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Abstract  

In this paper we deal with divisibility criteria for any integer in decimal system. In the 

development of these criteria we use facts from congruence theory: as modular Arithmetic, 

linear congruences, and some important properties of divisibility and congruence. Then, we 

give general divisibility criteria for the two classes of positive integers. The divisibility 

criteria for the first class of divisors is written down as a linear form in which the decades 

and the units digits of the test integer are involved in such a way that the co-efficient of the 

decades takes one and that of the units digit is an integer formed by a parameter, which is the 

solution of the linear congruence describing the co-primality of the divisor and the base of 

the underlying number system. This divisibility parameter is not unique, but each yields a 

unique criterion. Finally, we apply the rule giving a couple of examples and make a 

conclusion which summarizes the general divisibility test in terms of the two classes of 

divisors. 
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1. Introduction  

Divisibility rules are designed to answer the question of divisibility of an integer a by a 

divisor integer without actually performing division. There are lots works that had been done 

in the field of number theory. But in the area of divisibility very little attention has been 

given. Although, for checking that a given integer is a multiple of any other integer is still 

time taking, we have some algorithms, such as Euclid’s algorithm, which is one of the 

preeminent methods ever known regarding the underlying concept. Till the date there was no 

a feasible generalized test for divisibility. Here are some facts of congruence theory ,which is 

an important tool in number theory, besides handling related  problems as solving 

congruence equations, remainder problems and the like, it is  being used in the development 

of a generalized test of divisibility. The basic facts that are to be used   in this paper are linear 

congruences and their properties along with modular Arthmetics and the Fundamental 

theorem of Arthmetics. In section four ,we show an application for the main result. A 

conclusion is given in the last section of this paper 

2. Congruence and its properties, and basic notions  

2.1. Congruence  

Definition2.1. If 𝑎 and 𝑏 are integers; the notation 𝑎≡ (mod𝑚) (“𝑎is congruent to 𝑏mod 𝑚") 

means that 𝑎 and 𝑏 share the same remainder with respect to integer division by 𝑚, or, 

equivalently, that 𝑚|𝑏−𝑎. 

Definition 2.2. Let 𝑎, 𝑏, 𝑚 be integers with𝑚 > 0, then we say 𝑎 is congruent to 𝑏 modulo m 

iff 𝑚| 𝑎 − 𝑏. Symbolically, 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚). 

Examples 2.1.  Congruence between two integers 

a) 3≡5mod2,  

b) 23≡37 (mod7). 

Remark 2.1. Here, we see why the above two definitions are equivalent. If 𝑎 and 𝑏 have the 

same remainder (mod 𝑚), then 𝑎 = 𝑚𝑞1 + 𝑟 for some integer 𝑞1 and some0 ≤ 𝑟 < 𝑚, and 

𝑏 = 𝑚𝑞2 + 𝑟 for some integer 𝑞2 and the same 𝑟. Therefore, 

𝑏 − 𝑎 = 𝑚(𝑞2  − 𝑞1) 
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, which means that 𝑚|𝑏 − 𝑎. Conversely, if 𝑚|𝑏−𝑎, then 𝑏 − 𝑎 = 𝑚𝑞 for some integer 

𝑞.Then let 𝑎𝑚𝑜𝑑 𝑚 = 𝑟.It follows that 𝑎 = 𝑚𝑞1 + 𝑟 for some integer 𝑞1. But then, 

𝑏 = 𝑎 + 𝑚𝑞 = 𝑚𝑞1 + 𝑟 + 𝑚𝑞 = 𝑚𝑞 + 𝑚𝑞1 + 𝑟 

. Since 𝑟 is the remainder of (mod 𝑚), 0 ≤ 𝑟 < 𝑚, and therefore, since 𝑏 = 𝑚𝑞 + 𝑞1 + 𝑟, 𝑟 

is also the remainder of 𝑏(mod 𝑚). 

The condition 𝑚|𝑏−𝑎 can also be expressed as 𝑏=𝑎+𝑚𝑞 for some integer 𝑞.Therefore, 𝑎 is 

congruent to 𝑏 mod 𝑚 precisely if the difference of 𝑎 and 𝑏 is a multiple of 𝑚.An 

observation that will be useful later is that 𝑎≡(𝑎mod𝑚)(mod𝑚). This follows directly from 

the definition. 

2.2. Properties of Congruence 

We now study how congruence interacts with the arithmetic operations of addition and 

multiplication.  

Theorem 2.1. if 𝑎 ≡ 𝑏(𝑚𝑜𝑑𝑚) and 𝑐 ≡ 𝑑(𝑚𝑜𝑑𝑚), then 

i. 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (𝑚𝑜𝑑𝑚) 

ii. 𝑎𝑐 ≡ 𝑏𝑑(𝑚𝑜𝑑𝑚) 

Proof: As we just stated on the previous remark, the assumptions of the theorem are 

equivalent to 𝑏 = 𝑎 + 𝑚𝑞1 for some integer 𝑞1 and 𝑑 = 𝑐 + 𝑚𝑞2 for some integer 𝑞2. By 

Then it follows that +𝑑 = 𝑎 + 𝑐 + 𝑚𝑞1 + 𝑚𝑞2 = 𝑎 + 𝑐 + 𝑚(𝑞1 + 𝑞2) . That proves the first 

conclusion of the theorem. Similarly, we get  𝑏𝑑 = 𝑎𝑐 + 𝑚𝑞1𝑐 + 𝑞2𝑎 + 𝑞1𝑞2. That proves 

the second conclusion of the theorem.  

It is a consequence of this theorem that in any computation of a remainder of some additive 

and/or multiplicative combination of integers, the integers involved can be reduced to 

remainders first. We will explain this later. 

Definition 2.3.  We define relation ′ ≡ ′  as 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) iff 𝑚| 𝑎 − 𝑏. Such a relation is called a 

congruence relation.  

Theorem 2.2. The congruence relation satisfies the following properties: for 𝑎, 𝑏, 𝑐 ∈ 𝑍 (i.e. an 

equivalence relation) 
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a. 𝑎 ≡ 𝑎(𝑚𝑜𝑑 𝑚) (Reflexive) 

b. 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) implies 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑚) (symmetric) 

c. 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑚) and 𝑏 ≡ 𝑐(𝑚𝑜𝑑 𝑚) then 𝑎 ≡ 𝑐(𝑚𝑜𝑑 𝑚) (transitive) 

Proof: left to the reader. 

Theorem 2.3.  If 𝑎1  ≡ 𝑏 1(𝑚𝑜𝑑 𝑛) and 𝑎2  ≡ 𝑏 2(𝑚𝑜𝑑 𝑛), or if 𝑎 ≡  𝑏 (𝑚𝑜𝑑 𝑛), then: 

a. 𝑎 +  𝑘 ≡  𝑏 +  𝑘 (𝑚𝑜𝑑 𝑛) for any integer k (compatibility with translation) 

b. 𝑘 𝑎 ≡  𝑘 𝑏 (𝑚𝑜𝑑 𝑛) for any integer k (compatibility with scaling) 

c.  𝑎1 +  𝑎2  ≡ 𝑏 1 + 𝑏 2(𝑚𝑜𝑑 𝑛) (compatibility with addition) 

d.  𝑎1 −  𝑎2  ≡ 𝑏 1 − 𝑏 2(𝑚𝑜𝑑 𝑛) (compatibility with subtraction) 

e. 𝑎𝑘 ≡  𝑏𝑘 (𝑚𝑜𝑑 𝑛) for any non-negative integer k (compatibility with exponentiation) 

f. 𝑝(𝑎)  ≡  𝑝(𝑏) (𝑚𝑜𝑑 𝑛), for any polynomial p(x) with integer coefficients 

(compatibility with polynomial evaluation) 

Corollary2.1. For cancellation of common terms, we have the following rules: 

a. If a + k ≡ b + k (mod n) for any integer k, then a ≡ b (mod n) 

b. If k a ≡ k b (mod n) and k is coprime with n, then a ≡ b (mod n) 

Definition 2.4.  The modular multiplicative inverse is defined by the following rules: 

There exists an integer denoted 𝑎–1 such that a𝑎–1  ≡ 1 (mod n) if and only if a is coprime 

with n. This Integer 𝑎–1 is called a modular multiplicative inverse of a modulo n. 

o If a ≡ b (mod n) and 𝑎–1 exists, then 𝑎–1 ≡ 𝑏–1 (mod n) (compatibility with 

multiplicative inverse, and, if a = b, uniqueness modulo n). 

In particular, if p is a prime number then 𝑎 is coprime with p for every 𝑎  such that  0 <

 𝑎 <  𝑝. Thus, a multiplicative inverse exists for all 𝑎 that are not congruent to zero modulo 

p. 
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2.3. Linear congruence  

Definition 2.5.  The congruence of the form 𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑 𝑚) is called a linear congruence 

with one variable x. 

Example 2.2.  Consider   2𝑥 − 5 ≡ 1(𝑚𝑜𝑑 3). It is an example of a linear congruence which can be 

reduced to  2𝑥 ≡ 6(𝑚𝑜𝑑 3). 

Definition 2.6. By a solution of the linear congruence𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑 𝑚), we mean 𝑥0 such 

that 𝑎𝑥0 ≡ 𝑏(𝑚𝑜𝑑 𝑚). 

Example 2.3. The solution of the linear congruence in the above example is 3. 

Theorem 2.4. The linear congruence 𝑎𝑥 ≡ 𝑏(𝑚𝑜𝑑 𝑚) has solution if and only if 

𝑔𝑐𝑑(𝑎, 𝑚)|𝑏. 

Remark 2.2.   If a x ≡ b (mod n) and a is coprime to 𝑛, the solution to this linear congruence 

is given by x ≡ 𝑎−1 b (mod n).  

Example 2.4. Solve a linear congruence: find a solution to 8x ≡ 1 (mod 11). If there is an 

answer, it can be represented by one of 0, 1, 2, …. , 10, so we can just run through the 

possibilities: 

x mod 11 0 1 2 3 4 5 6 7 8 9 10 

8x mod 11 0 8 5 2 10 7 4 1 9 6 3 

The only solution is 7 mod 11: 8 × 7 =  56 ≡ 1 𝑚𝑜𝑑 11. This means 7 and 8 are 

multiplicative inverses in 𝑍11. 

This problem concerns finding an inverse for 8 modulo 11. We can find multiplicative 

inverses for every nonzero element of  𝑍11: 

x  1 2 3 4 5 6 7 8 9 10 

𝑥−1 1 6 4 3 9 2 8 7 5 10 

Check in each case that the product of the numbers in each column is 1 in  𝑍11. 
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Example 2.5.    

Find a solution to 8𝑥 ≡  1 (𝑚𝑜𝑑 10). We run through the standard representatives for  𝑍10), 

and find no answer: 

 

x mod 10 0 1 2 3 4 5 6 7 8 9 10 

8x mod 10 0 8 6 4 2 0 8 6 4 2 0 

In retrospect, we can see a priori why there shouldn't be an answer. If  8𝑥 ≡  1 𝑚𝑜𝑑 10. for 

some integer x, then we can lift the congruence up to Z in the form 8x + 10y = 1 for some 

𝑦 ∈  𝑍. But this is absurd: 8x and 10y are even, so the left side is a multiple of 2 but the right 

side is not. 

Example 2.6. The linear congruence 6𝑥 +  1 ≡  4 (𝑚𝑜𝑑 15) has three solutions! In the 

following table we can see the solutions are 3, 8, and 13: 

 

x mod 15 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

6x +1 mod 

15 
1 7 13 4 10 1 7 13 4 10 1 7 13 4 10 

These examples show us that a linear congruence 𝑎𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑚 doesn't have to behave 

like real linear equations: there may be no solutions or more than one solution. In particular, 

taking b = 1, we can't always find a multiplicative inverse for each nonzero element of 𝑍𝑚 . 

The obstruction to inverting 8 in 𝑍10 can be extended to other cases in the following way. 

Theorem 2.4.   For integers a and m, the following are equivalent: 

i. There is a solution x in Z to 𝑎𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑚, 

ii.  There are solutions x and y in Z to ax + my = 1,  𝑎 and 𝑚 are relatively prime. 

Proof. Suppose 𝑎𝑥 ≡ 𝑏 𝑚𝑜𝑑 𝑚 for some𝑥 ∈  𝑍. Then,   𝑚𝑦 =  (1 −  𝑎𝑥), so there is some 

𝑦 ∈  𝑍 such that  𝑚𝑦 =  1 − 𝑎𝑥, so ax + my = 1: 
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2.4.   Modular Arithmetic 

In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers 

“wrap around” upon reaching a certain value called the modulus. The modern approach to 

modular arithmetic was developed by Carl Frederich Gauss in his book Disquisitiones 

Arithmeticae in 1801.  

In some applications, we are only interested in the remainder of some arithmetic operation. A 

familiar use of modular arithmetic is in the 12 hours clock, in which the day is divided in two 

12 hours periods. For instance, if the time is 10:00 now, then after 5 hours it will be 3:00. 

Usual addition would suggest that the later time should be 10+5=15 but this is not the case 

because clock time “wrap around” every 12 hours. Because the hour number starts over after 

it reaches 12, this is arithmetic modulo 12. According to definition of congruence, 12 is 

congruent not only to itself, but also to 0, so the time is called “12:00” could also be called 

“0:00”, since 12 ≡ 0(𝑚𝑜𝑑 12).  

Performing addition and multiplication only on the set of integers from 0 to 𝑚-1, called ℤ𝑚 

and reducing each sum or product mod 𝑚 is called modular arithmetic (in ℤ𝑚).For example, 

in  ℤ𝑚 , 4 plus 3 is 2, and 2 times 3 is 1. 

Lemma 2.1.  Let𝑎, 𝑏, 𝑚 ∈ ℕ, then if  𝑎 + 𝑏 ≡ 0(𝑚𝑜𝑑 𝑚), then 𝑎 ≡ 0(𝑚𝑜𝑑 𝑚) iff 𝑏 ≡

0(𝑚𝑜𝑑 𝑚).  

As it is easy to verify, the proof is left to the reader. 

We took what appears to be a detour through equivalence relations because those three 

properties allow us to define addition, subtraction, and multiplication for congruences. 

Addition, subtraction, and multiplication work exactly the same way as they do with integers 

with the only constraint being that addition, subtraction, and multiplication is only allowed 

when the congruences have the same moduli.  

Proposition 2.1.  Suppose we have some and then 𝑎1 ≡ 𝑏1(𝑚𝑜𝑑 𝑐) and 𝑎2 ≡ 𝑏2(𝑚𝑜𝑑 𝑐) 

then  

i.  𝑎1 ± 𝑎2 ≡ 𝑏1 ± 𝑏2(𝑚𝑜𝑑 𝑐) (Addition and Subtraction) 

ii.  𝑎1. 𝑎2 ≡ 𝑏1. 𝑏2(𝑚𝑜𝑑 𝑐) (Multiplication) 
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Example 2.7.    Since 23 ≡ 3 (mod 4) and 6 ≡ 2 (mod 4) the following are true: 

1. (23 + 6) ≡ (2 + 3) (mod 4) = 29 ≡ 5 (mod 4) = 29 ≡ 1 (mod 4) (Addition) 

2. (23 - 6) ≡ (2 - 3) (mod 4) = 17 ≡ -1 (mod 4) = 17 ≡ 3 (mod 4) (Subtraction) 

3. (23 * 6) ≡ (2 * 3) (mod 4) = 138 ≡ 6 (mod 4) = 138 ≡ 2 (mod 4) (Multiplication) 

Remark 2.3.  Just as we cannot divide by zero in normal arithmetic, division for modular 

congruences is only permissible under certain Circumstances.  

Proposition 2.2. If 𝑏𝑑1 ≡ 𝑏𝑑2(𝑚𝑜𝑑 𝑐) and if 1𝑔𝑐𝑑(𝑏, 𝑐) = 1 then 𝑑1 ≡ 𝑑2(𝑚𝑜𝑑 𝑐) . 

Example 2.8. Consider 14≡ 4(mod 10) .Here, we cannot divide both sides by two 

because 7 ≢ 2(𝑚𝑜𝑑10). In other words, 14≡ 4(mod 10) fails to divide by 2 because both 2 

and 10 are divisible by 2. Again, we can only divide provided that there are no common 

divisors between the number we are trying to divide by and the modulus. Note that if the 

modulus is a prime number then division is defined for all divisors. 

2.5. Fundamental theorem of Arithmetic  

Every natural number is built, in a unique way, out of prime numbers. Note that primes 

are the products with only one factor and 1 is the empty product.   

Theorem 2.5.  Every natural number can be written as a product of primes uniquely up to 

order. 

Proof: An interested reader can establish the proof of this theorem using Mathematical 

induction and for the uniqueness part, also using proof by contradiction. 

Example 2.9. Write the natural number n=2775 as a product of distinct primes. The prime 

factorization of  2775 = 3 × 52 × 37. 

3. Main Result  

As far as our concern that we are developing a test for divisibility of integers co-prime to 10 

                                                           
1 The 𝑔𝑐𝑑(𝑏, 𝑐) means the greatest common divisor for – the greatest number that divides both and. 

When the greatest common divisor of two numbers is 1 that means there are no other such divisors. 
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Proposition 3.1.  Let 𝑚 be a positive integer co-prime to 10, then there is an integer x such 

that 

10𝑥 ≡ 1(𝑚𝑜𝑑 𝑚).                                                                                              (1) 

Proof: As 𝑔𝑐𝑑(𝑚, 10) = 1, then by GCD2-Theorem there are integers x and y such that 

 10𝑥 + 𝑚𝑦 = 1. But in view of congruence theory, we obtain that 10𝑥 ≡ 1(𝑚𝑜𝑑 𝑚). 

Thus, our main task here is finding such an integer x satisfying the congruence equation in 

the above proposition. In performing this task of developing the criteria we require to solve 

the linear congruence using cancellation law in congruences. Clearly, it has solution because 

it satisfies the existence theorem for solution of linear congruences. 

Theorem 3.1.  Let 𝑥0 be a solution of the congruence (1), then the solution set of (1) is given 

by {𝑥0 + 𝑚𝑘: 𝑘 ∈ 𝑍}. 

Proof: Suppose 𝑥0 is a solution of the linear congruence,10𝑥 ≡ 1(𝑚𝑜𝑑 𝑚) then any solution 

𝑥 of the congruence is given by 𝑥 ≡ 𝑥0(𝑚𝑜𝑑 𝑚). Thus, the solution set of the congruence is 

{𝑥0 + 𝑚𝑘: 𝑘 ∈ 𝑍}.  

Remark 3.1.   

i. There are infinitely many integer solutions which are multiplicative inverses to 10. 

ii. As m is co-prime to 10, the possible unit digit of m takes one of the values 1, 3, 7 and 

9. 

Theorem 3.2.  Let  A = ∑ 10𝑖𝑎𝑖
𝑛
𝑖=0  be a test number and m a positive integer 

with 𝑔𝑐𝑑(𝑚, 10) = 1, then 𝐴 ≡ 0(𝑚𝑑𝑚) iff  𝐵 ≡ 0(𝑚𝑜𝑑𝑚) , where B ≪ A and B =

∑ 10𝑖−1𝑎𝑖
𝑛
𝑖=1 + (

1+𝑚𝑘

10
) . 𝑎0  , 𝑘 ∈ 𝑍−. 

Proof: suppose A=∑ 10𝑖𝑎𝑖
𝑛
𝑖=0  a number in decimal number system and m is a positive 

integer with 𝑔𝑐𝑑(𝑚, 10) = 1(i.e. m is co-prime to 10).Let b and 𝑎0  be the number of 

decades and units respectively, so that   𝐴 = 10𝑏 + 𝑎0 . Now suppose A is divisible by m 

(i.e. in view of congruence A ≡ 0(mod m). Then, we have, 10𝑏 ≡ −𝑎0 (𝑚𝑜𝑑 𝑚). 
                                                           
2 GCD-Theorem: For integers𝑎1, 𝑎2, … , 𝑎𝑛, there is a positive integer 𝑑 = 𝑔𝑐𝑑(𝑎1, 𝑎2, … , 𝑎𝑛) and 

there are some integers 𝑥1, 𝑥2, … , 𝑥𝑛 such that 𝑑 = ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 . 
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As  𝑔𝑐𝑑 (10, 𝑚) = 1, by proposition 3.1. There is an integer x such that 10𝑥 ≡ 1(𝑚𝑜𝑑 𝑚) 

.Then in view of division algorithm, we have 10𝑥 = 1 + 𝑚𝑘, for some integer k. Thus, 𝑥 =
1+𝑚𝑘

10
 (where x is a modular multiplicative inverse of 10 in 𝑍𝑚

3) 

Consider 10𝑏 ≡ −𝑎0 (𝑚𝑜𝑑 𝑚). Then, evidently, we obtain 10𝑥𝑏 ≡ −𝑥𝑎0 (𝑚𝑜𝑑 𝑚) ⟹ 

𝑏 ≡ −𝑥𝑎0 (𝑚𝑜𝑑 𝑚) ⟹  𝑏 + 𝑥𝑎0 ≡ 0(𝑚𝑜𝑑 𝑚). Now, let B= 𝑏 + 𝑥𝑎0 , then 𝐵 =

∑ 10𝑖−1𝑎𝑖
𝑛
𝑖=1 + (

1+𝑚𝑘

10
) . 𝑎0 ≡ 0(𝑚𝑜𝑑 𝑚).   

Again, suppose ∑ 10𝑖−1𝑎𝑖
𝑛
𝑖=1 + (

1+𝑚𝑘

10
) . 𝑎0 ≡ 0(𝑚𝑜𝑑 𝑚) and  gcd(10, 𝑚) = 1 , then we 

show that  A ≡ 0(mod m) . Consider ∑ 10𝑖−1𝑎𝑖
𝑛
𝑖=1 + (

1+𝑚𝑘

10
) . 𝑎0 ≡ 0(𝑚𝑜𝑑 𝑚) then as 

10𝑥 ≡ 1(𝑚𝑜𝑑 𝑚) , we obtain 10𝑥. ∑ 10𝑖−1𝑎𝑖
𝑛
𝑖=1 + 𝑥. 𝑎0 ≡ 0(𝑚𝑜𝑑 𝑚) 

⟹ 𝑥(∑ 10𝑖𝑎𝑖
𝑛
𝑖=1 + 𝑎0 ) ≡ 0(𝑚𝑜𝑑 𝑚). Then in view of cancellation law, as x is coprime to m, 

we have  ∑ 10𝑖𝑎𝑖
𝑛
𝑖=1 + 𝑎0 ≡ 0(𝑚𝑜𝑑 𝑚) ⟹ ∑ 10𝑖𝑎𝑖

𝑛
𝑖=0 ≡ 0(𝑚𝑜𝑑 𝑚) ⟹ A ≡ 0(𝑚𝑜𝑑 𝑚). ∎ 

Remark 3.2.  According to the fact (i) in Remark 3.1.,   the divisibility criterion for m is not 

unique. For instance, for m=9, besides what is given under special divisibility criteria for 

integers co-prime to 10, we have at least one criterion  b-17𝑎0 ≡ 0(𝑚𝑜𝑑9). 

3.1. Special divisibility criteria for integers coprime to 10 

From the generalized divisibility criteria we extracted the special ones for few positive 

integers discussed as follows:  

Let A be a test number and m be a composite positive integer co prime to 10.  

Suppose,𝐴 = 10𝑛𝑎𝑛 + 10𝑛−1𝑎𝑛−1 + ⋯ + 102𝑎2 + 101𝑎1 + 𝑎0.Let b=𝑎𝑛𝑎𝑛−1 … 𝑎2𝑎1(i.e. 

decades) and 𝑎0 is units digit. Then 𝐴 = 10𝑏 + 𝑎0. 

Here we give Divisibility criteria for 9, 21, 27 and 33 as follows  

Proposition 3.2. Divisibility criterion for 9 

                                                           
3 We define 𝑍𝑚 =  {[𝑎] | 𝑎 ∈  𝑍}, that is, 𝑍𝑚 is the set of all residue classes modulo m. We call 𝑍𝑚 

the ring of integers modulo m. Often we drop the ring and just call 𝑍𝑚 the integers modulo m. It is 

given by 𝑍𝑚 =  {[0], [1], . . . , [𝑚 −  1]} and since no two of the residue classes [0], [1], . . . , [𝑚 −
 1] are equal we see that 𝑍𝑚 has exactly m elements. 
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Suppose A≡ 0(𝑚𝑜𝑑 9) ⇔ B = ∑ 10𝑖𝑎𝑖
𝑛
𝑖=1 + (

1+9𝑘

10
) . 𝑎0  , 𝑘 = −9 by the above theorem, we 

obtain that 𝐵 = 𝑏 − 8𝑎0 ≡ 0(𝑚𝑜𝑑 9). 

Proposition 3.3.  Divisibility criterion for 21 

Suppose A≡ 0(𝑚𝑜𝑑 21) ⇔ B = ∑ 10𝑖𝑎𝑖
𝑛
𝑖=1 + (

1+21𝑘

10
) . 𝑎0  , 𝑘 = −1 , then by the above 

theorem, we obtain that 𝐵 = 𝑏 − 2𝑎0 ≡ 0(𝑚𝑜𝑑 21). 

Proposition 3.4. Divisibility criterion for 27 

Suppose A≡ 0(𝑚𝑜𝑑 27) ⟹ 10𝑏 + 𝑎0 ≡ 0(𝑚𝑜𝑑 27) ⇔ B = ∑ 10𝑖𝑎𝑖
𝑛
𝑖=1 +

(
1+27𝑘

10
) . 𝑎0  , 𝑘 = −3. Thus, we obtain that 𝑏 − 8𝑎0 ≡ 0(𝑚𝑜𝑑 27). 

Proposition 3.5. Divisibility criterion for 33 

Suppose A≡ 0(𝑚𝑜𝑑 33) ⟹ 10𝑏 + 𝑎0 ≡ 0(𝑚𝑜𝑑 33) ⇔ B = ∑ 10𝑖𝑎𝑖
𝑛
𝑖=1 +

(
1+33𝑘

10
) . 𝑎0  , 𝑘 = −7 , Thus, we obtain that 𝑏 − 23𝑎0 ≡ 0(𝑚𝑜𝑑 33). 

3.2. Special divisibility criteria for integers not coprime to 10 

 In this subsection we discuss divisibility criteria for those positive integers not relatively 

prime to 10. One may ask for what these integers are. Obviously, they are those integers 

which are multiples of  2 and /or 5 and their powers. So, here we need to use the fundamental 

theorem of arithmetic in expressing the underlying number (divisor) as a product of distinct 

primes.  

Lemma 3.2.1.  Let  𝐴 = ∑ 10𝑖𝑎𝑖
𝑛
𝑖=0  , 𝑎𝑛 ≠ 0 be given integer. Then 𝐴 ≡ 0(𝑚𝑜𝑑 2𝑛) iff 

(𝑎𝑛−1𝑎𝑛−2 … 𝑎1𝑎0)𝑡𝑒𝑛 ≡ 0(𝑚𝑜𝑑 2𝑛). 

Lemma 3.2.2.  Let  𝐴 = ∑ 10𝑖𝑎𝑖
𝑛
𝑖=0  , 𝑎𝑛 ≠ 0 be given integer. Then 𝐴 ≡ 0(𝑚𝑜𝑑 5𝑛) iff 

(𝑎𝑛−1𝑎𝑛−2 … 𝑎1𝑎0)𝑡𝑒𝑛 ≡ 0(𝑚𝑜𝑑 5𝑛). 

Proposition 3.6.    Let 𝑚 = 2𝛼 . 5𝛽 . ℎ with h co-prime to 10 (i.e. ℎ = 𝑝1
𝜃1𝑝2

𝜃2 … 𝑝𝑟
𝜃𝑟  with each  

𝑝𝑖 ≠ 2,5 ) and 𝛼 , 𝛽  are non-negative integers, and A be a test number then 𝐴 ≡ 0(𝑚𝑜𝑑 𝑚) 

iff ≡ 0(𝑚𝑜𝑑 2𝛼) , 𝐴 ≡ 0(𝑚𝑜𝑑 5𝛽) and 𝐴 ≡ 0(𝑚𝑜𝑑 ℎ). 

4. Applications 

In this section we shall utilize the divisibility criteria to show some examples. 
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Example  4.1.   

Consider a number A=6253 .we verify whether A is divisible by m=481. Since the last digit 

of m is 1, the criterion is given by B = ∑ 10𝑖𝑎𝑖
𝑛
𝑖=1 + (

1+481(−1)

10
) . 𝑎0 , k=-1. That is, 481 is 

the divisor of A if and only if 481 divides B = ∑ 10𝑖𝑎𝑖
𝑛
𝑖=1 − 48. 𝑎0 ; B = 625 − 48(3) =

481, thus, A=6253 is divisible by 481. 

Example 4.2.  

Consider m=2600 the divisor, clearly, not co-prime to 10 and A=27300. Then, the prime 

factorization: 2600 = 23. 52. 13. 𝐴 ≡ 0(𝑚𝑜𝑑 2600) if 300 ≡ 0(𝑚𝑜𝑑 8) , 300 ≡

0(𝑚𝑜𝑑 25) and 2730 − 9. 𝑎0 ≡ 0(𝑚𝑜𝑑 13). But, 2600 does not divide 27300, because 8 

does not divide 300. Though, as 2730-9*0=2730, 273-9*0=273, and 27-9*3=27-27=0 where 

13 divides 0, so ,13 divides 27300, and as the last two digits are 0 and 25 divides 0, 25 

divides 27300. 

5. Conclusion   

In this paper, firstly, we showed that the method to dividing number by a positive number a 

positive number m co-prime to 10. And eventually, we generalized the test to divisibility by 

any positive number 𝑚 not relatively prime to 10, considering its standard factorization in 

which at least 2𝛼 or 5𝛽 is a factor to 𝑚 and evidently any factorℎ ≠ 2𝛼,5𝛽 and2𝛼 . 5𝛽, is co-

prime to m. Now, let 𝑚 = 2𝛼.5𝛽.ℎ4 be a factorization of n and 𝐴 = 𝑎𝑛𝑎𝑛−1𝑎𝑛−2 … 𝑎2𝑎1𝑎0 

be a positive integer in decimal system, where 0 ≤ 𝑎0, 𝑎1, 𝑎2, … … , 𝑎𝑛 ≤ 9 are integers. Then 

m divides A if and only if m divides B, where  

i.  If 𝛼, 𝛽 = 0, n is co-prime to 10, then B = ∑ 10𝑖𝑎𝑖
𝑛
𝑖=1 + (

1+𝑚𝑘

10
) . 𝑎0  , 𝑘 ∈ 𝑍− 

ii. If 𝛼 or 𝛽 ≠ 0, n must divide the number formed by the last 𝛼 or 𝛽 digits A and as h 

is co-prime to 10, we use the case of (i) to h. 

That is, the number A is divisible by m, if and only if it is divisible by 2𝛼 or 5𝛽,and ℎ. 
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