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ABSTRACT 

In this paper, a new scheme of Runge-Kutta (RK) type has been developed while evaluating 

two slope functions per step and maintaining the third order accuracy of the scheme. Local 

truncation error is obtained with the help of principal term which is obtained via multi 

variable Taylor series. It has been shown that the convergence order of the scheme is three 

and its stability polynomial is also derived. Some numerical examples are taken in order to 

compare the developed scheme with other existing schemes. It is observed that the developed 

scheme is better than other selected existing schemes and this comparison has been performed 

on the basis of slope evaluations per integration step, error analysis and computer time 

consumed by the scheme under consideration. 
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1. INTRODUCTION 

It is observed that ordinary differential equations play vital role in real life situations. Various 

mathematical models are expressed in terms of ordinary differential equations with one or 

more than one initial conditions such as mass-spring-damper model, RLC series circuit, beam 

equation, SIR models in epidemiology, simple pendulum, Vander-pol oscillator, kinetic 

reactions in chemistry, particle’s trajectory, one-dimensional fluid flow equations, and many 

others. Such various applications of applied problems depending upon ordinary differential 

equations can be found in research works found in [1-10]. Ordinary differential equations can 

be solved analytically and numerically but in most of the situations analytical methods fail to 

acquire the desired solution and this happens in cases when we come across nonlinear terms 

in the model under consideration. Therefore, numerical schemes which are much handy as 

compared to analytical schemes come to the rescue. Numerical schemes have more 

significance than analytical schemes as these schemes can be used to find the solution of any 
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ordinary differential equation whether it be autonomous, non-autonomous, linear or non-

linear, provided that the ordinary differential equation in hand has unique solution in the given 

time interval.  

 

Nowadays, ordinary differential equations are an integral part of applied and pure 

mathematics. As we know, many application problems which arise in day to day life require 

perfect solution in order to check the consistency of mathematical model. Unfortunately, 

every problem cannot be solved by analytical schemes. Therefore, it is necessary to have 

numerical schemes which give us the solution of any type of mathematical model which is 

based upon ordinary differential equations. In order to get an efficient numerical scheme, we 

propose a new scheme which has less computational complexity but at the same time it has 

third order accuracy which is considered to be a good indicator for numerical scheme to be 

used to serve practical purposed. 

The general form of developed scheme for numerical solution of autonomous and non-

autonomous initial value problems is given as   

( ) ( )( ) ( )0 0' , ,        ;y x f x y x y x y= =  0 , .x x X                              (1) 

In past literature, some authors have worked on deriving RK type schemes which are explicit 

and require fewer number of slope evaluations. We observed that in standard RK schemes, 

number of function evaluations depend upon its order. In third order (RK-3) schemes, three 

number of function evaluations are required per integration step. Most of authors wish to 

increase the efficiency with lower number of function evaluations. As a result, Rabiei, 

Faranak et al [11] authors proposed a new method of three explicit Improved Runge-Kutta 

(IRK) type schemes for solving first order ordinary differential equations. These schemes are 

two step in nature and requiring lower number of stages as compared to the classical Runge-

kutta method. Zaib-Un-Nisa et al [12] proposed Improved Euler method with view to attain 

greater accuracy and efficiency. The performance of this method is based on autonomous 

initial value problems of ordinary differential equation. Zaib-Un-Nisa et al [13] constructed 

second numerical scheme for the solution ordinary differential equation and has analyzed on 

the basis bound on local truncation error and step size. Rabiei, F. and Ismail [14] developed 

the set of explicit third order Improved Runge-Kutta method in two stage and has lower 

number of function evaluations than existing method. Ochoche, A. [15] In this paper authors 

further modified Improved modified Euler method which is particularly used for autonomous 

Initial value problem. Ochoche, A [16] proposed a new method an improved approximation 

named as modified Euler method for obtaining solution of Initial value problems. Rabiei, F., 

Ismail, F., Norazak, S., & Emadi, S. [17] proposed a new method Improved Runge-Kutta method 

Nystrom (IRKM) method for solving second order ordinary differential equations. This method 
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require lower number of function evaluation per step and numerical results are gives to illustrate the 

efficiency of proposed method and compared with existing method.   

2. Derivation of the Proposed Scheme 

The present motivation has been obtained from the research work carried out in [Third Order 

Improved Runge-Kutta Method for Solving Ordinary Differential Equation] 

Consider the following structure of the proposed numerical scheme: 

                                             ( )( )1 1 1 1 1 2 2 2 .n ny y h s s s s  + − − −= + − + −                                
(2) 

Where 

( )1 ,n ns g x y=
 

( )1 1 1,n ns g x y− − −=
                                                                                  

( )2 2 21 1,n ns g x c h y a s h= + +
                                             

( )2 1 2 1 21 1,n ns g x c h y a s h− − − −= + +
                                            

 

Here 1 1 2 2, , ,s s s s− −  
are slopes which expand through the multivariable Taylor’s series that is 

after expansion of 1 1 2 2, , ,s s s s− − take this form 

( )1 , .n ns g x y=   

( ) ( )1

2
2
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3 3 4
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( ) ( )

( )

2 2 2

2 2 2 2 2 22
2 2 2 2 2 3

2 2

2 2 2

,

2 2 4
.

2! 2 2 2 2

n n x y y x
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− − + + − + +  
  

Substituting 1 1 2 2, , ,s s s s− − in eq(2) after this we equate with Taylor series  
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                     (3) 

                                                                                                                                                                                 

Generally, Taylor's series for a function g is as follows:   

           

( ) ( )

( )

2 3 2 2

2 3 2 3

4 5

2

1 1
( ) 2

2 6

3 3 41
.

24 5 3 3

j n x y xx xy yy y y x

xxx xxy xyy yyy yy y y

x y xy y yy x xx y xy

y t t y tg t g g g t g g g g g g g g g
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g g g g g g g g g g g g

+ = +  +  + +  + + + +
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+  + 

+ + + +  

   (4)
 

After comparison of equations, we get the non-linear system as follows.
  

1 1 −− = 1 ,    1 2 − + =
2

1
 ,    2 2c = 

12

5
                                                                          

(5)
 

There are four unknown constants on above set of equations. Since all the terms up to third 

power of h are cancelled therefore it is concluded that the developed scheme is third order 

accurate. It can be observed that there are three equations and four unknowns. Therefore it is 

necessary to assume 2c  to determine three other values. If we assume 2

1

7
c = , then we will 

obtain the following RK type scheme: 

( )1 1 1 2 2

    

17 29 35
.

12 12 1

                   

2

  

n ny y h s s s s+ − −

 
= + − + + − 

                                                                     (6)
 

( )1 ,n ns g x y= ,                          
 

( )1 1 1,n ns g x y− − −=
                                                            

 

                                    
2 1

1 1
,

7 7
n ns g x h y k h

 
= + + 

 
,       

2 1 1 1

1 1
,

7 7
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 
= + + 

   

 

3. STABILITY ANALYSIS  

To check the  stability of region through the test problem  
dy

y
dx

= , where λ is a complex 

number. 

                                           

( ) ( )

1 1 1

2 2 1

; Re 0 .

,

1 , 1
7 7

n n

n n

dy
y x
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s y s y

h h
s y s y
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 
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− −

− −

= 

= =

   
= + = +   

   

                                                                   (7) 

We obtain the following stability polynomial 

( ) ( )2( , ) ,p w z w p z w q z= + +                                                                                        (8) 
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where ( ) ( )2 21 1
( ) 5 18 12 , ( ) 5 6

12 12
p z z z q z z z= + + = − + , and .z h=  

 
4. RESULTS AND DISCUSSION 

Different types of initial value problems have been examined with various step size values for 

testing the developed scheme. The developed scheme is compared with standard or existing 

schemes which are present in literature having same number function evaluations. To serve 

the purpose, maximum absolute error, absolute last error and CPU time at each step of 

integration are tabulated for all the scheme under consideration. Each data cell in every table 

of numerical experiments list maximum absolute error and absolute last error and CPU time 

values from top the bottom order. The numerical results are presented in table by utilizing 

these methods, methods in first row of each table.  The amount of absolute maximum error, 

last error and CPU time are consequently presented in second, third and fourth column by 

using step size as h=0.1 and h=0.01. 

Example: 01  

2

(0) 1
dy

y
dx y

x= =       Exact solution ( )
32

1
3

y x x= +  

It is observed from table 1, new proposed and Huen’s and Ralston scheme produce less errors 

(absolute maximum and last error). It means results are converging to the exact solution. It 

can be observed that new proposed scheme gives less absolute maximum error and last error 

with different step size than other two existing schemes named as Huens and Ralston scheme. 

It is also observed that new proposed method took much less time as comparison to other two 

existing schemes. Therefore, the new proposed scheme is better than Huens and Ralston 

schemes in terms of convergence and time. 

Table 1. Error and CPU values for Example 1 

Step Size/ Method Proposed Method Huen’s Method Ralston Method 

0.1  2.8296e-04 1.3631e-03 4.1378e-04 

2.8296e-04 1.3631e-03 4.1378e-04 

4.6875e-02 1.5625e-02 0.00002e+00 

0.01 2.9482e-07 1.2980e-05 3.8995e-06 

2.9482e-07 1.2980e-05 3.8995e-06 

2.8125e-01 0.0000e+00 0.0000e+00 
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Example 02    ( )0 1
dy

x y y
dx

= − =   Exact solution ( ) 2 1
x

y x x e
−

= + −  

It can be seen from table 2, new proposed, Huen’s and Ralston scheme produce less errors 

(absolute maximum and last error). It means results are converging to the exact solution. It 

can be observed that Raltson’s and Heun’s Scheme give almost same errors (absolute 

maximum and last error) and new proposed scheme gives less absolute maximum error and 

last error with different step size than these two existing scheme. Therefore, the new proposed 

scheme is better than Huens and Ralston scheme in terms of convergence and time. 

Table 2. Error and CPU values for Example 2 

Step Size/ Method Proposed Method Huen’s Method Ralston Method 

0.1  1.2223e-04 1.3231e-03 1.3231e-03 

1.2223e-04 1.3231e-03 1.3231e-03 

3.1250-02 0.0000e+00 0.0000e+00 

0.01 1.2261e-07 1.2355e-05 1.2355e-05 

1.2261e-07 1.2355e-05 1.2355e-05 

2.6563e-01 0.0000e+00 0.0000e+00 

 

Example 03   
( )

( )
sin

0 1
xdy

y
dx y

= =  Exact solution ( ) ( )3 2cosy x x= −  

It can be seen from table 3, new proposed, Huen’s and Ralston scheme produce less errors 

(absolute maximum and last error). It means results are converging to the exact solution. It 

can be observed that Raltson’s and Heun’s Scheme give almost same errors (absolute 

maximum and last error) and new proposed scheme gives less absolute maximum error and 

last error with different step size than these two existing scheme. Therefore, the new proposed 

scheme is better than Huens and Ralston scheme in terms of convergence and time. 

  

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) DOI: 10.7176/MTM 

Vol.9, No.8, 2019 

 

69 

 

Table 3. Error and CPU values for Example 3 

Step Size/ Method Proposed Method Huen’s Method Ralston Method 

0.1  1.3055e-04 2.3495e-04 2.4995e-04 

1.3055e-05 2.3495e-04 2.4995e-04 

4.6875e-02 0.0000e+00 0.0000e+00 

0.01 1.4937e-07 2.7244e-06 2.2459e-06 

6.8062e-08 2.7244e-06 2.2459e-06 

2.9688e-01 0.0000e+00 0.0000e+00 

 

5. CONCLUSION 

In this research study, a new numerical scheme has been developed by reducing number of 

slope evaluations per integration step. The developed scheme can be used to solve first and 

higher order ordinary differential equations with initial conditions. The developed scheme has 

third order accuracy and it is explicit in nature. Its error analysis is carried out via 

multivariable Taylor series. The scheme has much smaller error than existing schemes 

selected for comparison. As soon as we take step size larger (0.01) then maximum error and 

last error of the scheme remains below the errors produced by other schemes of same function 

evaluations. Proposed scheme yielded successful and better results in comparison of other 

second order numerical schemes and it provides well-organized way to estimate numerical 

solutions to initial value problems and systems of initial value problems. It is noticed that the 

accuracy of the developed scheme increases with decrease in the step size h value.  

Examples in this research paper proved that the proposed scheme is more accurate and 

effective than some existing standard methods based upon the results obtained in the Tables 1 

to 3 above in which the maximum error, last error and CPU time values related to all above 

mentioned schemes are better in case of our newly developed scheme. Hence the proposed 

scheme performs best among the existing methods. Based upon the three numerical problems 

solved above, it can be concluded the proposed scheme is powerful and effective for finding 

numerical solution of initial value problem in the fields of applied and pure mathematics. 
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