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ABSTRACT 

It is a well known fact in operator Theory that if A and B are operators with at least one of them invertible then AB 

and BA are similar operators.  In this paper we prove an analogous result about quasi-invertible operators A and B. 

We thus show that if A and B are quasi-invertible then AB and BA are quasi-similar. We also deduce a number of 

corollaries about spectra and essential spectra of AB and BA. 
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1. INTORDUCTION 

Let H be a complex Hilbert space and B(H) denote the Banach algebra of all bounded linear operators on H.  An 

operator AB(H) is said to be quasi-invertible if A is both one-one and has dense range.  Equivalently A is 

quasi-invertible if it is a quasiaffinity.  Operators A and B are said to be similar if there exist an invertible 

operator S such that AS=SB, while A and B are said to be quasisimilar if there exist quasi-invertible of operators 

X and Y such that 

AX = XB and BY=YA. 

The concept of quasisimilarity particularly with respect to equality of spectra has been studied by a number of 

authors among them W.C Clary [1] who showed that quasisimilar hyponormal operators have equal spectra J.M 

Khalagai and B. Nyamai [5] showed that if A and B are quasisimilar operators with A dominant and B* is M-

hyponormal then A and B have same spectra.  J.P. William [6] and [7] showed that there are several cases which 

imply that A and B have equal essential spectra.  For example if A and B are both hyponormal operators or are 

both partial isometries or quasinormal operators etc. B.P. Duggal [3] proved that if Ai i=1,2 are quasisimilar p-

hyponormal operators such that Ui is unitary in the polar decomposition Ai=Ui│Ai│, then A1 and A2 have same 

spectra and also same essential spectra.  In this paper we deduce a numbers of results in this direction concerning 

the operators AB and BA. 

 

2. NOTATION AND TERMINOLOGY 

Given an operator A B(H) we denote the numerical range of A by W(A) . 

 Thus  𝑊(𝐴) = {< 𝐴𝑥, 𝑥 >: ‖𝑥‖ = 1} 

The spectrum of A is denoted by 𝜎(A).  Thus 𝜎(A) = {𝜆єℂ: A- 𝜆𝐼 is not invertible} where ℂ  is the field of 

complex numbers.  The commutator of A and B is denoted by [A,B] where 

 [A,B] = AB - BA 

An operator A is said to be dominant, if to each 𝜆єℂ there corresponds a number 𝑀𝜆 ≥1 such that  
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  (A-𝜆)*x ≤ 𝑀𝜆 (A-𝜆)𝑥     Hx  

M-hyponormal, if ∃ M ≥ 𝑀𝜆 for all  𝜆 in the definition of dominant operator. 

Hyponormal, if A*A ≥ AA* 

quasinormal if [A*A, A]= 0 

p − hyponormal if (𝐴∗A)
p

 ≥(AA*)
p

 for 0<p 1 

Self adjoint if A = A*  

normal if   [ A, A*] = 0 

Partial isometry if A = AA*A 

Isometry if A*A = I 

Unitary if A*A = AA* = I 

Fredholm  if its range denoted by  ran A is closed and both null space, kerA and Ker A* are finite dimensional. 

The essential spectrum of A is denoted by  𝜎 e (A) = {𝜆є ⊄: A- 𝜆𝐼 is not Fredholm} .   

The following operator inclusions are proper: 

 Normal   hyponormal   p-hyponormal and 

 Hypornormal   M-hyponormal  dominant 

 

3. RESULTS 

Theorem 1 

Let A,BB(H) be quasi-Invertible. 

Then AB and BA are quasisimilar. 

Proof 

We first note that in the equations: 

(AB) A = A (BA) 

and 

(BA) B = B (AB) 

We let T =AB and S = BA 

Thus we have 

 TA = AS 

and 

SB = BT 

Now  A and B are quasi-invertible implies T and S are quasisimilar.  Hence AB and BA are quasisimilar. 

We note that in view of the results in [1], [3], [5], [6] and [7] the following corollaries are immediate. 

Corollary 1 

Let A,B B(H), be quasi-invertible. 

Then 𝜎 (AB) = 𝜎 ( ( BA  

Under any one of the following conditions: 

(i) AB and BA are hyponormal 

(ii) AB is dominant and (BA)* is M-hyponornal. 

(iii) AB and BA are p-hyponormal with U and V unitary in the polar decomposition      AB = U│AB│ and 

BA = V│BA│. 

 

Corollary 2 
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Let A,BB(H) be quasi-invertible.  Then 𝜎 e  (AB) = 𝜎 e  (BA) under any one of the following conditions: 

(i) AB and BA are quasinormal. 

(ii) AB and BA are hyponormal with either A or B compact. 

(iii) AB and BA are p-hyponormal with U and V unitary in the polar decomposition  

AB = U│AB│and BA = V│BA│. 

Corollary 3 

If A B(H) is quasi-invertible then we have that 

  𝜎 (AA*) = 𝜎 (A*A)   𝑎𝑛𝑑          𝜎 e (AA*) = 𝜎 e (A*A) 

Proof 

We first note that if A is quasi-invertible then A* is also quasi-invertible.  Hence by theorem 1 above AA* and  

A*A are quasi-similar.  But AA* ≥ 0 and A*A ≥ 0.  Hence by part (i) of Corollary 1 and part (i) of Corollary 2 

above we have respectively that 

 𝜎 (AA*) = 𝜎 (A*A) 

 and 

 𝜎 e (AA*) = 𝜎 e (A*A) 

For an operator B∈ B(H), we say that B is consistent in invertibility (with respect to multiplication) or briefly 

that B is a CI operator if for each A∈ B (H), AB and BA are invertible or non-invertible together.  Thus B is a CI 

operator if 𝜎(AB) = 𝜎(BA).  It is well known result that if B is invertible then for any A∈ B(H) we have AB =
B-1 (BA) B.  Thus AB and BA are similar operators and hence 𝜎(AB) = 𝜎(BA).  W. Gong and D. Han [4] proved 

among other results that an operator  

B∈ B (H) is CI operator iff 

 𝜎(B*B) = 𝜎(BB*) 

We use this result to deduce a number of results on CI operators.  Firstly the following corollary provides an 

alternative proof to corollary 1.3 of [4]. 

Corollary 4 

Let B be quasi-invertible. 

Then B is a CI operator. 

Proof 

We note from corollary 3 above that since B is quasi-inevertible we have that  

 𝜎(B*B) = 𝜎(BB*) 

Hence B is a CI operator. 

Corollary 5 

Let B∈ B (H) be such that O  W(B).  Then both B* and B are CI operators. 
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Proof 

We first note that if O  W(B) then both B and B* are quasi-invertible. 

Hence by corollary 4 above B and B* are CI operators. 

Theorem 2 

If B is an M-hyponormal operator satisfying the equation 

 BX = XB* 

Where X is quasi-invertible then B is a CI operator. 

Proof 

Since B is M-hypononormal 

BX = XB*   implies 

B*X = XB 

Taking adjoints we have: 

BX* = X*B* and B*X* = X*B 

Now using the equations above we have: 

 B*BX = B* X B* = XBB*    and  BB*X* = B X* B = X*B*B 

i.e BB* and B*B are quasi-similar since X* is also quasi-invertible. 

Thus 𝜎(BB*) = 𝜎(B*B) implying B is a CI operator. 

Corollary 6 

If an M-hyponormal operator B is quasi-similar to its adjoint B* then B is a CI operator. 

Proof 

In this case there exist quasi-invertible operators X and Y such that 

BX = XB* and B*Y = YB 

Thus the proof is immediate by theorem 2 

The following result due to Duggal [2] is required in the proof of our next theorem. 

Theorem P 

Let A:𝐻1→𝐻1, B: H2→  H2 and 

 X: H2 →H1 be operators such that  

 AX = XB 

 Where H1 and H2  are Hilbert spaces. 
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If A is dominant and B* is M-hyponormal them 

 A*X = XB* 

Theorem 3 

Let A,B,X∈ B(H) be such that  

BX = XA, where B is dominant, A* is M-hyponormal and X is quasi-invertible.  If B is a CI operator, then 

A is also a CI operator. 

Proof 

In this case,  

BX = XA implies B*X = XA*   Taking adjoints we also have:  A*X* = X*B*  

and  

AX* = X*B 

Now using these equations we have 

B*BX = B*XA = XA*A 

and 

A*AX* = A*X*B = X*B*B 

i.e B*B and A* A are quasi-similar and hence 

𝜎(B*B) = 𝜎(A*A)  

Similarly we have that  

BB*X = BXA* = XAA* 

and 

AA*X* = A X*B* = X*BB* 

i.e BB* and AA* are quasisimilar and hence 

𝜎(𝐵B*) = 𝜎(AA*)  

Now if B is a CI operator then we have that 

𝜎(B*B) = 𝜎(BB*) = 𝜎(AA*) = 𝜎(A*A)  

Hence A is also a CI operator. 

Corollary 7 

If a dominant operator B is quasi similar to any operator A with A* M-hyponormal, then  

B is a CI operator implies A is also a CI operator. 
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Proof 

In this case, there exist quasi-invertible operators X and Y such that 

BX = XA and AY = YB 

The proof of theorem 3 above can now be traced to give the result. 
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