ON QUASI-INVERTIBILITY AND QUASI-SIMILARITY OF OPERATORS IN HILBERT SPACES.

S.W. LUKETERO,P.G. RUGIRI*, AND J.M. KHALAGAI

SCHOOL OF MATHEMATICS, UNIVERSITY OF NAIROBI, P.O BOX 30197, 00100 NAIROBI KENYA

Abstract

It is a well known fact in operator Theory that if A and B are operators with at least one of them invertible then $A B$ and BA are similar operators. In this paper we prove an analogous result about quasi-invertible operators A and B. We thus show that if A and B are quasi-invertible then AB and BA are quasi-similar. We also deduce a number of corollaries about spectra and essential spectra of AB and BA .

AMS subject classification: 47B47, 47A30, 47B20

Key words and phrases: quasi-invertibility and quasi-similarity.

1. INTORDUCTION

Let H be a complex Hilbert space and $\mathrm{B}(\mathrm{H})$ denote the Banach algebra of all bounded linear operators on H . An operator $\mathrm{A} \in \mathrm{B}(\mathrm{H})$ is said to be quasi-invertible if A is both one-one and has dense range. Equivalently A is quasi-invertible if it is a quasiaffinity. Operators A and B are said to be similar if there exist an invertible operator S such that $\mathrm{AS}=\mathrm{SB}$, while A and B are said to be quasisimilar if there exist quasi-invertible of operators X and Y such that $\mathrm{AX}=\mathrm{XB}$ and $\mathrm{BY}=\mathrm{YA}$.
The concept of quasisimilarity particularly with respect to equality of spectra has been studied by a number of authors among them W.C Clary [1] who showed that quasisimilar hyponormal operators have equal spectra J.M Khalagai and B. Nyamai [5] showed that if A and B are quasisimilar operators with A dominant and B* is Mhyponormal then A and B have same spectra. J.P. William [6] and [7] showed that there are several cases which imply that A and B have equal essential spectra. For example if A and B are both hyponormal operators or are both partial isometries or quasinormal operators etc. B.P. Duggal [3] proved that if $\mathrm{A}_{\mathrm{i}} \mathrm{i}=1,2$ are quasisimilar phyponormal operators such that U_{i} is unitary in the polar decomposition $A_{i}=U_{i}\left|A_{i}\right|$, then A_{1} and A_{2} have same spectra and also same essential spectra. In this paper we deduce a numbers of results in this direction concerning the operators AB and BA .

2. NOTATION AND TERMINOLOGY

Given an operator $A \in B(H)$ we denote the numerical range of A by $W(A)$.
Thus $W(A)=\{\langle A x, x\rangle:\|x\|=1\}$
The spectrum of A is denoted by $\sigma(\mathrm{A})$. Thus $\sigma(\mathrm{A})=\{\lambda \in \mathbb{C}: \mathrm{A}-\lambda I$ is not invertible $\}$ where \mathbb{C} is the field of complex numbers. The commutator of A and B is denoted by $[A, B]$ where

$$
[\mathrm{A}, \mathrm{~B}]=\mathrm{AB}-\mathrm{BA}
$$

An operator A is said to be dominant, if to each $\lambda \in \mathbb{C}$ there corresponds a number $M_{\lambda} \geq 1$ such that

$$
\|(\mathrm{A}-\lambda) * \mathrm{x} \quad\| \leq M_{\lambda}\|(\mathrm{A}-\lambda) x\| \quad \forall x \in H
$$

M -hyponormal, if $\exists \mathrm{M} \geq M_{\lambda}$ for all λ in the definition of dominant operator.
Hyponormal, if $\mathrm{A}^{*} \mathrm{~A} \geq \mathrm{AA}^{*}$
quasinormal if $[A * A, A]=0$
p - hyponormal if $\left(A^{*} \mathrm{~A}\right)^{p} \geq\left(\mathrm{AA}^{*}\right)^{p}$ for $0<\mathrm{p} \leq 1$
Self adjoint if $\mathrm{A}=\mathrm{A}^{*}$
normal if $\left[\mathrm{A}, \mathrm{A}^{*}\right]=0$
Partial isometry if $\mathrm{A}=\mathrm{AA}^{*} \mathrm{~A}$
Isometry if $\mathrm{A} * \mathrm{~A}=\mathrm{I}$
Unitary if $\mathrm{A}^{*} \mathrm{~A}=\mathrm{AA}^{*}=\mathrm{I}$
Fredholm if its range denoted by ran A is closed and both null space, kerA and $\operatorname{Ker} \mathrm{A}^{*}$ are finite dimensional.
The essential spectrum of A is denoted by $\sigma_{e}(\mathrm{~A})=\{\lambda \epsilon \not \subset: \mathrm{A}-\lambda I$ is not Fredholm $\}$.
The following operator inclusions are proper:
Normal \subset hyponormal \subset p-hyponormal and
Hypornormal \subset M-hyponormal \subset dominant

3. RESULTS

Theorem 1

Let $\mathrm{A}, \mathrm{B} \in \mathrm{B}(\mathrm{H})$ be quasi-Invertible.
Then $A B$ and $B A$ are quasisimilar.

Proof

We first note that in the equations:
(AB) $\mathrm{A}=\mathrm{A}(\mathrm{BA})$
and
(BA) $\mathrm{B}=\mathrm{B}(\mathrm{AB})$
We let $T=A B$ and $S=B A$
Thus we have
$T A=A S$
and
$\mathrm{SB}=\mathrm{BT}$
Now A and B are quasi-invertible implies T and S are quasisimilar. Hence $A B$ and $B A$ are quasisimilar.
We note that in view of the results in [1], [3], [5], [6] and [7] the following corollaries are immediate.

Corollary 1

Let $\mathrm{A}, \mathrm{B} \in \mathrm{B}(\mathrm{H})$, be quasi-invertible.
Then $\sigma(\mathrm{AB})=\sigma(\mathrm{BA})$
Under any one of the following conditions:
(i) AB and BA are hyponormal
(ii) AB is dominant and (BA)* is M -hyponornal.
(iii) AB and BA are p-hyponormal with U and V unitary in the polar decomposition $\mathrm{AB}=\mathrm{U}|\mathrm{AB}|$ and $B A=V|B A|$.

Corollary 2

Let $\mathrm{A}, \mathrm{B} \in \mathrm{B}(\mathrm{H})$ be quasi-invertible. Then $\sigma_{e}(\mathrm{AB})=\sigma_{e}(\mathrm{BA})$ under any one of the following conditions:
(i) AB and BA are quasinormal.
(ii) AB and BA are hyponormal with either A or B compact.
(iii) $\quad \mathrm{AB}$ and BA are p-hyponormal with U and V unitary in the polar decomposition

$$
\mathrm{AB}=\mathrm{U}|\mathrm{AB}| \text { and } \mathrm{BA}=\mathrm{V}|\mathrm{BA}| .
$$

Corollary 3

If $A \in B(H)$ is quasi-invertible then we have that
$\sigma\left(\mathrm{AA}^{*}\right)=\sigma\left(\mathrm{A}^{*} \mathrm{~A}\right)$ and $\quad \sigma_{e}\left(\mathrm{AA}^{*}\right)=\sigma_{e}\left(\mathrm{~A}^{*} \mathrm{~A}\right)$

Proof

We first note that if A is quasi-invertible then A^{*} is also quasi-invertible. Hence by theorem 1 above A^{*} and $\mathrm{A}^{*} \mathrm{~A}$ are quasi-similar. But $\mathrm{AA}^{*} \geq 0$ and $\mathrm{A}^{*} \mathrm{~A} \geq 0$. Hence by part (i) of Corollary 1 and part (i) of Corollary 2 above we have respectively that

$$
\sigma\left(\mathrm{AA}^{*}\right)=\sigma(\mathrm{A} * \mathrm{~A})
$$

and

$$
\sigma_{e}\left(\mathrm{AA}^{*}\right)=\sigma_{e}(\mathrm{~A} * \mathrm{~A})
$$

For an operator $B \in B(H)$, we say that B is consistent in invertibility (with respect to multiplication) or briefly that B is a CI operator if for each $\mathrm{A} \in \mathrm{B}(\mathrm{H}), \mathrm{AB}$ and BA are invertible or non-invertible together. Thus B is a CI operator if $\sigma(\mathrm{AB})=\sigma(\mathrm{BA})$. It is well known result that if B is invertible then for any $\mathrm{A} \in \mathrm{B}(\mathrm{H})$ we have $\mathrm{AB}=$ $\mathrm{B}^{-1}(\mathrm{BA}) \mathrm{B}$. Thus AB and BA are similar operators and hence $\sigma(\mathrm{AB})=\sigma(\mathrm{BA})$. W. Gong and D . Han [4] proved among other results that an operator
$\mathrm{B} \in \mathrm{B}(\mathrm{H})$ is CI operator iff

$$
\sigma(\mathrm{B} * \mathrm{~B})=\sigma\left(\mathrm{BB}^{*}\right)
$$

We use this result to deduce a number of results on CI operators. Firstly the following corollary provides an alternative proof to corollary 1.3 of [4].

Corollary 4

Let B be quasi-invertible.
Then B is a CI operator.

Proof

We note from corollary 3 above that since B is quasi-inevertible we have that

$$
\sigma(\mathrm{B} * \mathrm{~B})=\sigma\left(\mathrm{BB}^{*}\right)
$$

Hence B is a CI operator.

Corollary 5

Let $\mathrm{B} \in \mathrm{B}(\mathrm{H})$ be such that $\mathrm{O} \notin \mathrm{W}(\mathrm{B})$. Then both B^{*} and B are CI operators.

Proof

We first note that if $O \notin W(B)$ then both B and B^{*} are quasi-invertible.
Hence by corollary 4 above B and B* are CI operators.

Theorem 2

If B is an M-hyponormal operator satisfying the equation

$$
B X=X B *
$$

Where X is quasi-invertible then B is a CI operator.

Proof

Since B is M-hypononormal

$$
\begin{aligned}
& \mathrm{BX}=\mathrm{XB} * \quad \text { implies } \\
& \mathrm{B} * \mathrm{X}=\mathrm{XB}
\end{aligned}
$$

Taking adjoints we have:

$$
\mathrm{BX} *=\mathrm{X}^{*} \mathrm{~B}^{*} \text { and } \mathrm{B} * \mathrm{X}^{*}=\mathrm{X} * \mathrm{~B}
$$

Now using the equations above we have:
$B * B X=B^{*} X B^{*}=X B B^{*} \quad$ and $\quad B B^{*} X^{*}=B X * B=X * B * B$
i.e BB^{*} and $\mathrm{B}^{*} \mathrm{~B}$ are quasi-similar since X^{*} is also quasi-invertible.

Thus $\sigma\left(\mathrm{BB}^{*}\right)=\sigma\left(\mathrm{B}^{*} \mathrm{~B}\right)$ implying B is a CI operator.

Corollary 6

If an M-hyponormal operator B is quasi-similar to its adjoint B^{*} then B is a CI operator.

Proof

In this case there exist quasi-invertible operators X and Y such that
$B X=X B *$ and $B * Y=Y B$
Thus the proof is immediate by theorem 2
The following result due to Duggal [2] is required in the proof of our next theorem.

Theorem P

Let $\mathrm{A}: H_{1} \rightarrow H_{1}, \mathrm{~B}: \mathrm{H}_{2} \rightarrow \mathrm{H}_{2}$ and
$\mathrm{X}: \mathrm{H}_{2} \rightarrow \mathrm{H}_{1}$ be operators such that
$\mathrm{AX}=\mathrm{XB}$
Where H_{1} and H_{2} are Hilbert spaces.

If A is dominant and B^{*} is M -hyponormal them

$$
\mathrm{A} * \mathrm{X}=\mathrm{XB} *
$$

Theorem 3

Let $A, B, X \in B(H)$ be such that
$\mathrm{BX}=\mathrm{XA}$, where B is dominant, A^{*} is M -hyponormal and X is quasi-invertible. If B is a CI operator, then A is also a CI operator.

Proof

In this case,
$\mathrm{BX}=\mathrm{XA}$ implies $\mathrm{B} * \mathrm{X}=\mathrm{XA} *$ Taking adjoints we also have: $\mathrm{A}^{*} \mathrm{X}^{*}=\mathrm{X}^{*} \mathrm{~B}^{*}$
and
$A X^{*}=X * B$
Now using these equations we have
$B * B X=B * X A=X A * A$
and
$A * A X *=A * X * B=X * B * B$
i.e $B * B$ and $A * A$ are quasi-similar and hence
$\sigma(\mathrm{B} * \mathrm{~B})=\sigma(\mathrm{A} * \mathrm{~A})$
Similarly we have that
$\mathrm{BB} * \mathrm{X}=\mathrm{BXA}^{*}=\mathrm{XAA}^{*}$
and
$\mathrm{AA}^{*} \mathrm{X}^{*}=\mathrm{AX} \mathrm{X}^{*} \mathrm{~B}^{*}=\mathrm{X} * \mathrm{BB}^{*}$
i.e BB^{*} and AA^{*} are quasisimilar and hence
$\sigma\left(B \mathrm{~B}^{*}\right)=\sigma\left(\mathrm{AA}^{*}\right)$
Now if B is a CI operator then we have that
$\sigma\left(\mathrm{B}^{*} \mathrm{~B}\right)=\sigma\left(\mathrm{BB}^{*}\right)=\sigma\left(\mathrm{AA}^{*}\right)=\sigma\left(\mathrm{A}^{*} \mathrm{~A}\right)$
Hence A is also a CI operator.

Corollary 7

If a dominant operator B is quasi similar to any operator A with $A * M$-hyponormal, then
B is a CI operator implies A is also a CI operator.

Proof

In this case, there exist quasi-invertible operators X and Y such that
$\mathrm{BX}=\mathrm{XA}$ and $\mathrm{AY}=\mathrm{YB}$
The proof of theorem 3 above can now be traced to give the result.

REFERENCES

1.W.S. Clary, Equality of spectra of quasi-similar hyponormal operators, Proc. Amer. Math Soc. 53(1975), 89-90.
2.B.P. Duggal, On dominant operators, Arch. Math. Vol 46 (1986), 353-359.
3.--------------- , Quasi-similar p-hyponormal operators, Inter Equat Oper Th Vol 26(1996), 338-345.
4.W. Gong \& D. Han, Spectrum of products of operators and compact perturbations, Proc. Amer. Math. Soc. Vol 120 No 3 (1994), 755-760.
5.J.M. Khalagai \& Nyamai, On quasiaffinity and quasi-similarity of operators, Kenya J. Sci Tech Vol. 12 No. 2 (1998), 14-17.
6.J.P. Williams, Equality of essential spectra of quasi-similar quasinormal Operators, J operator Theory 3(1980), 57-69.
7.----------------, Quasi-similarity and hyponormal operators, J operator Theory 5(1981), 127-139.

