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Abstract      

          In this paper, we create a new set of topological space namely "Gem-Set" and immersed it with a new 

separation axioms in topological space and  investigate the relationship between them 
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1. Introduction and Preliminaries.  

                    The idea of "Gem-Set" is defined as: for a topological space )X,T) , and AX, we defined A
*x

 with 

respect to space )X,T) as follows: A
*x

 = {y ∈ X : G ∩ A 
 
Ix ,for every G ∈ T(y)} where T(y) = {G ∈ T : y ∈ G}, Ix 

is an ideal on a topological space (X,T) at point x is defined by Ix = {UX : xU
c
},where U is non-empty set of X. 

                    Within this paper "Gem-Set" is studied with some its properties, a set of new separation axioms in 

topological spaces, namely "I
*
-T0-space", "I

*
-T1-space", "I

*
-T2-space", "I

**
-T0-space", "I

**
-T1-space","I

**
-T2-space"  

and the axioms               are proposed by using the idea of "Gem-Set", the relationship between them is 

studied. Also two mappings " I
*
- map " and" I

**
- map " are defined to carry properties of "Gem-Set" from a space to 

other space. 

                    Throughout this paper, spaces means topological spaces on which no separation axioms are assumed 

unless otherwise mentioned. Let A be a subset of a space X. The closure and the interior of A are denoted by cl(A) 

and int(A), respectively. 

 

Definition 1.1.  

                 A topological space( X,T) is called 

 Ro –space[1,2,4]if and only if for each open set G and x  G implies cl({x})  G. 

 R1 –space[1,2,4]if and only if for each two distinct point x, y of X with cl({x})≠cl({y}), then there exist 

disjoint open sets U,V such that cl({x})  U and cl({y})  V  

 R2-space [2]if it is property regular space. 

 R3-space [3]if and only if (X,T) is a normal and R1-space.  

 

Remark 1.2[3] 

                  Each separation axiom is defined as the conjunction of two weaker axiom :Tk- space =Rk-1-space and Tk-1 

space =Rk-1-space and T0-space , k=1,2,3,4 

Remark 1.3[3] 

                  Every Ri –space  is an Ri-1-space i = 0,1,2,3. 

                                        

2. "Gem-Set" in Topological Space 

Definition 2.1 

                 For a topological space )X, T), xX, Y X, we define an ideal 
Y
Ix with respect to subspace  (Y, TY) as 

follows: 
Y
Ix = {G Y:x ∈( X-G)}..   

Remark 2.2 

                 For a topological space )X, T) ,Y X, for each G . Then 
Y
Ix={G Y:x ∈( X-G) ,for each xY}={G 

Y:x ∈( Y-G) for each xY}. 

Proposition 2.3 

                  For a topological space )X, T) , Y X, for each G . Then 
Y
Ix={G Y: x ∈( X-G) = {G Y: for 

eachG
 
Ix }, 

Definition 2.4 
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                 For a topological space )X, T) , Y X, and AY, we defined YA
*x

 with respect to subspace  (Y, TY) as 

follows: for A ⊂ Y, YA
*x

 = {y ∈ Y : G ∩ A 
 
Ix ,for every G ∈ TY(y)} where TY(y) = {G ∈ TY : y ∈ G}. 

Note 2.5 

                For a topological space (X,T) contains singleton point (say x),then Ix=. 

Proposition 2.6     

                  Let (X, T) be a  topological space, and let A, B be subsets of  X, xX. Then                     

 φ
*x

 = φ 

 X
*x

=X , whenever Ix=.   

 A ⊂ B implies A
*x

 ⊂ B
*x

.  

 For another ideal  Iy ⊇ Ix on X, A
*y

 ⊂ A
*x

. 

 If  xX. Then xA if and only if xA
*x

. 

 If  xA,then (A
*x

)
 *x

= A
*x

. 

 If xA,yB such that x≠y, then A
*x
 B

*y
. 

 If x,yX such that x≠y, then y{x}
c 
implies x{x}

*y 
and y{y}

*x 

 A
*x∪ B

*x
 =(A∪B)

 *x 

 (A∩B)
 *x⊂A

*x
∩B

*x
.
 

 A
*x

 ⊂  cl(A). 

Proof : Straight forward . 

Proposition 2.7 

          Let a topological space (X, T) then for open set  V, V∩A
*x

 = V∩(V∩A)
*x

 ⊂ (V∩A)
*x

 ,for any xX. 

Proof:  Straight forward                 

Definition 2.8 Let (X,T) be a topological space and A X .We define 
*x

pr(A), as following: 
*x

pr(A)= A
*x
A ,for 

each xX . 

Theorem 2.9 Let E and F be such sets of (X, T), xX. Then                 

 *x
pr() =  

 *x
pr(X) = X 

 If E  F, then 
*x

pr(E)  
*x

pr(F). 

 *x
pr(EF) =  

*x
pr(E)  

*x
pr(F). 

 *x
pr(EF)  

*x
pr(E)  

*x
pr(F). 

Proof   Straight forward. 

 

Proposition 2.10   

                 Let (X,T) be a topological space and A ⊂ X. If A is a closed set ,then 
*x

pr(A)=A
*x

=A=cl(A) ,for each 

xA. 

               

Definition 2.11 

                A subset A of a topological space (X,T) is called  prefected set if A
*x

  A, for each xX. 

Definition 2.12 

                A subset A of a topological space (X,T) is called   coprefected set  if A
c  

is a prefected set. 

Lemma 2.13 

                Let (X,T) be a topological space ,then every a closed set is prefected set 

Proof  

          Let A be a subset closed of X, then cl(A)=A .But A
*x
cl(A), for each xX [By proposition 2.6],so that 

A
*x
cl(A)=A ,thus A

*x
 A,for each xX .Hence A is prefected set. 

 

 

3. I
*
-Ti , I

**
-Ti, i=0,1,2 and  Ri , i =0,1,2and 3 

Definition 3.1.  
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                 A topological space( X,T) is called 

 I
*
-T0-space if and only if if for each pair of distinct points x, y of X, there exist non-empty subsets A,B of X 

such that yA
*x 

or xB
*y

. 

 I
*
-T1-space if and only if if for each pair of distinct points x, y of X, there exist non-empty subsets A,B of X 

such that yA
*x 

and xB
*y

. 

 I
*
-T2-space if and only if for each pair of distinct points x,y of X, there exist  subsets A,B of X such that 

A
*x
 B

*y
, with yA

*x
 and xB

*y
. 

 I
**

-T0-space if and only if if for each pair of distinct points x, y of X, there exists non-empty subset A of X 

such that yA
*x 

or xA
*y

. 

 I
**

-T1-space if and only if if for each pair of distinct points x, y of X, there exists non-empty subset A of X 

such that yA
*x 

and xA
*y

. 

 I
**

-T2-space if and only if for each pair of distinct points x,y of X, there exists  subset A of X such that A
*x
 

A
*y
, with yA

*x
 and xA

*y
. 

Definition 3.2 

                    If (X,T) is a topological space and YX , we say that Y  is an I
*
-T0-subspace(I

*
-T1-subspace) of X iff for 

each pair of distinct points y
1
,y

2
 of X, there exist non-empty subsets A,B of Y such that y

2
A

*y1 
or (and) y

1
B

*y2
. 

Definition 3.3 

                  Let (X,T) be a topological space ,for each xX, a non-empty subset A of X,  is called a strongly set if and 

only if (A
*x

 is open set and  xA). 

Definition 3.4 

                  A topological space       is said to be a strongly-TI-space (briefly s-TI-space )if and only if ,for each 

non-empty subset A of X is a strongly set. 

Theorem 3.5 

                 For a topological space (X, T) ,then the following properties hold: 

1. Every  T0– space is a I
*
-T0–space. 

2. Every  T1– space is a I
*
-T1–space.  

3. Every  T2– space is a I
*
-T2–space.  

4. Every  T0– space is a I
**

-T0–space. 

5. Every  T1– space is a I
**

-T1–space.  

6. Every  T2– space is a I
**

-T2–space.  

Proof:(1)  

                 Let  x,y∈ X such that x≠y and let (X,T) is  T0–space. Then there exist an open set U such that, x ∈ U ,y 

U or  there exist an open set V such that, y ∈ V, xV and so , U{y}=Iy or V{x}=Ix. Put A= 

{x},B={y}.It is follows that  xB
*y

 or yA
*x

 . Hence let (X,T) be a I
*
-T0–space.  

Proof:(2)  

               Let  x,y∈ X such that x≠y and let (X,T) is T1–space. Then there exist an open set U such that, x ∈ U ,y U,  

and  there exist an open set V such that, y ∈ V, xV and  so , U{y}=Iy and V{x}=Ix. Put A={x},B={y}.It 

is follows that xB
*y

and yA
*x

. Hence let (X,T) be a I
*
-T1–space.   

Proof:(3) 

                    Let       be T2– space. Then for each    ∈   there exist open sets      such that  ∈  , and  ∈
  and UV=. But U

*x
V

*y
 [ Proposition 3.1.10 ]. Put AU,BV . It is follows that there exist  subsets A,B of 

X such that A
*x 
B

*y
=, with yA

*x
 and xB

*y
. Thus(X,T) is I

*
-T2–space. 

Proof:(4) By the same proof of part(1) . 

Proof:(5) Assume that (X,T)  is an T1–space and let  x,y∈ X such that x≠y. By assumption, Then there exist an open 

set U such that, x ∈ U ,y U,  and  there exist an open set V such that, y ∈ V, xV. So that  U{y}
 
Iy and 

V{y}{y}Ix. . Put A={y} and so xA
*y 

and  y A
*x

. Hence  (X,T) is I
**

-T1–space.  

Proof:(6) By the same way of proof of  part(3). 

Remark 3.6 

                  The converse of theorem need  not be true as seen from the following examples.     

Example 3.7 

                  Let (X,T) be a topological space such that X={x,y,z}T={∅,X,{y,z},{x,z},{z}} and Ix={∅,{y},{z}{y,z}} 

,Iy={∅,{x},{x,z},{z}}.Set A={x}. A
*x

={x}, so that yA
*x

 . Hence (X,T) is an I
*
-T0- space(I

**
-T0- space), but not T0–

space. 
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Example 3.8 

                Let (X,T) be a topological space such that X={x,y,z} T={∅,X,{y,z},{x,z},{z}}, and Ix={∅,{y},{z}{y,z}}, 

Iy={∅,{x}, {x,z} ,{z}}.Set A={x}.B{y},A
*x

={x}, and B
*y 

={y} ,so that yA
*x

 and xB
*y

. Hence (X,T) is an I
*
-T1- 

space(I
**

-T1- space), but not T1–space. 

Example 3.9 

                 Let (X,T) be a topological space such that X={x,y,z} T= {∅,X {y,z} ,{x,z} ,{z}}, and 

Ix={∅,{y},{z}{y,z}}, Iy={∅,{x}, {x,z} ,{z}} .Set A={x}.B{y},A
*x

={x}, and A
*y 

={y} ,so that A
*x
B

*y
. Hence 

(X,T) is an I
*
-T2- space(I

**
-T2- space), but not T2–space. 

Remark 3.10 

                  The converse of theorem 3.5 , need not be true. But it is true generally, if (X,T) is a s-TI-space  

Theorem 3.11  

                 If (X,T) is  an I
*
-To -space and Y  X, then Y is I

*
-To –subspace 

Proof 
                   Let  (X,T) is  an I

*
-To -space and Y is a subspace of X. Let y

1
  and y

2
 be two distinct points of Y. Since Y 

 X and y
1
, y

2
 are distinct  points of X. Again, since X is an I

*
-To -space, there exist non-empty subset A,B of X such 

that y
2
B

*y1 
or y

1
 A

*y2
. Suppose, y

1
 A

*y2
, so that there exists an T-open set U such that, y

1
 ∈ U, UAIy2. Put 

U

=UY is TY-open and A


=AY, so that U


 containing y

1 
and U


A


 UAIy2 . It is follows that y

1
 A

*y2
.So by 

definition, we have that Y is I
*
-To–subspace 

Theorem 3.12  

                 If (X,T) is  an I
*
-T1-space and Y  X, then Y is I

*
-T1 –subspace 

Proof   

                 Let  (X,T) is  an I
*
-T1 -space and Y is a subspace of X. Let y

1
  and y

2
 be two distinct points of Y. Since Y 

 X and y
1
, y

2
 are distinct  points of X. Again, since X is an I

*
-T1 -space, there exist a subset A,B of X such that 

y
2
B

*y1 
and  y

1
A

*y2
, so that there exist an T-open set U such that, y

1
 ∈ U, UA

X
Iy2, and there exist an T-open set 

V such that, y
2
 ∈ V, VBIy1. Put U


=UY and V


=VY are TY-open, A


=AY, B


=BY ,so that U


containing 

y
1
,V


containing y

2
,thus U


A


UAIy2and V


B


 VB Iy1.It is follows that y

2
B

*y1 
and y

1
  A

*y2
.So by 

definition, we have that Y is I
*
-T1–subspace 

Theorem 3.13 

                  A topological space       is an R0-space if and only if for each xX and   open set such that  ∈  , then 

cl({x}
*x

) U. 

Proof 

                  Let xX and   open set such that  ∈  . By assumption ,then cl({x})U. But {x}
*x
 cl({x}) [By 

Proposition 2.8].Therefore  cl({x}
*x

) cl(cl({x})) implies cl({x}
*x

)cl({x}).Thus  cl({x}
*x

)   U.  

Conversely, to prove       is R0-space, let  ∈   and  ∈  .Since, {x}{x}
*x

. Then cl({x})cl({x}
*x

) U. Thus 

cl({x}) U. Therefore (X,T) is R0 – space. 

Theorem 3.14 

                 A topological space(X,T) is R1 – space if and only if  , for each  x,y∈ X and A∈ X, such that x≠y and 

cl({x})≠cl({y}) ,then ,there exist disjoint open sets U,V such that cl({x}
*x

)U and cl({y}
*x

)V. 

Proof   

                   Let x,y∈ X and A∈ X, with x≠y, and cl({x})≠cl({y}). By assumption ,then there exist disjoint open sets 

U,V such that cl({x}) U and cl({y}) V. But {x}
*x
 cl({x}) and {y}

*x
 cl({y}) [By Proposition 2.8].Therefore 

cl({x}
*x

)cl(cl({x})) and cl({y}
*x

)  cl (cl ( {y})) .This implies cl({x}
*x

) cl({x}) and cl({y}
*x

)  cl({y}).Thus  

cl({x}
*x

) U and cl({y}
*x

)  V. 

Conversely ,let x,y∈ X such that x≠y and cl({x})≠cl({y}).By assumption , then there exist disjoint open sets U,V 

such that cl({x}
*x

)U and cl({y}
*x

)V. Now ,since, {x}{x}
*x

 and{y}{y}
*x

. Then ,cl({x})  cl({x}
*x

)  U and 

cl({y}) cl({y}
*x

)
 
 V. Thus cl({x}) U and cl({y}) V. Therefore (X,T) is R1 – space. 

Theorem 3.15        

                  A s-TI-space       is regular space iff for each    closed set  and    , then {x}
*x
F

*y
 . 

Proof   

                  Let F be  closed set and    ,thus yF, so that{x}
*x
F

*y
[ Proposition 2.6]. 

Conversely, let F be  closed set and     and yF implies{x}
*x
F

*y
 . Since (X,T) is a s-TI-space and by 

definition 3.1, we get that  {x},F are a strongly sets, so {x}
*x

, F
*x

 an open subsets of X , with x {x}
*x 

and F F
*y

. 

Thus       is regular space. 
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Theorem 3.16  

          A s-TI-space       is normal space iff for each disjoint closed sets     , then F
*x
H

*x
.  

Proof  

          By the same way of proof of  above theorem. 

Theorem 3.17 

                 For a topological space (X, T) ,then the following properties hold: 

1. (X,T) is  I
*
-T0–space iff  I

**
-T0–space. 

2. Every  I
*
-T1–space is a I

**
-T1–space.  

3. Every  I
*
-T2–space is a I

**
-T2–space.  

Proof :Straight forward. 

Remark 3.18 
                  The converse of part(2),(3) ,need  not be true as seen from the following examples.     

Example 3.19 

                   Let (X,T) be a topological space such that X={x,y,z} , T={∅,X,{z}}, and Ix={∅,{y},{y,z},{z}}, 

Iy={∅,{x},{x,z},{z}}.Set A={z} ,B={x,y} ,then A
*x

={}, A
*y

={},B
*y

 ={x,y},that means yA
*x

 and xA
*y

 but 

yA
*x

 and xB
*y

. Hence(X,T) is  an I
**

-T1 –space but not I
*
-T1 -space 

Example 3.20  

                 Let (X,T) be a topological space such that X={x,y,z,w} T={∅,X,{x,y},{x,y,z},{z}},and 

Iz={∅,{y},{x},{w},{x,y},{x,w},{x,y,w},{w,y}},Iy={∅,{x},{z},{w},{x,z},{x,w},{z,w},{x,z,w}}.Set A= {y,z} , 

B={a,c} then A
*y

= {x,y,w}  and A
*z 
 B

*z 
={z,w} ,so that yA

*y
 and xA

*z
. But A

*y
  B

*z
 .Hence (X,T) is an I

**
-

T1- space, but not I
*
-T2–space. 

             
                  A s-TI-space       is a   -space if and only if it is     -space and I

*
-Tj-space,           ,j  0,1,2 

Proof  
                By theorem 3.1, remark 3.10 and remark 1.2. 

             
                  A s-TI-space       is a   -space if and only if it is     -space and I

**
-Tj-space,           ,j  0,1,2 

Proof  

                By theorem 3.1, theorem 3.17, remark 3.10 and remark 1.2. 

 

4. I
*
- map and I

**
- map 

Definition 4.1  

                A mapping  f: (X,T) → (Y,) is called I
*
- map .If and only if, for every subset A of X, xX, f(A

*x
) =(f 

(A))
*f (x)

. 

Definition 4.2  

                 A mapping  f: (X,T) → (Y,) is called I
**

- map. If and only if, for every subset A of Y,yY,  f
-1

(A
*y

) =(f 
−1

(A))
*f-1 (y)

                

Theorem 4.3  

                 If f: (X,T) (Y,) is one-one   I
*
- map of an I

*
-T0–space X onto a space Y, then Y is an I

*
-T0–space.   

Proof 

                 Let(X,T) be I
*
-T0–space and  f: XY be onto , one-one  and I

*
- map. We want to prove that Y  is I

*
-T0–

space. Let y
1 

and y
2
 be two distinct points of Y. Since f is one-one and onto, there exists distinct points x1, x2 of X 

such that f(x1)= y
1
 and f(x2) = y

2
.Since (X,T) is I

*
-T0–space, there exist non-empty subsets A,B of X such that 

x2A
*x1 

or x1 B
*x2

, so that f(x2)(f(A
*x1

) (f(A))
*f(x1)

 or f(x1)(f(B
*x2

) (f(B))
*f(x2)

 .Thus y
2
(f(A))

*f(x1)=y1 
and 

y
1
(f(B))

*f(x2)=y2
.Therefore  we get that Y is I

*
-T0–space. 

                

Theorem 4.4 

               If f: (X,T) (Y,) is one-one  I
*
- map of an I

*
-T1–space X onto a space Y, then Y is an I

*
-T1–space.  

Proof 

               By the same way of proof of  above theorem. 

Theorem 4.5  

               If f: (X,T) (Y,) is I
**

- map injection of a space X into I
*
-T0–space Y, then X is an I

*
-T0–space.   

Proof  
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               Let (Y,) be I
*
-T0–space and f: XY be I

**
-map injection. We want to prove that X is I

*
-T0–space. Let x

1 

and x
2
 be two distinct points of X. Since f is injection, then f(x

1
)f(x

2
). Since (Y,) is I

*
-T0–space, there exist non-

empty subsets C,D of Y such that f(x
1
)C

*f(x2) 
or f(x

2
)D

*f(x1) 
,so that f

-1
(f(x

1
))f

-1
(C

*f(x2)
) (f

-1 
(C))

*f-1(f(x2))
 or f

-

1
(f(x

2
))f

-1
(D

*f(x1)
) (f

-1
(D))

*f-1(f(x1))
.This implies x

1
(f

-1
(C))

*x2
 or x

2
(f

-1
(D))

*x1
.Therefore  we get that X is I

*
-T0–

space. 

Theorem 4.6  

               If f: (X,T) (Y,) is I
**

- map injection of a space X into I
*
-T1–space Y, then X is an I

*
-T1–space.   

Proof 

               By the same way of proof of  above theorem. 

 

Theorem 4.7  

               If f: (X,T) (Y,) is one-one ,I
*
- map of an I

*
-T2–space X onto a space Y, then Y is an I

*
-T2–space.   

Proof  

               Let (X,T) be I
*
-T2–space and  f: XY be , one-one  onto I

*
- map. We want to prove that f(X) = Y  is I

*
-T2–

space. Let y
1 

and y
2
 be two distinct points of Y. Since f is onto I

*
- map, there exists distinct points x1, x2 of X such 

that f(x1) = y
1
 and f(x2) = y

2
.Since (X,T) is I

*
-T2–space, there exist non-empty subsets A,B of X such that 

A
*x1
B

*x2
 ,with x2A

*x1
 and x1B

*x2
. But f is onto I

*
-map, so that f(A

*x1
)f(B

*x2
)f(A)

*f(x1)
 

f(B)
*f(x2)

f(A)
*y1
f(B)

*y2
, with f(x2)(f(A))

*f(x1)
 and f(x1)(f(B) )

*f(x2)
.Thus there exist non-empty  subsets 

f(A),f(B) of Y such that f(A)
*y1 

f(B)
*y2
, with y

2
(f(A))

*y1 
and y

1
(f(B))

*y2
. Therefore  by definition we get that 

Y is I
*
-T2–space. 

Theorem 4.8 

               If f: (X,T) (Y,) is I
**

- map injection of a space X into I
*
-T2–space Y, then X is an I

*
-T2–space.   

Proof 

                Let (Y,) be I
*
-T2–space and f: XY be I

**
- map  continuous injection. We want to prove that X is I

*
-T2–

space. Let x
1 

and x
2
 be two distinct points of X. Since f is injection, then f(x

1
)f(x

2
).Since (Y,) is I

*
-T2–space, there 

exist non-empty subsets C,D of Y such such C
*f(x1) 

D
*f(x2)

., with f(x2)(f(C))
*f(x1)

 and f(x1)(f(D) )
*f(x2)

 .  

But f  is  I
**

- map injection, so that (f
-1

(C))
* (x1)

(f
-1

(D))
* (x2)

 = f
-1

(C
*f(x1)

) f
-1

(D
*f(x2)

)f
-1

(C
*f(x1)

 D
*f(x2)

) f
-1

({}) 

.Thus there exist  non-empty subsets f
-1

(C), f
-1

(C) of X such that (f
-1

(C))
*(x2)

 (f
-1

(D))
*(x1)

, with x
2
(f

-1
(C))

*x1
 and 

x
1
(f

-1
(D))

*x2
  ,for each x

1 
and x

2
 be two distinct points of X. Therefore by definition we get that X is I

*
-T2–space. 

Corollary 4.9  

                If f: (X,T) (Y,) is I
**

- map injection of a s-TI-space X into I
*
-T2–space Y, then X is T0–space.  

Corollary 4.10 

                If f: (X,T) (Y,) is I
**

- map injection of a s-TI-space X into I
*
-T2–space Y, then X is an T1–space. 

Theorem 4.11 

                 If f: (X,T) (Y,) is continuous, injection function of a space X into T2–space Y, then X is an I
*
-T1–

space.   

Proof 

               Let (Y,) be T2–space and f: XY be continuous, injection  function. We want to prove that X is I
*
-T1–

space. Let x
1 

and x
2
 be two distinct points of X. Since f is injection, then f(x

1
)f(x

2
).Since (Y,) is T2–space, then 

there exist V1 and V2 ∈ TY such that f(x
1
) ∈ V1, f(x

2
) ∈ V2 andV1∩V2=.This implies x

1∈f
−1

(V1) and x
2∈f

−1
(V2). So 

that f
−1

(V1)  {x
2
}Ix2 and f

−1
(V2){x

1
}Ix1.Put A{x

2
}, B{x

1
}.It is follows that x

1
A

*x2
 and x

2
A

*x1
. 

Therefore by definition we get that X is I
*
-T1–space. 

Corollary 4.12 

         If f: (X,T) (Y,) is injection  function of a space X into T2–space Y, then X is an I
*
-To–space.   

Proof   It is clear [Since every I
*
-T1–space is I

*
-To–space]. 
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