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Abstract 

In developing a robust algorithm for solving a class of optimal  control problems in which the control effort  is 

proportional to the state of the dynamic system, a typical model was studied which generates a constant feedback 

gain , an estimate of the Riccati for large values of the final time. Involving the third Simpson’s Rule, a discretized 

unconstrained non-linear problem via the Augmented Lagrangian Method was obtained. This problem was 

consequently subjected to the Broydon-Fletcher-Goldberg-Shannon(BFGS) based  on Quasi-Newton algorithm. The 

positive- definiteness of the estimated quadratic control operator was analyzed to guarantee its invertibility in the 

BFGS. Numerical examples were considered, tested and the results responded much more favourably to the 

analytical solution with linear convergence.  

Keywords: Proportional control, feedback gain, Augmented Lagrangian Method, Discretization, BFGS , Simpson’s 

Rule and Quasi-Newton Method 

 

1.  Introduction 

The whole idea of developing a robust algorithm for solving optimal control problem with the augmented lagrangian 

method emanated from the basic idea of penalty function method. An extensive work with substantial influence on 

present day developments in multiplier method was by Poljak [11] who analyzed the rate of convergence of the 

quadratic penalty function method as an extension of the quadratic method of multipliers that was first proposed 

independently by Hestenes [6] and Powell [12]. It employs the direct method of generating the optimizer of the 

objective function without necessarily going through the rigorous indirect methods of calculus of variation, where 

the necessary and sufficient conditions must be derived and results expressed in differential-algebraic equation. This 

approach requires the transformation of the continuous-time optimal control problem into a discretized unconstrained 

NonLinear programing problem amenable to well proven numerical methods having  the generation of sparse 

discretized matrices that prompt the convergence of the developed scheme. Betts [2] earlier gave a more practical 

method for solving the optimal control problems using the nonlinear programming model through the Newton-based 

iterations with a finite set of variables and constraints. 

 Many papers have recently been written by researchers in this field including Olotu & Olorunshola [10], 

Adekunle & Olotu [1], Olotu [3],Gollman et al [5], and host of others. They all seem to form their finite 

unconstrained programming equation using the exterior penalty method amenable to the conjugate gradient 

algorithm except for Olotu and Akeremale [9] using the Augmented Lagrangian Method which will form the focus of 
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this paper, since it has faster convergence with higher accuracy when compared with the Exterior penalty method. 

The relevance of the real symmetric positive definite properties of the quadratic operator was tested in line with 

Ibiejugba and Onumanyi [7] for a well-conditioned scheme. 

 

2.  General formulation of the problem  

The optimal control problem is modeled in order to find the state and control trajectories that optimize (minimize) 

the objective function (performance index) of the following problem. 

                                         
1

2
0

( , ) [ ( , ( ), ( )]
T

Min J x w F t x t w t dt ╱                                                                        (1) 
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Where x and u are the state and control trajectories respectively describing the system. The numerical solution to the 

optimal control problem is a direct approximate method requiring the parameterization of each control using a set of 

nodal points which then become the variable in the resulting parameter optimization problem. This approach centres 

on the conversion of the continuous-time optimal control problem into a discretized Non-Linear Programming (NLP) 

problem via the augmented multiplier method which makes it amenable to the Quasi-Newton Algorithm so as to 

compute the near optimal control trajectories given that the feedback gain is a constant. This numerical result is then 

compared with that obtained from the indirect analytical method of calculus of variation. This indirect analytical 

approach to the optimal proportional control problem that results to a 2-point boundary value problem (BVP) arising 

from the Euler-Lagrange  requires the application of the first order optimality conditions of the optimal control 

theory to obtain the optimal proportional constant ( see subsection 5.0). 

 

3.   Materials and Methods  

Consider an optimal control problem constrained with a linear regulator system described as  
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Min J x w px t qw t dt   ╱                             (3)
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where p q a b m real and p q
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                                    (4) 

We  discretize the performance index of the continuous-time problem to generate large sparse discretized matrices 

using the composite Simpson’s rule [3] of the form. 
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h n
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3 180
         (5) 
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Where ( )x t xj j ,  0' , nf C t t , n  be even, 
0nt t

h
n


  and 0jx x jh   for each 0,1,2,...,j n .For

2( ) 2, ( ) ( ) , ,
33

p qm T hE w t m x t h and p
n


    the discretised performance index becomes 
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Where 1 2( , ,.............. )nZ x x x is a  -dimensional unit vector and
ijV v     is a n n  dimensional 

coefficient matrix defined below as  
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and 

 

                             

2

0
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E p x
C                                                                      (9) 

 

The constraint of the optimal proportional control problem can also be discretized with the 2-step third order 

Simpson’s rule [3] as  

n
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Where J is a ( 1)n n    sparse coefficient tri-diagonal matrix defined by 
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1 2( , ............. )T

nZ x x x   is a n-dimensional column vector , 1H ih is a ( 1) 1n  row vector equal to 

0-KC  for 1i  and 0 for 2 1i n   . The combination of equations (7 &13) by the parameter optimization 

gives the constrained discretized non-linear programming (quadratic) problem stated below: 

                min ( ) TF Z Z VZ C subject JZ H                              (15) 
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Where Z  is a column vector of dimension 1n  for 
1, 2( ,................ )T

nZ x x x ,V is a sparse tri-diagonal 

matrix of dimension n n , J is a sparse coefficient matrix of dimension ( 1)n n    and H  is a row vector of 

dimension ( 1) 1n  . 

The paper reviewed by Fiacco et al [4] on the application of the Augmented Lagrangian Method earlier proposed by 

Powell and Hestenes requires that the penalty term is added not only to the objective function but also to the 

lagrangian function to give 

             
 

21

2, ,
2

T TL Z Z VZ C JZ H JZ H


       ╱                    (16)

 

Expanding equation (16), we obtain  a quadratic programming problem  (17) which  can be solved by the 

Quasi-Newton Method (QNM). 

      1

2, ,
2

T T T T T TL Z Z V J J Z J H J Z H H H C


     

            
╱    (17) 

                       
  1

2, , T TL Z Z V Z J Z C       ╱                        (18)
 

Where ( ) ,Dim V n n   ( ) 1 ,TDim J n   and ( ) 1 1Dim C   represent the dimensions of the various 

coefficients (discretized matrices stated below) of the lagrangian function. 
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Lemma 3.1: The constructed quadratic operator  TV V J J   
 

of the formulated lagrangian function is   

real-symmetric and positive definite.  See proof in [9]. 

 

For the purpose of avoiding an ill-conditioning in the scheme, it is required that the quadratic operator 

 TV V J J   
 

be real-symmetric and positive definite so as to make the unconstrained NLP problem 

amenable to any proven numerical method [7].In this case, BFGS embedded Quasi-Newton Algorithm (inner loop) 

and  the feasibility condition of the Augmented Lagrangian Method (outer loop) as defined in the formulated 

algorithm are evolved below for the optimal proportional control problem. 

 

4.  The numerical Algorithm for the scheme 

(1) var , , ,Compute given iablesV M N m

(2 1) *

0,0 0(2) , ,T ( ) 0, 0 0n m

j jChoose Z B I tolerance and initialize bysetting j     
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5.0   The analytical optimal proportional control formulation 

Theorem 5.1 

Given the optimal control 
*( )w t  proportional to the solution 

*( )x t  of the state system at a constant rate m  

that minimizes the performance index ( , )J x w  over T , then there exist a unique solution that satisfies the condition 

0a bm   with the proportional control constant and optimal objective values defined below as  
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Proof: 
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Considering the optimal control model defined by equations (3) and (4) above with a proportional constant m 

(independent of time) as the amount of control effort proportional to the deviation in the state such that 

   w t mx t given    0 0 , 0, ,x t x t T 
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The solution of equation (20) is
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                      (21)            
 

 

Applying the Euler-lagrange equation (E-L) to equation (3) above as a necessary condition, 
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Substituting equation (21) into equation (22), the solution of equation (22) is expressed as a linear combination given 

below: 
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The imposition of the restriction 
2( ) 0a bm 

 on the performance index 
( )J m  

is pertinent to control its 

exponential growth for infinitely large values of t so as to guarantee the existence, convergence and asymptotic 

stability of the solution as iterated by Morton [8]. By the optimality (sufficiency) condition,  
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Minimum     

 

Summarily, 
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 Where m is the proportional control constant, w (t) and x(t) are the control and state variables respectively for the 

proportional feedback control law that optimize the objective function. 

 

6.  Numerical examples and presentation of results 

 

Example (6.1) consider a one-dimensional optimal control problem 

               
5

2 2

0

1( , ) 2
2

Min J x w x t w t dt   
                                 (26)            

                  
 

       Subject to      2 3 , (0) 1, 0 5x t x t w t x t    
                            

The analytical objective value from the proportional control result with the given parameters 

02, 1, 2, 3 1p q a b and x       is given as .AJ  0.37168976

  

 

 

The numerical objective value from the Quasi-Newton based augmented lagrangian method using MATLAB 

subroutine is NJ =0.37178228 . Here we take 
51000, 10 , 0.05h for     large 5T   as shown in 

the selected values of the parameters (XN ,WN  ,XA ,WA ,EX  and EW ) representing the state , control and  errors 

for both the numerical and analytical results respectively as outlined in the table 1 below: 

Table 1: Comparison of analytical and numerical results from the newly developed scheme 

 

         

t XN WN XA WA EX EW 

Proportional control Constant 

 Optimal Proportional control law 

State solution (trajectory) 

Optimal objective value 
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0.0000 1.0000 -2.2301 1.0000 -2.2301 0.0000 0.0000 

0.0500 0.7909 -1.7638 0.7909 -1.7638 0.0000 0.0000 

0.1000 0.6256 -1.3952 0.6256 -1.3952 0.0000 0.0000 

0.1500 0.4948 -1.1035 0.4953 -1.1046 -0.0005 0.0011 

0.2000 0.3914 -0.8729 0.3916 -0.8733 -0.0002 0.0004 

0.2500 0.3096 -0.6904 0.3096 -0.6904 0.0000 0.0000 

0.3000 0.2448 -0.5459 0.2448 -0.5459 0.0000 0.0000 

0.3500 0.1937 -0.4320 0.1937 -0.4320 0.0000 0.0000 

0.4000 0.1532 -0.3417 0.1532 -0.3417 0.0000 0.0000 

0.4500 0.1211 -0.2701 0.1212 -0.2703 -0.0001 0.0002 

0.5000 0.0958 -0.2136 0.0958 -0.2136 0.0000 0.0000 

1.0000 0.0092 -0.0205 0.0093 -0.0207 -0.0001 0.0002 

2.0000 0.0001 -0.0002 0.0001 -0.0002 0.0000 0.0000 

3.0000 0.0001 -0.0002 0.0000 0.0000 0.0001 -0.0002 

4.0000 0.0003 -0.0007 0.0000 0.0000 0.0003 -0.0007 

5.0000 0.0014 -0.0031 0.0000 0.0000 0.0014 -0.0031 

         

            6.optimal state and control trajectories  for example  1             

 

Example (6.2):  consider a one-dimensional optimal control problem 

            
10

2 2

0

1( , )
2

Min J x w x t w t dt   
                                   (27)

 

     Subject to      2 , (0) 1, 0 10x t x t w t x t    
                        

The analytical objective value from the proportional control result with the given parameters    

01, 1, 2, 1 1p q a b and x       is given as 10AJ for T = 2.11803399 . The numerical objective 
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value from the Quasi-Newton based augmented lagrangian method   using MATLAB subroutine is

.NJ  2 11816075 . Here we take
51000, 10 , 0.05h for      10T   as shown in the selected 

values of the parameters (XN ,WN  ,XA ,WA ,EX  and EW ) representing the state , control and  errors for both the 

numerical and analytical results respectively as outlined in table 2 below. 

 
 

Table 2: Comparison of analytical and numerical results from the newly developed scheme 

 

 

                   

      

       

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

t XN WN XA WA EX EW 

0 1.0000 -4.2361 1.0000 -4.2361 0.0000 0.0000 

 0.0500 0.8942 -3.7880 0.8942 -3.7880 0.0000 0.0000 

0.1000 0.7996 -3.3873 0.7996 -3.3873 0.0000 0.0000 

0.1500 0.7150 -3.0290 0.7150 -3.0290 0.0000 0.0000 

0.2000 0.6394 -2.7086 0.6394 -2.7086 0.0000 0.0000 

0.2500 0.5718 -2.4221 0.5718 -2.4221 0.0000 0.0000 

0.3000 0.5113 -2.1659 0.5113 -2.1659 0.0000 0.0000 

0.3500 0.4572 -1.9367 0.4572 -1.9368 0.0000 0.0001 

0.4000 0.4088 -1.7319 0.4088 -1.7319 0.0000 0.0000 

0.4500 0.3656 -1.5487 0.3656 -1.5487 0.0000 0.0000 

0.5000 0.3269 -1.3849 0.3269 -1.3849 0.0000 0.0000 

1.0000 0.1069 -0.4527 0.1069 -0.4527 0.0000 0.0000 

2.0000 0.0114 -0.0484 0.0114 -0.0484 0.0000 0.0000 

3.0000 0.0012 -0.0052 0.0012 -0.0052 0.0000 0.0000 

4.0000 0.0001 -0.0006 0.0001 -0.0006 0.0000 0.0000 

5.0000 0.0000 -0.0001 0.0000 -0.0001 0.0000 0.0000 

6.0000 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0001 

7.0000 0.0001 -0.0003 0.0000 0.0000 0.0001 0.0003 

8.0000 0.0001 -0.0006 0.0000 0.0000 0.0001 0.0006 

9.0000 0.0003 -0.0012 0.0000 0.0000 0.0003 0.0012 

10.0000 0.0006 -0.0026 0.0000 0.0000 0.0006 0.0026 
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              6.optimal state and control trajectories  for example  2  

 

 

 

6.1   Analysis of numerical results  

 

Numerically, as the time increases (T  ), the state decreases asymptotically to zero at a proportional rate to the 

control within a tolerance of 
0 10 , intk k a positive eger    . Suppose at the final time T,

( )

0 0( ) a bm T rTx T x e x e   , there exists a value 0 0    for sufficiently large value of T such that 

( )x T  , then 

0
2 2

0

ln( )
ln(10 ) ( )

x

k x pb qa
T T where r

r r q


 

     
  

. 

As t T , there exists a time interval [ , ] [0, ]kt T T T  for which both the state and the control variables 

oscillate within the neighbourhood of ( )x T 
 

about ( ) 0x T  [i.e. 

( ) ( ) ( ) ( )x t x and w t w for T and very small     ]. This then implies that for smooth 

feedback optimal control law (as in the Riccati) for which a constant proportionality function is guaranteed, it is 

required that the tolerance 0 0    be reduced for sufficiently large value of the final time T. We then found out 

that by the discretization of the continuous optimal control for linear system with a quadratic objective function, we 

obtain a proportional feedback control, with the controller gaining the solution of a Riccati equation and a constant 
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for an infinite control time. This then gives a more accurate result within the tolerance limit of the objective value 

(performance index) as the value of the upper integral limit increases.  

 

6.   Error and Convergence Analysis 

Suppose   n

kz  represents the sequence of solution  approaching a limit 
*z , then the error ( )k ke z e such 

that   
*( ) 0k k ke z e z z     for

n

kz   and
*( ) 0e z  . 

   Assuming that the convergence ratio is represented by  , then  

    

*

11

*
l i m l i m 0

kk
k

k k
k k

z ze
for e k

e z z




 


   


                                  (28)  

For, 0 1  and 1  implies quadratic, suoer-linear and sub-linear convergence respectively 

However, the convergence ratio profile of the earlier example (6.1) using the newly developed algorithm 

(discretization scheme) expressed in terms of the penalty parameter (  ) used in the developed algorithm is shown in 

table 3 below. 

 

Table 3: Convergence ratio profile 

 

penalty parameter (  ) Objective value ( r ) 
convergence ratio (  ) 

21.0 10  
0.384021 0.1934 

31.0 10  
0.371689 0.1335 

41.0 10  
0.371094 0.1237 

51.0 10  
0.370990 0.0440 

 

 

The result on the table shows that the convergence ratio ( )  hovers round the average figure of  =0.12365 for 

increasing values of the penalty parameter which makes the convergence linear, though close to being super-Linear 

because of its proximity to zero. This convergence is satisfactory for optimization algorithms since the convergence 

is not close to one. 
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7.  Conclusion 

This research paper has demonstrated that the Quasi-Newton Algorithm constructed via the  Augmented lagrangian 

multiplier method can generate the state and control variables that optimize the objective function with an optimal 

feedback (control) law whose feedback gain is a constant estimate of the analytically known result from the rigorous 

indirect method of the Riccati or Hamilton-Jacobi Bellman (HJB) with very high level of precision. 
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