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Abstract

The polynomial ring FJ |x|/{x™—1} has generated a lot of research in
recent times especially because it is a generator of binary codes used in
computer application. In this paper, properties of this ring are outlined
and application of algebraic coding theory to its ideals discussed.
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1 Introduction

1.1 Background information

Definition 1.1. /6]

Let F¥ [z] /{(z"—1) be a commutative ring with unity and let g € FY [z] 27—
1). The set{g) = {rg| r € F7 [z] Ax™—1}} is an ideal of FT |£] Az" —1} called
the principal ideal generaied by g. The element g is the generator of the prin-
cipal ideal.
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So, I 1s a principal ideal of a commutative ring FJ' [z]/(z™ — 1) with unity
if there exists g € I such that for all ¢ € I we have rg € FJ' [z]/(z" — 1) for
some r € F§' [z]/(z" — 1).

In a Principal Ideal Domain every ideal is principal. If F is a field then
every ideal I in F is a principal ideal. If a polynomial ring F [z]/(z" — 1) is
irreducible over F then F [z]/(z"™ — 1) becomes a field. According to Ronald,
etal [5], given some Z-basis of an ideal we should be able to find a sufficiently
shorter generator g which is not necessarily g itself.

2 Results

Proposition 2.1. Let I be a mazimal ideal over the polynomial ring F3' [z] /{z"—

1). The following statements are equivalent:

(i) I is Noetherian.

(ii) Every chain of subsets (In) C (I1) C (I2) C ... C (I) stabilizes at some
Iﬂ-

(iii) Every non-empty collection of subsets of I has a mazimal ideal.

Proof

(i) = (ii). Let I be Noetherian. Then we have the chain (lp) C (I;) C
(f2) C ... C (In). We can write I’ = | J I; € I which is finitely generated since
I 18 Noetherian. Let the generator elements be [;, o, ..., [. Each of these
elements 1s contained in the union of I,,. Therefore I' C [, hence [, = I

(i1)= (i). Assume that the ascending chain condition exists. Let I' C I,
be any subset of I. Define a chain of subsets (Ip) C ([1) € (1) € ... € (I') as
follows; Ip = {0}. Let Iy = I, + z(F5 [z]/(z" — 1)) for some z € (I' — I,;)
if such an = exists. Suppose such an  does not exist take I, = I,. Clearly
Iy = {0}, I, is generated by some non-zero element of I, I is I; with some
element of I' not in [; until the chain stabilizes. By construction we have
an ascending chain which stabilizes at some fimte point by ascending chain
condition. Hence I’ is generated by n elements since I’ = I,,.

(i) = (i1). If I is Noetherian then it has a maximal ideal. To see this
let P be a set of all the proper ideals in the polynomial ring FJ' [z]/(z" — 1)
containing [, where [p 1s any proper ideal in this ring. Already we know
that P # @ since Ip € P. Since FJ [z]/(z" — 1) is Noetherian the maximum
condition gives a maximal element I € P. We should show that I 1s a maximal
ideal in F [z]/(z™ — 1). Suppose there is a proper ideal J with I C .J. Then
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Ip C J and hence J € P. Therefore maximality of I gives I = Jand so ] 1s a
maximal ideal in F§' [z]/(z™ — 1).

(1)) = (m). If (in) is false there is a non-empty subset S of FJ' [z]/(z" — 1)
with no maximal element and inductively we can construct a non -terminating
strictly increasing chain in S. (iii)=>(i1). The set {z(y) : m > 1} has a maximal
element which 1s 1. O

Proposition 2.2. F} [z]/(z" — 1) is a Unigue Factorization Domain.

Proof

Let t € FJ [z]/{z™ — 1). Then t is irreducible if and only if ¢ is prime. We
have to show the following two claims:

(1) if ¢ is prime then ¢t is irreducible.

(i1) if ¢ is irreducible then ¢ is prime.

For claim (1) suppose that  is prime and ¢ = uv, forall t,u, v, € FJ' [z]/(z"—
1). We should prove that either w or v is a unit. Using the definition of
prime, t divides either w or v. Suppose t divides u then we have u = tw =
= uwvw = u(l —vw) = 0 = vw = 1, for all {,u,v € FJ[z]/{z" — 1)
and some w € FJ' [z]/{(z" — 1). Since FJ' [z|/(z™ — 1) is an integral domain
v 18 a umt. This same argument holds if we assume ¢ divides v, thus ¢ 1s
irreducible. For claim (i1) let ¢ be irreducible and ¢ divides uv. Then uv = tw
for some w € F}' [z]/(z" — 1). By property of unique factorization domain, we
decompose t, u, v into products of irreducible elements, say (¢;, u;, v;) upto the
units (a,b,c). Hence a - ty...a-t, = b- uj..uy = - v;...v,. This factorization
1s unique and therefore £ must be associated to some w; or v; implying that ¢
divides u or v. O

Example 2.1. Consider the ideals corresponding to the polynomial ring F1 [z] /(x"—

1). We have:
L =0
In=1
Iy=a41

L=z4+z+1

k=422 41

k=z*+2+z2+1

=gt t+a2 4+ w41

L=y gLy sz 1

where each of the I;'s (i = 1,2,3,...,8) is a principal ideal of this ring. We

then have the chain:
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(11) € (fa) € (I3) C (Iy) € (I5) € ( (f7) € (Is)
Generally, for any polynomial ring F{_, [.r]/{.r“—]) we can develop the chain
(f1) € (1) C (I3) C ... C (I;) where j is the total number of principal ideals

in the candidate polynomial ring hence I;q | I;, for all I; € F3 [z]/z" — 1).
The prime factors of I;y contain prime factors of I;. Already I; has a unique
factorization into many finite prime factors which end up being the same and
so the chain stabilizes or terminates.

By Proposition 2.1 and 2.2 the ring F3' [z]/(z™ — 1) is Noetherian. It is also
a Unique Factorization Domain.
The polynomial [; is the maximal ideal of the candidate ring.

Proposition 2.3. FJ' [z] /(2" — 1) satisfies the descending chain condition on
principal ideals.

Proof

Using Example 2.1 and rearranging the ideals from maximal to the least
we have:

(L;) 2 (Li=1) 2 (Ilj=2) 2 ... 2 (1) which also terminates or stabilizes.
&

By Proposition 2.3 the polynomial ring FJ' [z]/(z" — 1) is Artinian.

Proposition 2.4. Let (1,,) be a family of ideals such that (I,) > (I,,) for some
fizred (Iy) € (I), if:

(i) (Im) is true and ( (I,) true means its fizred in (I,), false means its
varying in (I,))

(i) (I,) is true = (I,,41) is true, then (I,,) is true for all n > m.

Proof

Let I. € F§'[z]/(z™ — 1) be a family of all principal ideals for which (1)
is false. If (I.) is empty there is nothing to prove. Otherwise there is the
smallest ideal (I) C (I.). From (1) (Ix) > (I;m) and so we have some (Ix_1).
But (I;_y) < () implies that ([_;) € (I.) since ([;) is the smallest ideal
in (I.). Hence (Ix_y) is true. From (i) (Ix) = (fg—1j+1)) is true and this
contradicts (/) € (I.) which claims that ([;,) is false. O
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2.1 Application of Maximum Likelihood Decoding to
Codes of the polynomial ring FJ [z]/(z" — 1)

Definition 2.1. I/

Let C be a linear code over Fy and u a vector in the code space Fy. The
Mazimum Likelihood Decoding problem is to find a code v € C' such that:

de(v,u) = de(u, ¢) = min{dc(u,c)} for all c € C.

On an mSC (p), the probability of receiving v after the transmission of u
is given by P(%) = plg" % (where d, is the Hamming Distance between u
and v, p is transition parameter such that p+q =1 and n is the length of the
code).

Definition 2.2. [2] A Fermat prime is a prime of the form 22" + 1 where n
is itself prime. A Mersenne prime is one of the form 2" — 1 for some prime
n. A safe prime is a prime number of the form 2p 4+ 1 where p is also prime.

Consider the set of generators of the polynomial ring F§ [z]/(z% — 1). Here
1 = 6 which 1s a composite integer. The code generated 1s given by

C = [000000, 000001, 000011, 000101, 001001,010101, 001001, 011011, 111111].

Suppose a codeword 010101 was transmitted on a BSC (0.02) and two code-
words, 000001 and 111111 were received. Then we have P(000001|010101)
=q'p*~ 0.000368947264, while P(111111|010101) =¢*p® ~ 0.000007529536; it
would therefore be efficient to decode 010101 to 000001,

Suppose n = T which is a safe prime. This would give the polynomial ring
FY [x]/(z" — 1). The code generated is given by

C' = (0000000, 0000001, 0000011, 0001011, 0001101, 0011101, 0010111, 1111111].

Consider a codeword 0000011 transmitted on a BSC (0.03) and the two code-
words, 0001011 and 1111111 are received. We have P{0001011/0000011) =¢%p'~
0.02498016, while P(1111111]0000011) =¢%*p® ~ 0.00000002286387; it would be
efficient to decode 0000011 to 0001011.

Hence principles of maximum likelihood decoding are applicable to the
polynomial ring F'[r|mod(z™ — 1) for prime values of n and for composite
values of n.
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2.2 Application of Minimum Distance Decoding to Codes
of the polynomial ring FJ' [z]/ (2" — 1)

Detfinition 2.3. /8]

A code vector v is said to have undergone minimum distance decoding if
and only if, when v is received, it is decoded to a codeword u that minimizes
the Hamming distance d.(u, v).

Consider the set of generators of the polynomial ring FJ [z]/(z" — 1) in
which n = 5 which is a safe prime. The code generated 1s represented by

= [00000, 00011, 00101, 00110, 01100, 01010, 11000, 11111].

Suppose we want to decode 01100 to any of the other codewords in C' we must
compute minimum distance as follows:

d.(01100, 00000) =
d.(01100,00011) =
d.(01100,00101) =

c(0110'[] 00110) =
d.(01100,01010) =
d-(01100,11111) = 3
Hence 1t would be more efficient to decode 01100 to any of the codewords
in C except to 11111.

Consider the set of codes generated by the polynomial ring F¥ [z]/{z® — 1)

in which n = 6 which is composite. The code i1s represented by

C = [000000, 000001, 000011, 000101, 010101, 001001, 011011, 111111].

Suppose we want to decode 111111 to any of the other codewords in C we
must compute minimum distance d,. as follows:

d.(111111,000000) = 6

d.(111111,000001) =

d.(111111,000011) =4

d.(111111,000101) =4
d.(111111,010101) =3
d.(111111,001001) = 4
d.(111111,011011) =2
Therefore 1t would be more efficient to decode 111111 to 011011.
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Hence principles of Minimum Distance Decoding are applicable to the poly-
nomial ring F3' [z]/(z" — 1) for prime values of n as well as for composite values
of n.

Proposition 2.5. Let p < % where p + g = 1. Then marimum likelihood

decoding and minimum distance decoding are equivalent.

Proof

Let the the probability of receiving v after the transmission of u be given
by
P(Y) = ptq" % (where d, is the Hamming Distance between u and v, p is tran-
sition parameter such that p+¢ = 1 and n is the length of the code). Minimiz-
ing the quantity P( ﬁ) = peq" % is equivalent to minimizing d..

2.3 Application of Incomplete Minimum Distance De-
coding to Codes of the polynomial ring FJ' [z] /(2" —1)

Definition 2.4. [§/

Incomplete Minimum Distance Decoding for a received codeword v, occurs
when it is decoded to a codeword u that minimizes the Hamming distance or
when decoded to the error detected symbol 7).

Consider a set of generators of the polynomial ring F5' [z]/(z™ —1) in which
n = 5, which 1s a safe prime. It was observed for instance in Section 2.2
that 01100 could be decoded to any of the codewords mn €' except to 11111.
By Incomplete Minimum Distance Decoding, 01100 could also be decoded to
the error detected symbol 5. In this case the minimum distance cannot be
determined.

Hence principles of Incomplete Minmimum Distance Decoding are applicable
to the polynomial ring FI' [z]/{(z" — 1) for prime values of n as well as for
composite values of n.

2.4 Application of Features of an optimal code to code-
words of the polynomial ring FJ [z]/(z" — 1)

According to Huffman and Pless [3], an (n,m,d,.) - code is a code of length n
containing m words and having mimimum distance d.. Thus for mstance, in
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the polynomial ring FJ [z]/(z"—1),n = 7,m = 8,d. = 7, hence it is a (7, 8,7) -
code, while for the polynomial ring F§° [z]/(z% —1) , n = 30,m = 31, d,. = 30,
hence it is a (30,31,30)- code. A good code is one with small n for fast
transmission of messages, large m to enable transmission of wide variety of
messages and large d, to detect and correct a large number of errors. Generally
good codes are those whose value of m and d, are large relative to values of n.

Define A;(n, 1) as the maximum m such that (n, m, dpa.)-code exists. De-
termining the values of A,(n, 1) is the main coding problem.

Theorem 2.1. [{] For any set of codewords C of a q-ary of length n over a
finite set A the following statements hold:

(a)Aq(n, 1) = q"

(b)Ag(n,n) =q

Proof

(a) Suppose C is the set of all codewords of length n. Then C' = A™. Any
two distinct codewords must differ in at least one position. The minimum
distance between two such words is at least 1. A g-ary code of length n cannot
be bigger than this.

(b) Suppose C is a g-ary code with parameters (n, m, n). The minimum dis-
tance between two such words is n if any two distinet codewords of C differ in
all n positions. Therefore the entries in fixed positions of m codewords must be
different. This implies that Ag(n,n) < g

(1)
But the g-ary repetition code has parameters (n.q,n). This yields
Ayln,n) = g (11)
Combining (1) and (i1) we have A(n,n) = q. O

2.5 DMeasurement of Efficiency and Reliability of code-
words of the polynomial ring FJ [2]/{z" — 1)

Definition 2.5. /9]

Efficiency of a code is a function of its information rate k. The dimension
of a code k is the number of symbols which carry information as opposed to
redundancy. Normalized dimension or rate k of an m-ary code C' of length n
is the ratio % of message symbols to coded symbols. A code is said to be reliable
when its mimimum distance d. > 2.
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Table 1: Comparison of Efficiency and reliability of code vectors
for the polynomial ring FY [z]/{z% — 1)

Code vector |4 | 60 = 2 | Reliability % | ko = £ | Efficiency %
000000 00 0 1.000 100

000001 1| 0.1667 | 16.67 0.8333 | 83.33

000011 21 0.3333 | 33.33 0.6667 | 66.67

000101 21 0.3333 | 33.33 0.6667 | 66.67

001001 2103333 | 33.33 0.6667 | 66.67

010101 3| 0.5000 | 50.00 0.5000 | 50.00

011011 4| 0.6667 | 66.67 0.3333 | 33.33

111111 6| 1.00 100 0.00 0.00
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Table 2: Comparison of Efficiency and reliability of code vectors
for the polynomial ring FJ [x]/(z" — 1)

Code vector |4 | dc = 2 | Reliability % | ko = £ | Efficiency %
0000000 00 0.00 1.0000 | 100

0000001 1101429 | 14.29 0.8571 | 85.71

0000011 2| 0.2857 | 28.57 0.7142 | 71.42

0001011 3| 04286 | 42.86 0.5714 | 57.14

0001101 3| 04286 | 42.86 0.5714 | 57.14

0011101 41 05714 | 57.14 0.4256 | 42.56

0010111 41 05714 | 57.14 0.4256 | 42.56

1111111 7| 1.0000 | 100 0.00 0.00

From Tables 1 and 2, its clear that as efficiency increases the code becomes
more unreliable.

According to Shannon [7] we need to evaluate information content and error
performance of any given codeword. High rate codewords are desirable since
they employ a more efficient use of redundancy than lower rate codewords.
Error correcting capabilities must also be considered when choosing a code
for a particular application. A rate 1 code has the optimal rate but has no
redundancy and hence not suitable for error control. Generally given a g-ary
(n,m, d)-code C' we define the rate of C' to be %™ \We can then deduce that:

. lt)gq m
hmnﬂ'ao T

n

This trend of efficiency and reliability 1s applicable to the polynomial ring
Fj' [z]/(z" — 1) for any values of n > 2 for all n € N.
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