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Abstract 

A fully developed mixed convection nanofluid flow past accelerating vertical plane in the presence of 

a uniform transverse magnetic field has been studied. Three different types of water-based Nanofluids 

containing Titanium (iv) oxide, Copper and aluminum (iii) oxide are taken into consideration. The 

governing equations are solved numerically by shooting technique coupled with 

Runge-Kutta-Fehlberg integration scheme. Effects of the pertinent parameters on the nanofluid 

temperature and velocity are shown in figures followed by a quantitative discussion. The expression 

for entropy generation number and the Bejan number are also obtained based on the profiles. It is 

found that the magnetic field tends to decrease the nanofluid velocity.  
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Nomenclature 

 

u   Velocity components along the x direction, m/s 

v   Velocity components along the y direction, m/s 

T   Temperature of the nanofluid, K 
 

f  Density of the base fluid, [Kgm-3]   

s  Density of the nanoparticle, [Kgm-3] 

nf  Density of nanofluid, [Kgm-3]   

  Volume fraction of the nanoparticle 

f  Dynamic viscosity of the base fluid, kg/ms 

f  Electric conductivity of base fluid, S/m  

s  Electric conductivity of Nanoparticles, S/m 
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f  Base fluid thermal expansion coefficient, [K-1]  

s Nanoparticle thermal expansion coefficient, [K-1] 

nf  Electrical conductivity of nanofluid, S/m 

 ( )
spC  Heat capacitance of the nanoparticle, jKg-1 K -1 

( )
fpC  Heat capacitance of the base fluid, jKg-1 K -1 

( )
nfpC  Heat capacitance of nanofluid, jKg-1 K -1 

nf  Dynamic viscosity of the nanofluid, Kgm-1 s-1  

nfK  Thermal conductivity of nanofluid, W/mK 

 

1.Introduction 

The study of convective heat transfer in Nanofluids has received considerable theoretical and practical 

interest due to their enhanced thermal conductivity as compared to the conventional fluids like oil, 

water, ethylene glycol among others. The field of nanotechnology opened new dimension for many 

technologies like cooling systems, power generation, biotechnology, medicine, domestic refrigerator 

and radiators among others. Thermal conductivity of base fluids is enhanced by adding solid particles 

such as metallic materials. By so doing, the resulting fluid is electrically conducting fluid. In presence 

of magnetic field, this kind of fluids has many applications in engineering. Nanofluids were first 

introduced by Choi [1]. He proposed to disperse small amounts of nanometer-sized (
9101 − ) solid 

particles in base fluids. Mixed convection flows is a combined forced and free convection flows. Such 

processes occur when the effects of buoyancy forces in forced convection or the effects of forced flow 

in free convection become significant. Effect of thermal radiation and viscous dissipation on a mixed 

convective flow past a vertical plate has been analyzed by [2]. Numerical Analysis of Mixed 

Convection of Nanofluids Inside a Vertical plate was investigated by [3]. [4] have examined the fully 

developed mixed convection flow in a vertical plane filled with nanofluids, their analysis showed that 

the analytical solution for the opposing flow is only valid for a certain region of the Rayleigh number 

in physical sense, besides the effects of the nanoparticle volume fraction on the temperature and the 

velocity distributions are exhibited. They confirmed that the nanoparticle volume fraction plays a key 

role for improving the heat and mass transfer characteristics of the fluids. [5] extended the work of [4] 

and considered the effect of magnetic field on the fully developed mixed convective flow in a vertical 

plane filled with Nano-fluids, they recorded that the fluid velocity and temperature are enhance due to 

the application of magnetic field. Fully developed heat transfer by mixed convection flow of nanofluid 

in a vertical plate has been investigated by [6]. Effect of wall conductivities on a fully developed 

mixed convection Magneto hydrodynamic nanofluid flow in vertical plates was investigated by [7], 
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they reported that the case of a negative vertical temperature gradient. Entropy generation which is the 

measure of the destruction of available energy in a system plays an important role in the design and 

development of engineering processes such as pumps, heat exchangers, turbine and pipe networks. The 

energy utilization during the convection in any fluids flow as well as the improvement in thermal 

system is one of the fundamental problems of the engineering processes. An improvement of thermal 

system according to [8] provides better material processing, energy conservation and environmental 

effects. [9] Pioneered work on entropy generation. [10] Examined the entropy generation on an MHD 

flow and heat transfer over a flat plate with the convective boundary condition. [11] investigated heat 

transfer and entropy generation in fully developed mixed convection nanofluid flow past a vertical 

plates. From the studies cited above, much has been done on studies involving nanofluids but unsteady 

flow past a moving plane considering dissipative heat have not been investigated in one combined 

study and such is the motivation behind this work. The present study also analyses the entropy 

generation caused by hydromagnetic nanofluid flow. 

 

2. Mathematical formulation 

Consider an unsteady incompressible laminar two-dimensional MHD flow of a viscous electrically 

conducting water based nanofluids containing three types of nanoparticles, flowing past an 

accelerating vertical flat plane as shown in Figure 1. For the time t = 0, the fluid flow is steady. The 

unsteady state begin at t > 0.  The velocity of the moving plane is U(x; t) along the infinite x-axis. 

The surface is convectively heated by hot fluid at temperature Tw(x), while the temperature of the 

ambient cold fluid is 
T . A transverse magnetic field of strength 

2/1

0 )1( ctBB −=  is applied 

parallel to the y-axis, where B0  is constant magnetic field. The base fluid and the suspended 

nanoparticles are in thermal equilibrium. It is also assumed that induced magnetic field in the flow 

field is negligible in comparison with the applied magnetic field.  Boussineq approximation holds and 

that, in addition to the Joulean heating, the volumetric heat generation by viscous friction is also 

significant. The pressure p is a function of x only and is a given constant.. 

 

The thermo-physical properties of the nanofluid are given in Table 1. 

 

 

Figure 1. Geometry of the problem 

The equations governing this type of flow are given as; 
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The last two terms in equation 3 indicate the effect of viscous dissipation and joule 

Heating  respectively. The nf , nf , nf  and  nfpC )(  as defined by [12], are given 

as; 
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( 0=  correspond to a base fluid or pure water) The expressions in equations 4 are 

restricted to spherical nanoparticles,  where it does not account for other shapes of 

nanoparticles.  The effective thermal conductivity of the nanofluid given by Oztop 

and Abu-Nada [13] is given by; 
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Table 1: Thermophysical Properties of water and nanoparticles [13] 

 

opertiesPhysical Pr  fluidbaseWater /
 

)(CopperCu
 

32OAl  42OTi  

)( 3−kgm  997.1 8933 3970 4250 

)/( KgKJC p  4179 385 765 686.2 

k(WmK) 0.613 401 40 8.9538 

  0.0 0.05 0.15 0.2 

)/( mS  5.5 x 10-6 59.6 x 106 35 x 106 2.6 x 106 

 

 

The initial and boundary conditions are [14] 
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Where ( )
( )2
1

,
ct

ax
TtxTw

−
+=   is the temperature of the hot fluid and a and c are constants (where a > 

0 and 0c  with ct < 1).  The continuity equation (1) is automatically satisfied by introducing a stream 

function  ( )yx,  as, 
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The following similarity variables are introduced 
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Where  is the independent similarity variable, ( )f  the dimensionless stream function and ( )  the 

dimensionless temperature. using equation(7) and (8),we have 
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Substituting equation (9) in equations (2) and (3), we obtain the following ordinary differential equations 
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and  

f

f ctxB
Ha



 )1(2

0 −
=  is the magnetic parameter representing the ratio of electromagnetic (Lorentz 
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force) to the viscous force,
a

c
= is the unsteadiness parameter, 

f

f




=Pr is the Prandtl number and 
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x
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differentiation with respect to  .The corresponding boundary conditions are; 
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where b and d are constants. 

 

3.Numerical solution 

The numerical solution for the governing equations (10) and (11) with the boundary conditions (13) is 

obtained by shooting technique. The corresponding higher order nonlinear differential equations 

becomes 
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with boundary conditions 

)1()0(,)0(,)0(,1)0(,0)0( 54321  −−===== Biyyyyy     (16) 

Where  and    are unknowns which are to be determined such that the boundary conditions  

0)(2 =y  and  0)(2 =y  are satisfied.  and    are guessed using shooting by iterations 
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until the boundary conditions are satisfied. The resulting differential equations can be solved using 

Runge-Kutta-Fehlberg fourth order scheme. 

 

4. Results and Discussion 

The effect of various thermo physical parameters on the nanofluid velocity, temperature, heat transfer 

rate as well as shear stress at the plate are presented in graphs and tables. The Prandtl number for the 

base fluid is kept constant as Pr=6.2. Computations are carried out for solid volume fraction   in a 

range of 2.00   for regular fluid,  =0 and Ha = 0 corresponds to absence of magnetic field. 

The copper nanoparticles are used in all figures except those which focus on the influence of the type 

of applied nanoparticles. 

 

4.1 Effect of Parameters on the Velocity Profiles 

In order to get a clear understanding of the problem ,effects of different values of magnetic parameter 

Ha, Grashof number Gr and Eckert number Ec on the fluid velocity and temperature are discussed. 

Figure 2 displays the variation in the nanofluid velocity for three types of water-based nanofluids 

Al2O3-water, TiO2- water and Cu-water. It is noted that the velocity is maximum at the moving plate 

surface but decreases gradually to zero at the free stream far away from the plate. It is also observed 

that Cu-water nanofluid has the thinnest momentum boundary 

thickness and tends to flow closer to the convectively heated plate surface. From Figure 3, it is 

observed that the fluid velocity decreases for increasing value of Hartmann number Ha. Figure 4 

displays the effect of unsteadiness parameter  on the fluid velocity. The fluid velocity decreases as 

the values of   increases. For unsteady flow  > 0 and for steady flow   = 0. From Figure 5, it is 

observed that the fluid velocity decreases with increasing values of Grashof number Gr. 

 

 

 
 
Figure 2: Velocity profile for different nanofluids when φ = 0.1 and Ha = λ = 1 
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Figure 3: Velocity profile for different Ha when φ = 0.1 and λ = 1 

 

 
 

Figure 4: Velocity profile for different λ when Gr = φ = 0.1,Ha=1 and λ = 1 

 

4.2    Effects of parameters on temperature profiles 

From Figure 6, it is observed that the temperature is high in Cu-water nanofluid as compared to 

Al2O3 and T iO2. This can be explained from the fact that copper has a high thermal conductivity 

as compared to Al2O3 and T iO2. Figure 7 displays the effect of Biot number Bi on fluid 

temperature. The fluid temperature rises as the Biot number increases. It is observed from Figure 8 

that the fluid temperature increases for increasing values of Eckert number Ec. From Figure 9, it is 

observed that the fluid temperature rises as the magnetic field becomes stronger.. 
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Figure 5: Velocity profile for different Gr when φ = 0.1,Ha=1 and λ = 1 

 

 
 

Figure 6: Temperature profile for different nanofluids when Bi = φ=0.1 and Ha = 

λ = 1 
 

 
 

Figure 7: Temperature profiles for different Bi when Ha=λ=1 and φ = 0.1 
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Figure 8: Temperature profiles for different Ec when Ha=λ = 1 Bi=φ = 0.1 

 

 
 

Figure 9: Temperature profiles for different Ha when λ = 1 Bi=φ = 0.1 
 
 

4.3    Entropy Generation 
 

Entropy generation is caused by the non-equilibrium state of the fluid resulting from the heat 

changes between the two media. This entropy generation is due to the irreversible nature of heat 

transfer and fluid friction within the fluid and the solid boundaries.  From the known temperature 

and velocity fields, volumetric entropy generation can be calculated. According to [15], the local 

volumetric rate of entropy generation for an electrically conducting nanofluid in the presence of 

magnetic field is given by 
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k 

The first term in equation (17) is the irreversibility due to the heat transfer, the second term is 

entropy generation due to viscous dissipation and the third term is local entropy generation due to 

the effect of magnetic field. The non-dimensional entropy generation number is defined as 
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On the use of (8), the entropy generation number in the non-dimensional form can 

obtained as follows 
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generation number Ns can be written as a summation of the entropy generation due to heat transfer 

denoted by N1 and the entropy generation due to fluid friction with magnetic field denoted by N2 given 

as 
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In order to obtain an idea of whether entropy generation due to heat transfer dominates over entropy 

generation due to the fluid friction and magnetic field or vice versa, the Bejan number Be is defined to 

be the ratio of entropy generation due to heat transfer to the entropy generation number Paoletti et al 

[16] 

sN

N

numbergenerationentropy

transferheattoduegenerationentropy
Be 1==        (21) 

 

 Now we know that Ns = N1 + N2, Substituting for Ns in Equation (21) and dividingthrough 
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by N1, Bejan number is defined as 
 
 

+
=

1

1
Be                                                           (22) 

 

Where 
1

2

N

N
=  is the irreversibility ratio. Heat transfer dominates for 0 ≤ Φ < 1 and fluid friction with 

magnetic effect dominates when Φ > 1. The contribution of both heat transfer and fluid friction to 

entropy generation are equal when Φ = 1. The Bejan number Be takes the values between 0 and 1 

Cimpean et al [17].The value of Be=1 is the limit at which the heat transfer irreversibility dominates, 

Be=0 is the opposite limit at which the irreversibility is dominated by the combined effects of fluid 

friction and magnetic field and Be=0.5 is the case in which the heat transfer and the fluid friction with 

magnetic field entropy production rates are equal. 
 

 

4.4    Effect of parameters on entropy generation 
 
 

It is observed from figure 10 that the entropy generation number increases near the moving plate 

with an increase in magnetic parameter Ha. Figure 11 indicates that the the entropy generation 

number Ns increases with an increase in the volume fraction parameter φ. Increasing the volume 

fractions of the solid nanoparticles leads to an increase in the viscous force of the nanofluids.  

Figure 12 illustrates the effects of the Biot number Bi on the entropy generation. Near the surface 

of the plate, the effects of Bi on Ns are prominent. From Figures 10-12, we can conclude that the 

entropy generation for the nanofluids is more than that for the base fluid (φ = 0). This is because 

the metallic nanoparticles have high thermal conductivity. 

 

  

 
 

Figure 10: Ns for different Ha when Bi=0.1,Re=1,BrΩ−1  = 1 and λ = 1 for Cu- water 
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nanofluid 
 

 
 

Figure 11: Ns different φ when Re=1, λ = 1 and BrΩ−1 = 1 

 

 

 

  
 

Figure 12: Ns different Bi when Re=1, λ = 1 and BrΩ−1 = 1 

 

 

4.5    Effects of parameters on Bejan number 
 

To study whether heat transfer entropy generation dominates over the fluid friction and magnetic field 

entropy generation or vice versa, the Bejan number is plotted for the physical parameters. Figure 13 

indicates that as magnetic parameter increases, the Bejan number decreases. The entropy 

generation due to fluid friction and magnetic field is fully dominated by heat transfer entropy 

generation near the plate. In figure 14, an increase in Biot number Bi results in an increase in Bejan. 

Figure 15 reveals that the Bejan number Be increases with increasing volume fraction parameter φ. 
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The entropy generation due to heat transfer is dominated as φ evolves. number. 

 

 
 

Figure 13: Bejan for different Ha when φ = 0.1, Bi=0.1 and BrΩ−1 = λ = 1. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 

Figure 14: Bejan for different 

Biot Bi when φ = 0.1 and 

BrΩ−1 = λ = 1 . 
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Figure 15: Bejan number for different φ when λ = 1 and Bi=0.1 

 

5 . Conclusion 

Analysis of hydromagnetic nanofluid flow past a vertical plane has been done in this study. The 

influences of the different types of nanoparticles on the flow of a viscous incompressible electrically 

conducting nanofluid with convective boundary condition in the presence of a transverse magnetic field 

with viscous dissipation was examined. Conclusions of the results obtained by varying various 

parameters. The variations of these parameters affected the velocity and temperature in the boundary 

layer. These variations in turn affected the entropy generation. It was observed that the velocity of 

nanofluid decreases as the strength of magnetic field increases. Also, the velocity and temperature of 

nanofluid reduce due to increasing unsteadiness parameter. In the presence of uniform magnetic 

field, the fluid velocity enhances whereas the temperature of the fluid falls as the volume fraction 

parameter increases. Alumina-water shows a thicker velocity boundary than Cu-water nanofluid. 

The entropy generation depends on the thermal conductivity of the nanoparticles in the base fluid. 

The presence of metallic nanoparticles creates the entropy more in the nanofluid flow compared to 

the regular fluid. The entropy generation depends on the thermal conductivity of the nanoparticles 

in the base fluid. Nanofluids are highly susceptible to the effects of magnetic field compared to 

conventional base fluid due to the complex interaction of the electrical conductivity of 

nanoparticles with that of base fluid. 
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