝟐(𝒎𝒐𝒅 𝟕)

 

Is x solution of 

  {
𝒙 ≡ 𝟐(𝒎𝒐𝒅 𝟑)
𝒙 ≡ 𝟐(𝒎𝒐𝒅 𝟕)

 x=6+7t 

Is x solution of 

  {
𝒙 ≡ 𝟏(𝒎𝒐𝒅 𝟑)
𝒙 ≡ 𝟔(𝒎𝒐𝒅 𝟕)

 

Is x solution of 

  {
𝒙 ≡ 𝟐(𝒎𝒐𝒅 𝟑)
𝒙 ≡ 𝟔(𝒎𝒐𝒅 𝟕)

 

0 2 No  Yes  6 No No  

1 9 No  No  13 Yes No  

2 16 Yes  No  20 No Yes  

 
5 By the second solution we mean the solution which satisfies the linear congruence with lesser modulus (i.e. in this case, 𝑥 ≡
2(𝑚𝑜𝑑 5). 
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In table 4 above, using the algorithm, the incongruent solutions (mod 21) of the sub-system are 2, 13, 16, and 

20. any solution x of the sub-system is given by:   

                  𝑥 ≡ 2(𝑚𝑜𝑑 21),  

    𝑥 ≡ 13(𝑚𝑜𝑑 21), 

    𝑥 ≡ 16(𝑚𝑜𝑑 21) or  

    𝑥 ≡ 20(𝑚𝑜𝑑 21) ………………………………………………….….  (5) 

Similarly, we solve the following systems  

(v) {
𝑥 ≡ 0(𝑚𝑜𝑑 2)
𝑥 ≡ 0(𝑚𝑜𝑑 23)

   (vi)   {
𝑥 ≡ 0 (𝑚𝑜𝑑 2)
𝑥 ≡ 18 (𝑚𝑜𝑑 23)

     (vii)  {
𝑥 ≡ 1(𝑚𝑜𝑑 2)
𝑥 ≡ 0 (𝑚𝑜𝑑 23)

    (viii) {
𝑥 ≡ 1(𝑚𝑜𝑑 2)
𝑥 ≡ 18 (𝑚𝑜𝑑 23)

 

Table 5 :Solution of System of Two Linear Congruences in solving SHOC 

t x=23t 
Is x solution of 

  {
𝑥 ≡ 0(𝑚𝑜𝑑 2)
𝑥 ≡ 0(𝑚𝑜𝑑 23)

 

Is x solution of 

  {
𝑥 ≡ 1(𝑚𝑜𝑑 2)
𝑥 ≡ 0(𝑚𝑜𝑑 23)

 x=18+23t 

Is x solution of 

  {
𝑥 ≡ 0(𝑚𝑜𝑑 2)
𝑥 ≡ 18(𝑚𝑜𝑑 23)

 

Is x solution of 

  {
𝑥 ≡ 1(𝑚𝑜𝑑 2)
𝑥 ≡ 18(𝑚𝑜𝑑 23)

 

0 0 Yes No  18 Yes  No  

1 23 No  Yes  41 No  Yes  

In table 5 above, using the algorithm, the incongruent solutions (mod 46) of the sub-system are 0, 23, 18, and 

41. any solution x of the sub-system is given by:   

                  𝑥 ≡ 0(𝑚𝑜𝑑 46),  

    𝑥 ≡ 23(𝑚𝑜𝑑 46), 

    𝑥 ≡ 18(𝑚𝑜𝑑 46) or  

    𝑥 ≡ 41(𝑚𝑜𝑑 46) ………………………………………………….….  (6) 

Now, using linear congruences in (5) and (6), we form the following sixteen systems and we find their solutions 

using the new algorithm as follows:  

 

{
𝑥 ≡ 2(𝑚𝑜𝑑 21)
𝑥 ≡ 0(𝑚𝑜𝑑 46)

, {
𝑥 ≡ 2 (𝑚𝑜𝑑 21)
𝑥 ≡ 18 (𝑚𝑜𝑑 46)

,  {
𝑥 ≡ 2 (𝑚𝑜𝑑 21)
𝑥 ≡ 23 (𝑚𝑜𝑑 46)

 , {
𝑥 ≡ 2 (𝑚𝑜𝑑 21)
𝑥 ≡ 41 (𝑚𝑜𝑑 46)

 , {
𝑥 ≡ 13(𝑚𝑜𝑑 21)
𝑥 ≡ 0(𝑚𝑜𝑑 46)

,   

{
𝑥 ≡ 13 (𝑚𝑜𝑑 21)
𝑥 ≡ 18 (𝑚𝑜𝑑 46)

, {
𝑥 ≡ 13(𝑚𝑜𝑑 21)

𝑥 ≡ 23 (𝑚𝑜𝑑 46)
 ,  {

𝑥 ≡ 13(𝑚𝑜𝑑 21)
𝑥 ≡ 41 (𝑚𝑜𝑑 46)

 , {
𝑥 ≡ 16(𝑚𝑜𝑑 21)
𝑥 ≡ 0(𝑚𝑜𝑑 46)

,  {
𝑥 ≡ 16 (𝑚𝑜𝑑 21)
𝑥 ≡ 18 (𝑚𝑜𝑑 46)

,   

{
𝑥 ≡ 16(𝑚𝑜𝑑 21)
𝑥 ≡ 23 (𝑚𝑜𝑑 46)

    ,  {
𝑥 ≡ 16(𝑚𝑜𝑑 21)
𝑥 ≡ 41 (𝑚𝑜𝑑 46)

,   {
𝑥 ≡ 20(𝑚𝑜𝑑 21)
𝑥 ≡ 0(𝑚𝑜𝑑 46)

   ,    {
𝑥 ≡ 20 (𝑚𝑜𝑑 21)

𝑥 ≡ 18 (𝑚𝑜𝑑 46) 
,   {

𝑥 ≡ 20(𝑚𝑜𝑑 21)
𝑥 ≡ 23 (𝑚𝑜𝑑 46)

    , 

{
𝑥 ≡ 20(𝑚𝑜𝑑 21)
𝑥 ≡ 41 (𝑚𝑜𝑑 46)
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Table 6: The complete set of integers modulo LCM (21, 46) =966  
t 0
 

1
 

2
 

3
 

4
 

5
 

6
 

7
 

8
 

9
 

1
0 

1
1 

1
2 

1
3 

1
4 

1
5 

1
6 

1
7 

1
8 

1
9 

2
0 

46t 

0
 

4
6 

9
2 

1
3
8 

1
8
4 

2
3
0 

2
7
6 

3
2
2 

3
6
8 

4
1
4 

4
6
0 

5
0
6 

5
5
2 

5
9
8 

6
4
4 

6
9
0 

7
3
6 

7
8
2 

8
2
8 

8
7
4 

9
2
0 

18+ 

46t 1
8 

6
4 

1
1
0 

1
5
6 

2
0
2 

2
4
8 

2
9
4 

3
4
0 

3
8
6 

4
3
2 

4
7
8 

5
2
4 

5
7
0 

6
1
6 

6
6
2 

7
0
8 

7
5
4 

8
0
0 

8
4
6 

8
9
2 

9
3
8 

23+ 

46t 2
3 

6
9 

1
1
5 

1
6
1 

2
0
7 

2
5
3 

2
9
9 

3
4
5 

3
9
1 

4
3
7 

4
8
3 

5
2
9 

5
7
5 

6
2
1 

6
6
7 

7
1
3 

7
5
9 

8
0
5 

8
5
1 

8
9
7 

9
4
3 

41+ 

46t 4
1 

8
7 

1
3
3 

1
7
9 

2
2
5 

2
7
1 

3
1
7 

3
6
3 

4
0
9 

4
5
5 

5
0
1 

5
4
7 

5
9
3 

6
3
9 

6
8
5 

7
3
1 

7
7
7 

8
2
3 

8
6
9 

9
1
5 

9
6
1 

The table 6 contains four groups of integers from which we obtain the incongruent solutions (mod 966) of the 

system (1) using the algorithm. 

 

In each of the systems, we start with the linear congruence with the modulus 46. According to the underlying 

algorithm, the solutions of all the systems, which satisfies the first linear  congruences are of the form 0 + 46𝑡,
18 + 46𝑡, 23 + 46𝑡, and 41 + 46𝑡, 𝑡 = 0, 1, 2, … ,20 < 21 so that all the sixteen solutions are less than LCM(21, 

46). Thus, the incongruent solutions modulo LCM (21, 46) of the SHOC (1), are 23, 41, 184, 202,230,317,391, 

478,506, 667, 685, 713, 800, 874 and 961.  Any solution x of the System Higher order congruences (1) is 

congruent to one of the incongruent solutions modulo 966. 

 

5. Conclusion 

Aside from the known methods and techniques for solving SLC, HOC of composite moduli and SHOC, this 

algorithm provides another way arriving at a particular solution of the underlying congruence equations, that 

minimize the difficulties and the amount of time required in seeking solution significantly. Thus, we introduced 

this algorithm (intelligent inspection) which is easier as compared to Euclid’s Algorithm and Euler’s Method for 

solving linear congruences, it supports tools, mentioned in theorem 2.17. and 2. 18, for solving HOC and their 

systems. With the simplicity of this algorithm, those who are beginners in leaning system of linear congruences 

and their higher degree partners, may found this method more preferable those already published in books and 

journals. Moreover, this algorithm can be used as basis for developing computer program that can solve system of 

linear congruences with much more efficiency, and application of the algorithm in the class room, specifically in 

number theory classes is highly recommended in order to facilitate the teaching learning of the concepts of SLC,  

HOC and SHOC more effectively.  Finally, we suggest for interested scholars in the area, that they would strive 

for developing generalized version of the algorithm, and investigation of further applications of this algorithm and 

related ones. 
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