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Abstract

In the modern times, the populace in most African countries are left wondering whether
the declared election winner actually got the most votes. The validity of the declared
election results in most cases remain questionable. In order to determine the validity of
the declared results, an empirical statistical methodology could be used to give some hint
and or evidence of anomalies in the declared election count data. This paper therefore
considers a statistical method based on the pattern of digits in vote counts known as 2
digit Benfords Law (2BL) that is useful for detecting frand or other anomalies. The 2BL
methodology and other extensions are applied to detect the possible anomalies and frand
in the 2017 Kenyan presidential elections results data. The analysis show that the data
for the top two presidential candidates: Uhuru Kenyatta and Raila Odinga do not follow
the 2BL distribution. The digits are significantly different at 5% significance level when
tested using the chi-square and the Euclidean tests. The mean absolute deviation (M.A.D)
also confirms the non-conformity of the data to the 2BL distributions test. Further tests
namely,the second order test, the summation test and the duplication test are utilized
in order to detected any possible anomalies and frand that could be present. All the
three additional tests confirm the presence of fraud and anomalies in the data. These

are red flags on the credibility of the presidential election results data published by the
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Independent Electoral and Boundaries Commission (IEBC).
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1 Introduction

Kenya is republic in the East Africa that is governed by a democratically elected president.
As a democratic society, all the votes of each citizen should count. This would only result
from a free and fair elections. However, the Kenyan presidential election of 2017 raised a lot
of mflamed discnssions following the declaration of Uhuru Kenyatta as the winner against his
closest opponent Raila Odinga. This has raised the suspicion whether “it is the people who
vote that count; or it is the people who count the votes?" as had stipulated by Joseph Stalin.
The biggest challenge is therefore to determine the election outcome of 2017 really represented
the will of the people or the will of the vote counters that matters.

Some authors like [1] consider an elections as large-scale social experiments in which a
segmented into large number of electoral units. Each of these units represents a standardized
experiment, where each citizen articulates his/her political preference through a vote. Just
like any other experiments are prone to tampering, fraud and errors, the election results can
similarly be interfered with and thereby generating the data (election) results that are erroneous.
Some of the data manipulation practices usually leave traces that can be detected by use of
statistical methodologies such as the Benford's Law [2, 3, 4]. The voting process is not a simple
random process but a complex one. [t involves the voter's decision to vote or not vote. Then
the voter has to decide who to vote for and finally choose the ballot box to cast the vote. There
are also errors inherent in the voting process such as marking the ballot paper twice, casting
the ballot papers into a wrong ballot box among others. Such a process iz really not a pure
stochastic process. Given such kind of complexity, the resulting vote counts can produce digits
that follow Benford's Law and can be referred to as processes that are statistical mixtures.
This means that random portions of the data may come from different statistical distributions
[4]. Therefore, when vote counts are manipulated in a close election, then the resulting data

will not conform to the BL. Variations of the BL methodology has been used for testing the the
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presence of election fraud in many countries including Argentina, Russia and Nigeria among

others |5, 6, 7]

2 Benford’s Law (BL)

The BL deals with the statistical distribution of significant (decimal) digits or, equivalently,
significands viz. [raction parts in floating point arithmetic. To formally introduce the BL,
it is natural to begin by defining the significant and the significand. Any positive digit d,
can be written as S(d) x 10%, where S(d) € [0, 10) is known as the significand while k is an
integer known as the emponent. The significand is also referred to as | the leading digit or the
first digit by some people. This may be confusing, for example, 25678.854 may be written
as 25678854 x 10%. In this case, the significand is 25678854, the leading digit is 2 while the
exponent is 4.

Following [3], for every non-zero real number =, the first significant decimal digit Ih(r)
is the unique integer j € {1,2,....9} satisfying the condition 10%j < |#|10¥(j + 1) for some
integer k then D,(x).

Intuitively, when we consider the first digits of any number we are bound to believe that the
probability of any of the first digits is uniformly distributed. That is, for the set of numbers
{1,2,3,4,5,6,7,9}, the P(Dy =d;) = 1/9.d; = 1,2,...,9 where [); is the first digit. How-
ever, Benford's law shows us that this is not true. In fact, the smaller digits will have larger
probabilities.

A data set is said to satisfy the Benford's Law (BL) for the leading digit [y if the probability

of observing a first digit d; i= approximately

where d; = 1,2 9,

g sy

Further more, the second digit [ is =aid to follow the BL if the probability of observing ds
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as the second digit is given by

P(Ds—da) = 3" g (1 + ﬁ) @

di=1I

whered; = 0,1,2,....9. From equations | and 2, it is easy to see that the first-two digits Dy D5
follow the BL if the probability of observing the first-two digits dyds s given by

; 1
PDLDs —dyds) — g (1+ 7 @
143

where dyda = 10,11, 12, ..., 99,

When the logarithms of the numbers are taken, then the Benford's Law is “perfectly”
followed. This is due to fact that the mantissas of the logs of the numbers are expected to be
uniformly (evenly} distributed. In this case, the mantissa refers to the non-negative decimal
part of the logarithm. The mantissa of the log is usually related to the first digit of a number
for instance a number with a log that has a mantissa less than 0.3010299956 has a first digit 1.
For more intuitive discussions see [8].

In general the BL can be looked at as the joint distribution of all decimal digits. In other
words the probability for the first, first-two, first-three, first-four, and first-anything digits can

be given as

FiDy=dy,..., Dp=di) =log, |1+ m] (4)
where k is a positive integer, d; € {1,2,...,9} and for 7 > 2 then d; € {0,1,2,...,9}. As
a matter of fact, it is worth noting that for the general form of BL, the significant digits are
dependent, and not independent as one might expect, see |3, 8].

From numerous experiments and tests, it has been shown that random numbers in most
ocrasions tend to conform to the BL. Nonconformity to BL could mean that the data was not
expected or supposzed to conform in the first place. A weak fit to Benford's Law can be used as

a red flag that there is a high risk that the data contains abnormal duplications and anomalies.
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The BL implies that the data should have more small numbers than larger numbers, which
implies that the data should not be too clustered around its mean value [2, 3, 8].
The BL can be visualized by plotting the distribution of the sequence of numbers to detect

their conformity. As an example, consider the Figures la and 1h.
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fa) Renford’s Law for 1 digit numbers (b} Benford's Law for 2 digit numbers
Figure 1: An illustration of the Benford’s Law for 1 and 2 digits respectively.

3 Methodology

The following tests based on [8] were run on the data in a bid to detect anomalies. The
summation test which looks for excessively large numbers in a data field. It identifies numbers
that are large compared to the norm for that data thereby adding a new twist to the usual first-
two digits test. This test is based on the fact that the sums of all the numbers that follow the BL
with first-two digits being {10, 11,12, ... 99} should be equal. Another test considered is the
second-order test which looks at the patterns in data on the digits of the differences between
sorted from smallest to largest (ordered) numbers. The digit patterns of the differences are
expected to closely approximate the digit frequencies of Benford's Law. The second- order test

gives few, if any, false positives in that if the resnlts are not as expected (close to Benford), the
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data does indeed have some characteristic that is rare and unusnal, abnormal, or irregular.
The method is based on tests of the distribution of the digits in reported vote counts, so all
that is needed are the vote counts themselves [4].

The most used goodness of fit statistic in many applications is the chi-square test. It is
used in this case to compare whether a set of the election actual results are conforms with the
expected results. The null hypothesis to be tested is that there is no significant differences
between the real digits and the expected ones in relation to the Benfords Law. The Pearsons

Chi-square goodness-of-fit test for Benford's Law given by equation 3.
k o _ pey2
x2=z{f’ f;fl} {5:|
i=1 i

where k is the number of bins, f? denotes the observed frequency of digits 4, and f# denotes
the expected frequency of digits 1.

Euclidean Distance Test for Benfords Law is given by

X =

where f7 denotes the observed frequency of digits ¢, and f7 denotes the expected frequency of
digits i.

The mean absolute deviation (M.A.D) is also useful in testing for the differences in the
leading digits used in BL and is given by Equation 7

yE |AP - EP|

M.AD= T

(7

where AP is the actual proportion, EP iz the expected proportion while k is the number of
bins. In the M.A.D formular, the numerator measures the absclute difference between the
actual proportion and the expected proportion for each digit. It is worth noting that the higher
the M.A.DD, the larger the average difference between the actual and expected proportions.

When the M.A.D values are greater than 0.015 then there is an indication of non-conformity
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to the Benford's Law [8].

4 Results and Discussions

Data

The most challenging part of this study was the acquisition of data from the Independent
Electoral and Boundaries Commission (IEBC). The official first round presidential results for
the 2017 presidential elections are no longer available at the IEBC website. The data used in
thiz study was provided by Professor Walter Webane Jr of the University of Michigan who had
used it in his working paper [9].

The data had been scrapped from the IEBC website https://public.rts_iebc_or. ke/
enr/index.html#/Kenya Elactions_Presidential/i by [3|. The originally downloaded, in-
cluded 40,830 polling station observations. The eligible voter count data had 40,884 polling
stations. [9] merged the two files and removed the unmatched and missing observations, includ-
ing the ones that had vote counts of zero for all candidates and remained with 40,818 polling

station observations. See [9] for more details.

BL distributions for the two top presidential candidates

In this section, we present the various Benford's distribution figures and tests for the two top
presidential candidates namely Uhuru Kenyatta and Raila Odinga. Three tests related to the
BL are presented. These include the first digit test, second order test and the summation test

championed by [8].
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Locking at sub Figures 2a and 2b, the two digits distribution for both Uhuru Kenyatta and
Raila Ondinga respectively seem to have sevral abnormal high spikes thereby not conforming
to the Benford's Law.

We now lock at the second order test for the two top presidential candidates in the sub
Figures 2a and 2b. The second order test should approximately follow the BL distribution.
However, this is not the case in the data set considered. This is a red Hag that some serious
issue or error might exist in the data.

The third plot in the sub figures for each candidate presents the summation test. This test
is based on the fact that the sums of all the numbers in a Benford Set with first-two digits
10,11,12,...,99 should be equal. The sums for the various digits are expected to be equal,
however in this study, the spikes tell us that there are abnormally large numbers relative to the
rest of the data.

A visual inspection with regards to the BL distribution is not enough. Statistical inference
is carried out using the chi-square test, the Euclidean distribution test and the M.A.I). The

results are presented in Table 1.

Table 1: Conformity to the 2BL tesis for the leading digit analysis.

Statistic Uhuru Kenyatta Raila Odinga

)([Egg] T681.7, p — value =0.00 6080.7, p — value = 0.000
Euclidean dist 23.821, p — value =0.00 26988, p — value =0.00
MAD 0.004068691 0.005230433
Distortion Factor -5.056533 -18.18931

Both the chi-square and the Euclidean distance tests show that the differences in the digits
are statistically significant at 5% level. The M.A D values indicated the non-conformity to the
Benfords Law for the two candidates. The distortion factor model uses the digit patterns to
signal whether the data appears to be over- or understated and the extent of the distortion [8].
In this data, there was some distortion for both candidates.

Further analysis looked at the absolute deviations for the top 10 twe digits for each candi-

date. The results are presented in Table 2.
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Table 2: Distribution of the digits by decreasing order of the absolute differences for Uhuru
Kenyattae and Roila Odinga.

Uhuru Kenyatta Raila Odinga
digits  absolute.diff | digits absolute.diff
30 6045470 30 1302.0601
40 530.6754 20 1107.9619
20 5156488 40 TET.R005
11 481.7986 11 640.3738
12 417.2004 a0 555.8039
50 393.3004 12 416.2490
13 330.4953 3| 380.1653
14 258.9745 il ITLGORT
42 248.TRET 28 358.0661
33 2463716 27 351.8818

The numbers with 30 had the largest absolute difference for hoth candidates while the lowest
was 33 for Uhuru Kenyatta and 27 for Raila Odinga.

Given that the first-order and the summation tests deviated from the BL, the number
duplication test is employed to identify the specific numbers that caused the spikes. The

results are shown in a self explanatory Table 3.

Table 3: Distribution of the observations of the 10 values with most duplicates.

Uhuru Raila
1: 15| 1: 2
2 G x 3
3: 5] 3: 2
4: 15 | 4: 5
a: ] a 2
3539: 2 6700: 3
3540: 22 | 6701: B
3541 13 | 6702: B
3542 6 G703 3
3543 15 | 6704 3
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5 Summary and Conclusions

This research has applied the two digits Benford's Law (2BL) in addition to other related
tests developed by [8] mainly the second order, the summation and the duplications tests to
help identify the anomalies present in the Kenyan 2017 first round election results for the top
two candidates namely Uhuru Kenyatta and Raila Odinga. The data used in this study was
scrapped from the IEBC website.

The study reveals that the data do not follow the 2BL distribution. This is a pontential red
flag pointing at possible anomalies and irregularities present in the data for the two candidates.
These anomalies are all significant at 5% significance level using the Chi-square test, Euclidean

distance test and the M.A.D.

22



Mathematical Theory and Modeling WWW.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) DOL 10.7176/MTM i
Vol.9, No.9, 2019 l E
References

[1] P. Klimek, Y. Yegorov, R. Hanel, and 5. Thurner. Statistical detection of systematic election

irregularities. Proceedings of the National Academy of Sciences, 109{41):16469-16473, 2012.
[2] F. Benford. The law of Anomalous Numbers. Proc. Am Philos Soc, T8:551-572, 1938,
[3] A. Berger and T. Hill. A basic theory of Benfords Law. Probability Swrveys, 8:1-126, 2011.

[4] W. R Mebane. Election Forensics: Vote Counts and Benford's Law. Summer Meeting of

the Political Methodology Society, UC-Dawms, July 20-22, 2006.

[5] C.Breunig and A. Goerres. Searching for electoral irregularities in an established democracy:
Applying Benfords Law tests to Bundestag elections in unified Germany. Elect Stwd, 30:534-

545, 2011.

[6] F. Cantu and S.M. Saiegh. Fraudulent Democracy? An analysis of Argentina’s Infamous

decade using Supervised Machine Learning. Polit Anal, 19:409-433, 2011.

[7] W. R. Mebane and K. Kalinin. Comparative Election Fraud Detection. The American

FPolitical Science Association, Toronte, ON, Canada, 2009.

[8] M. J. Nigrini. Forensic Analytics: Methods and Technigues for Forensic Accounting Inves-

tigations. Wiley and Sons: New Jersey., 2011.

[9] W. R Mebane. Anomalies and Frauds(?) in the Kenya 2017 Presidential Election. Tech-
nical report, Department of Political Seience and Department of Statistics, University of

Michigan, 2017.

23



