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Abstract: In the paper, the coupled 1D Klein-Gordon-Zakharov system (KGZ-equations in 

short) is considered as the model equation for wave-wave interaction in ionic media. A finite 

difference scheme is derived for the model equations. A new six point scheme, which is 

equivalent to the multi-symplectic integrator, is derived. The numerical simulation is also 

presented for the model equations. 
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1. Introduction  

Nonlinear evolution equations have a major role in various scientific fields, such as fluid 

mechanics, plasma physics, optical fibres, solid state physics, chemical physics, and 

geochemistry. Nonlinear wave phenomena of dispersion, dissipation, diffusion, reaction and 

convection are very important in nonlinear wave equations. In recent years, solving nonlinear 

evolution equations has become a valuable task in many scientific areas including applied 

mathematics as well as the physical sciences and engineering. For this purpose, some accurate 

methods have been presented, such as Inverse scattering transform method[1], Bäcklund 

transformation method[2], Jacobi elliptic function method[3], F-expansion method[4], 

Hirota’s bilinear method[5], the extended hyperbolic functions method[6, 7], Homotopy 

perturbation method[8], Bifurcation method [9–11] and so on. 

Wave-wave interaction is an important problem for both physical and mathematical reasons. 

Physically, the wave-wave interaction or the wave collisions are common phenomena in 

science and engineering for both solitary and non-solitary waves. Mathematically solitary 

wave collision is a major branch of nonlinear wave interaction in ionic media. 

We consider as the model equation the following Klein-Gordon-Zakharov (KGZ) equations  
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                      (1) 

This system is describe [12, 13] the interaction of a Langmuir wave and an ion sound wave in 

plasma. More precisely, E is the fast scale component of the electric field, where η denotes 

the deviation of ion density, in the paper, we discretize the system with finite difference 

schemes to show the multi-symplectic structure of CNLKGZ system. 
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2. A difference scheme for CNLKGZ system 

We consider the following generalized CNLKGZ system 
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Where           , , , , ,E p x t iq x y x t i x y     
         (2) 

We have 

      (3)                                    

 

 

Introducing the canonical momenta  

   2 2, , , , , , , , ,x x t t x x t t x x
p a q b p c q d e f g h u p v q            

The above system can be written in the following form  

 zSLzKz zxt 
                                                                                     (4) 

with independent variable (t, x)R
2
 and state variable zR

d
, d ≥ 2. Here K, LR

dxd
 are two 

skew-symmetric matrices and S : R
d
 →R is a scalar-valued smooth function.  z is the 

standard  gradient in R
d
. For S(z) and  z S(z) , the system is multi-symplectic in the sense that 

K is a skew-symmetric matrix representative of the t direction and L is a skew-symmetric 

matrix representative of the x direction. S represents a Hamiltonian function [14, 15, 16]. The 

equation (4) is multi-symplectic in nature with the state variables 

  1622,,,,,,,,,,,,,,, Rqpvuhgfedcbaqpz
T
   

 So the    Tz qpvuhgfedcbakqkpzS 22,,,,,,,,,,,,,,,   

     1 ; 1kp p q kq p q          

We get 

     

 

   2 2

1 1

, ,

0 0

, , , ,

,

x t x t

x x t t

t x x x t x

x x t t

x x

a c p q b d p q

p a q b p c q d

g e u v h f

e f g h

u p v q

   

   

       

   

     

   

 

 

and the pair of skew symmetric matrix K and L are 
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Using midpoint difference scheme to discretize multi-symplectic CNLKGZ system, we can 

get 
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Eliminate a, and c from (5), using (7), (9) so we can get 
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Eliminate b, and d from (6), using (8), (10) so we can get 

 
 

 
 

             21

21

21

21

21

21

21

21

21

23

21

23

21

23

21

23

2

21

21

21

21

23

21

2

2121

1

21

2

11

2222
































































n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n

n
n

l

n

l

n

l

pqpq

t

qqq

x

qqq


  (20)

  
 

Eliminate g, e, u, and v from (11), using (13), (15), (17), (18) so we can get
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Eliminate h, and f from (12), using (14), (16) so we can get
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Multiply (20) with i. and adding Eq. (19) then we can get 
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Multiply (22) with i. And adding Eq. (21) then we can get 
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3. Numerical simulation 

In this section, we present the numerical result of the Coupled Klein-Gordon-Zakharov 

system using the multi-symplectic integrator. Now we consider the CNLKGZ system 
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with the initial value 
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      (25) 

We take the time step ∆ t = 0.02 and a space step ∆x = 0.02, -0.3 ≤ x ≤ 0.3, D0 = 25, r1 = r2 = 

1 and V0=1. In Fig. 1, the computation is done for 0 ≤ t ≤ 2.  
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(a)        (b) 

Fig. 1. Simulation results of the interaction of the two waves 

4. Conclusion: In this paper, the multi-symplectic formulation for the coupled Klein-

Gordon-Zakharov system is presented. Numerical simulations are also reported. We 

observe that the multi-symplectic scheme well simulates the evolution of the solitons. It 

has advantage for the long time computing accuracy and preserving the energy 

conservation property. 
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