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In this paper, we modify the Mahmoud and Mandouh (2013) model by adopting double truncation technique. It 

is referred to as Double Truncated Transmuted Fréchet (DTTF) distribution. Diverse probabilistic and reliability 
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1. Introduction 

In numerous continuous probability distributions, particularly extreme value theory is an important part of 

statistical literature and one of the special cases (inverse Weibull, inverse Rayleigh, inverse Exponential or 

Gumbel type-II) is Fréchet distribution. Maurice Frechet (1878-1973) a French mathematician developed a 

significant relation with Pareto distribution in 1927 when he discovered a limiting distribution for higher order 

statistic. The vital role of Fréchet distribution is observed in applied fields, for instance, through accelerated life-

testing to engineering, geology, hydrology, horse racing, insurance, meteorology, sea currents, wind speed and 

many other diverse problems of life. Several generalizations and modifications, as well as progressive 

expansions over the last two decades, have been studied and a lot more is about to happen.  

 

Nadarajah and Kotz (2003) developed an Exponentiated Fréchet distribution. Krishna et al. (2013) developed 

Fréchet distribution in Marshall-Olkin family of distributions and discovered its application in time series 

modeling. Mead and Abd-Eltawab (2014) expressed the Fréchet distribution in Kumaraswamy family of 

distributions and illustrated its application in the breaking stress of carbon fibers and strength of 1.5cm glass 

fibers datasets. Afify et al. (2016a) developed Marshall-Olkin Fréchet distribution in Kumaraswamy family of 

distributions and discussed its application in survival times of guinea pigs and the strength of 1.5cm glass fibers 

datasets. Transmuted Marshall Oklin Fréchet distribution introduced in Kumaraswamy family of distributions by 

Yousof et al. (2016). They developed its application in carbon fiber and glass fiber datasets. Mead et al. (2017) 

expressed the Exponentiated Fréchet distribution in the beta distribution and discovered its application in the 

Myelogeneous Leukemia and carbon fiber datasets. Mansour et al. (2018) illustrated the Exponentiated Fréchet 

distribution in Kumaraswamy family of distributions. They studied its application in the strength of 1.5cm glass 
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fibers dataset. Mansour et al. (2018) this time exponentiated the Marshall-Olkin Fréchet distribution and 

discovered its application in Myelogeneous Leukemia and flood peaks datasets. Mansour et al. (2018) 

generalized the Fréchet distribution in Odd Lindley family of distributions. They illustrated its application in 

exceedances of flood peaks and the breaking stress of carbon fibers datasets. Oguntunde et al. (2019) developed 

a compound of the Gompertz and Fréchet distribution. They developed its application in strength of carbon fibers 

and hailing times datasets.   

 

Quadratic Rank Transmutation Map (QRTM) as a generator first time introduced by Shaw and Buckley (2009) 

for non-Gaussian distributions by adding a new parameter 𝜆 to base distribution 𝐺(𝑥). CDF of QRTM is 

followed by 

 

𝐹(𝑥) = (1 + 𝜆)𝐺(𝑥) −  𝜆𝐺2(𝑥)      ,    𝑓𝑜𝑟    |𝜆| < 1. 

 

For 𝜆 = 0, 𝐹(𝑥) = 𝐺(𝑥), where G(x) is base distribution.  

 

Scientific literature extended by Mahmoud and Mandouh (2013) when they generalized the Fréchet distribution 

in QRTM family of distributions and developed its application in breaking stress of carbon fiber and  simulated 

datasets. The CDF of TFD is 

 

𝐹(𝑥) = (1 + 𝜆)𝑒−𝛼𝑥
−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
 , 𝑓𝑜𝑟𝛼, 𝛽 > 0 𝑎𝑛𝑑  |𝜆| < 1. 

 

Afify et al. (2015) investigated Marshall Olkin Fréchet distribution in QRTM family of distributions and 

discussed its application in breaking stress of carbon fibers and strength of 1.5cm glass fibers datasets. Arshad et 

al. (2018) generalized Exponentiated Moment Pareto in QRTM and found its application in four-lifetime 

datasets. Abayomia and Adeleke (2019) developed the transmuted edition of half normal distribution and 

discussed its application in purchasing behavior of customers from a wholesale outlet. Bhatti and Ali (2019) 

developed a range of characterizations of the transmuted edition of Exponentiated Pareto-I distribution.  

 

In distribution theory, truncation is referred to as conditional distribution that provides more constructive and 

reliable results. One can study the tail behavior of the underlying model by truncating the lower, upper or both 

points. For more information, Abid (2016) double truncated the Fréchet distribution and simulate the model to 

recognize the performance of the estimates. Abid and Abdulrazak (2017) truncated the Fréchet, Fréchet Uniform 

and Fréchet Exponential distributions and discussed their strength-stress models as well. Castillo et al. (2018) 

discussed the half normal distribution by considering zero as a truncation point for x > 0 and fit it to two-lifetime 

datasets. 

 

The present distribution is initiated on this motivation that it has not been studied earlier and will present more 

flexible estimates on the skewed datasets. Furthermore, it is applicable to many diverse problems other than 

income and wealth studies.  

 

Rest of the article is arranged into several sections as follows: CDF, PDF, graphical representation alongside 

special cases are developed in Section 2. In Section 3, we illustrate the moments and various reliability measures 

in Section 4. Quantiles function along with several descriptive statistics, Rényi entropy, The Mellin 
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transformation and order statistics is discussed in Section 5. Estimation of the parameters by the maximum 

likelihood, the study of simulation and application is developed in Section 6 and lastly, the conclusion is reported 

in Section 7.  

 

2. Double Truncated Transmuted Fréchet Distribution 

Here we establish a model by applying the technique of double truncation to Transmuted Fréchet distribution, 

originally developed by Mahmoud and Mandouh (2013). It is referred to a Double Truncated Transmuted Fréchet 

(DTTF) distribution. The CDF of DTTF distribution is followed by 

   

𝐹(𝑥) =
[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] −  [(1 + 𝜆)𝑒−𝛼𝑚

−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]

[(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2]
, (1) 

 

and PDF  

 

𝑓(𝑥) =
[(1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
−  2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
]

[(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2]
, (2) 

 

where 𝑥 > 0, 𝛼 , 𝛽 > 0 , |𝜆| < 1 , A = 𝑒−𝛼g
−𝛽

 , B = 𝑒−𝛼𝑚
−𝛽

, m and g are lower and upper truncation points. 

 

Fig.1 and Fig.2 illustrate the reasonable shapes of CDF and PDF for selected values of the parameters 𝛼, 𝛽 and 𝜆. 

 

 

CDF Plot 

 
Fig. 1 

PDF Plot 

 
Fig. 2 
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Table 1 

Sub-Models of DTTF Distribution 

Models 𝜶 𝜷 𝝀 𝒎 𝐠 Author 

DTrF 𝛼 𝛽 0 𝑚 G Abid (2016) 

TF 𝛼 𝛽 𝜆 0 Inf Mahmoud and Mandouh (2013) 

F 𝛼 𝛽 0 0 Inf Fréchet (1924) 

D= Double, Tr=Truncation, T=Transmutation, F= Frechet  

 

3. Properties of DTTF Distribution 

 

3.1. Theorem: 

 

Suppose the r.v. X ~ DTTF(x; 𝛼, 𝛽, m, g), subsequently, r-th raw moment of the Double Truncated Transmuted 

Fréchet distribution is given by 

𝜇 𝑟
/
= −

𝛼
𝑟
𝛽(1 + 𝜆)

𝐶
[Γ (1 −

𝑟

𝛽
, 𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
, 𝛼g−𝛽)] 

+
2𝜆𝛼

𝑟
𝛽

𝐶
[Γ (1 −

𝑟

𝛽
, 2𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
, 2𝛼g−𝛽)], 

 

where 𝑥 > 0, 𝛼 , 𝛽 > 0 , |𝜆| < 1, 𝐶 = [(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2], 𝐴 = 𝑒−𝛼g
−𝛽

and 𝐵 = 𝑒−𝛼𝑚
−𝛽

, m 

and g are lower and upper truncation points. 

 

By definition  

𝜇 𝑟
 /
= ∫𝑥𝑟 𝑓(𝑥)𝑑𝑥 

 

by equation (2), r-th moment of DTTF distribution is written as 

 

 

𝜇 𝑟
 /
= ∫𝑥𝑟

g

𝑚

[(1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥
−𝛽
−  2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
]

[(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2]
𝑑𝑥, (3) 

 

say 𝐶 = [(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2], equation (3) in simplified form  

 

𝜇 𝑟
 /
=
𝛼𝛽(1 + 𝜆)

𝐶
∫𝑥𝑟−𝛽−1

g

𝑚

𝑒−𝛼𝑥
−𝛽
𝑑𝑥 −

2𝛼𝛽𝜆

𝐶
∫𝑥𝑟−𝛽−1

g

𝑚

𝑒−2𝛼𝑥
−𝛽
𝑑𝑥, 

 

𝜇 𝑟
 /
=
𝛼𝛽(1 + 𝜆)

𝐶
𝐼1 −

2𝛼𝛽𝜆

𝐶
𝐼2, (4) 
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for 𝐼1: suppose 𝛼𝑥−𝛽 = 𝑦  ⇒  𝑥 =  (
𝑦

𝛼
)
− 
1

𝛽
 ⇒ 𝑑𝑥 = −

1

𝛼𝛽
 (
𝑦

𝛼
)
− 
1

𝛽
 − 1

𝑑𝑦, 

limits:  𝑥 = 𝑚 ⇒ 𝑦 = 𝛼𝑚−𝛽 , 𝑥 = g ⇒ 𝑦 = 𝛼g−𝛽 , 

 

𝐼1 = −
1

𝛽
𝛼
 
𝑟
𝛽
 − 1

∫ 𝑦
− 
𝑟
𝛽
 

𝛼g−𝛽

𝛼𝑚−𝛽

𝑒−𝑦𝑑𝑦, 

 

𝐼1 = −
1

𝛽
𝛼
 
𝑟
𝛽
 − 1

[Γ (1 −
𝑟

𝛽
  , 𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 𝛼g−𝛽)]. (5) 

 

Following the above procedure, we obtain the simplified form of 𝐼2 

 

𝐼2 = −
1

𝛽
(2𝛼)

 
𝑟
𝛽
 − 1

[Γ (1 −
𝑟

𝛽
 , 2𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 2𝛼g−𝛽)], (6) 

 

hence the r-th moment of  DTTF distribution is obtained by placing equation (5) and equation (6) in equation (4) 

 

𝜇𝑟
/
=

{
 
 

 
 
−
𝛼
𝑟
𝛽(1 + 𝜆)

𝐶
[Γ (1 −

𝑟

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

𝑟
𝛽

𝐶
[Γ (1 −

𝑟

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

, 𝑓𝑜𝑟 𝑟 < 𝛽, (7) 

 

where 𝑥 > 0, 𝛼  , 𝛽 >  0 , |𝜆|  <  1, 𝐶 = [(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2], 𝐴 = 𝑒−𝛼g
−𝛽

and 𝐵 =

𝑒−𝛼𝑚
−𝛽

, m and g are lower and upper truncation points. 

3.2. r-th negative moments of DTTF distribution are achieved by replacing r by – r in equation (7) 

𝜇−𝑟
/
=

{
 
 

 
 
−
𝛼
−𝑟
𝛽 (1 + 𝜆)

𝐶
[Γ (1 +

𝑟

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 +

𝑟

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

−𝑟
𝛽

𝐶
[Γ (1 +

𝑟

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 +

𝑟

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

, 

 

(8) 

 

where 𝑥 > 0, 𝛼  , 𝛽 >  0 , |𝜆|  <  1, 𝐶 = [(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2], 𝐴 = 𝑒−𝛼g
−𝛽

and 𝐵 =

𝑒−𝛼𝑚
−𝛽

, m and g are lower and upper truncation points. 

3.3. Fractional positive moments of DTTF distribution is obtained by replacing r with (m/n) in equation (7) 

𝜇
 (
𝑚
𝑛
)

/
= ∫𝑥(

𝑚
𝑛
)𝑓(𝑥)

g

𝑚

𝑑𝑥 

simplification provide   
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𝜇
 (
𝑚
𝑛
)

/
=

{
 
 

 
 
−
𝛼
𝑚
𝑛𝛽(1 + 𝜆)

𝐶
[Γ (1 −

𝑚

𝑛𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

𝑚

𝑛𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

𝑚
𝑛𝛽

𝐶
[Γ (1 −

𝑚

𝑛𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

𝑚

𝑛𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

. (9) 

3.4. Fractional negative moments of DTTF distribution, just replace (m/n) with (-m/n) in equation (7), we get 

𝜇
 (−

𝑚
𝑛
)

/
=

{
 
 

 
 
−
𝛼
−
𝑚
𝑛𝛽(1 + 𝜆)

𝐶
[Γ (1 +

𝑚

𝑛𝛽
 , 𝛼𝑚−𝛽) − Γ (1 +

𝑚

𝑛𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

−𝑚
𝑛𝛽

𝐶
[Γ (1 +

𝑚

𝑛𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 +

𝑚

𝑛𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

. (10) 

 

3.5. Lower incomplete moments of DTTF distribution, we replace the upper limit g to w in equation (7) 

𝑀𝑟(𝑤) = 𝐸 𝑋 ≤ 𝑤(𝑥
𝑟) = ∫ 𝑥𝑟 𝑓(𝑥)𝑑𝑥

𝑤

𝑚

 

hence reduced and simplified form of lower incomplete moments is given by 

𝑀𝑟(𝑤) =

{
 
 

 
 
−
𝛼
𝑟
𝛽(1 + 𝜆)

𝐶
[Γ (1 −

𝑟

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 𝛼𝑤−𝛽)]

+
2𝜆𝛼

𝑟
𝛽

𝐶
[Γ (1 −

𝑟

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 2𝛼𝑤−𝛽)]

}
 
 

 
 

. (11) 

3.6. Upper incomplete moments of DTTF distribution are obtained by incorporating equation (7)  

𝑀𝑠(𝑤) = 𝐸 𝑋> 𝑤(𝑥
𝑟) = ∫𝑥𝑟 𝑓(𝑥)𝑑𝑥

g

𝑤

 

hence upper incomplete moments of DTTF distribution is followed by 

 

𝑀𝑠(𝑤) =

{
 
 

 
 
−
𝛼

𝑟
𝛽(1+𝜆)

𝐶
[Γ (1 −

𝑟

𝛽
 , 𝛼𝑤−𝛽) − Γ (1 −

𝑟

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

𝑟
𝛽

𝐶
[Γ (1 −

𝑟

𝛽 
, 2𝛼𝑤−𝛽) − Γ (1 −

𝑟

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

. (12) 

 

 

3.7. Factorial moments of DTTF distribution, we achieve by equation (7)  

𝐸[𝑋]𝑛 =∑𝜑𝑟𝜇  𝑟
/ 
 

𝑛

𝑟=0
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𝐸[𝑋]𝑛 =∑𝜑𝑟

𝑛

𝑟=0

{
 
 

 
 
−
𝛼
𝑟
𝛽(1 + 𝜆)

𝐶
[Γ (1 −

𝑟

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

𝑟
𝛽

𝐶
[Γ (1 −

𝑟

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

, 

 

(13) 

where 

[𝑋] 𝑖 = 𝑋 (𝑋 + 1)(𝑋 + 2)… (𝑋 + 𝑖 − 1) , 𝜑𝑟 is the Stirling number of first kind , 𝐶 = [(1 + 𝜆)(𝐴 − 𝐵)] −

[𝜆(𝐵 − 𝐵2)], 𝐴 = 𝑒−𝛼g
−𝛽

and 𝐵 = 𝑒−𝛼𝑚
−𝛽

, m and g are lower and upper truncation points. 

 

3.8. Moment generating function (m.g.f.) of r.v. X follow to DTTF distribution is defined as    

𝑀𝑥(𝑡) = 𝐸(𝑒
𝑡𝑥) = ∫𝑒𝑡𝑥𝑓(𝑥)𝑑𝑥

g

𝑚

 (14) 

by using series expansion  𝑒𝑡𝑥 = ∑
(𝑡𝑥)𝑟

𝑟!

∞
𝑟=0 ,  equation (14) can be defined as 

𝑀𝑥(𝑡) = ∫∑
(𝑡)𝑟

𝑟!

∞

𝑟=0

𝑥𝑟𝑓(𝑥)𝑑𝑥

g

𝑚

, 

 

𝑀𝑥(𝑡) =∑
(𝑡)𝑟

𝑟!

∞

𝑟=0

{
 
 

 
 
−
𝛼
𝑟
𝛽(1 + 𝜆)

𝐶
[Γ (1 −

𝑟

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

𝑟
𝛽

𝐶
[Γ (1 −

𝑟

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

. (15) 

 

3.9. Central moments can be obtained by using a relation between ordinary and central moments. It is defined 

as 

𝜇 𝑟 = 𝐸[𝑋 − 𝐸(𝑋)]
𝑟 =∑(

𝑟

𝑗
) (−1)𝑗(𝜇 ́ 1)

𝑗 �́� 𝑟−𝑗

𝑟

𝑗=0

 

based on equation (7), central moments of DTTF distribution 

 

𝜇 𝑟 =∑(
𝑟

𝑗
)

𝑟

𝑗=0

(−1)𝑗

{
 
 

 
 
−
𝛼
1
𝛽(1 + 𝜆)

𝐶
[Γ (1 −

1

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

1

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

1
𝛽

𝐶
[Γ (1 −

1

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

1

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 
𝑗

 

{
 
 

 
 
−
𝛼
𝑟−𝑗
𝛽 (1 + 𝜆)

𝐶
[Γ (1 −

𝑟 − 𝑗

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

𝑟 − 𝑗

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

𝑟−𝑗
𝛽

𝐶
[Γ (1 −

𝑟 − 𝑗

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

𝑟 − 𝑗

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

. 

(16) 
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3.10. Cumulants generating function based on a relation between ordinary moments and cumulants is defined 

as 

𝐾 𝑟  = 𝜇 ́ 𝑟 −∑(
𝑟 − 1

𝑖 − 1
)𝐾𝑖  �́� 𝑟−𝑖

𝑟−1

𝑖=1

 

 

cumulants generating function of DTTF distribution can be written as 

 

𝐾 𝑟  =

{
 
 

 
 
−
𝛼
𝑟
𝛽(1 + 𝜆)

𝐶
[Γ (1 −

𝑟

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

𝑟
𝛽

𝐶
[Γ (1 −

𝑟

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

𝑟

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

− 

∑(
𝑟 − 1

𝑖 − 1
)𝐾𝑖  

𝑟−1

𝑖=0

{
 
 

 
 
−
𝛼
𝑟−𝑖
𝛽 (1 + 𝜆)

𝐶
[Γ (1 −

𝑟 − 𝑖

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

𝑟 − 𝑖

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

𝑟−𝑖
𝛽

𝐶
[Γ (1 −

𝑟 − 𝑖

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

𝑟 − 𝑖

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

. 

(17) 

 

3.11. Skewness of DTTF distribution is  

 

𝛽1 =
(

 
 

{
 
 

 
 
−
𝛼
3
𝛽(1 + 𝜆)
𝐶 [Γ (1 −

3
𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

3
𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼 

3
𝛽

𝐶 [Γ (1 −
3
𝛽 
, 2𝛼𝑚−𝛽) − Γ(1 −

3
𝛽
 , 2𝛼g−𝛽)] }

 
 

 
 

)

 
 

2

(

 
 

{
 
 

 
 
−
𝛼
2
𝛽(1 + 𝜆)
𝐶 [Γ (1 −

2
𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

2
𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼 

2
𝛽

𝐶 [Γ (1 −
2
𝛽 
, 2𝛼𝑚−𝛽) − Γ(1 −

2
𝛽
 , 2𝛼g−𝛽)] }

 
 

 
 

)

 
 

3. (18) 

 

 

3.12. Kurtosis of DTTF distribution is identified as 

 

𝛽2 =
{
 
 

 
 
−
𝛼 
4
𝛽(1 + 𝜆)
𝐶

[Γ (1 −
4
𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

4
𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼 

4
𝛽

𝐶
[Γ (1 −

4
𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

4
𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

(

 
 

{
 
 

 
 
−
𝛼 
2
𝛽(1 + 𝜆)
𝐶

[Γ (1 −
2
𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

2
𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

 
2
𝛽

𝐶
[Γ (1 −

2
𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

2
𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

)

 
 

2, (19) 

 

where 𝑥 > 0, 𝛼  , 𝛽 >  0 , |𝜆|  <  1, 𝐶 = [(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2], 𝐴 = 𝑒−𝛼g
−𝛽

and 𝐵 =

𝑒−𝛼𝑚
−𝛽

, m and g are lower and upper truncation points. 
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4. Reliability Measures of DTTF Distribution 

In reliability engineering, reliability analysis through probability distribution is the most extensively exercised 

method which pays significant contribution in studying and predicting the survival or hazard life of the 

component during a particular interval of time. 

 

4.1. Survival function  

Survival or reliability function is used to measure the risk of occurrence of some event at a specific time. It is 

denoted by S(x). For DTTF distribution it can written as  

 

𝑆(𝑥) = 1 − (
1

𝐶
{[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] − [(1 + 𝜆)𝑒−𝛼𝑚

−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]}). (20) 

 

4.2. Hazard function  

Hazard function H(x) is used to measure the failure rate of some components in a particular period of time x. 

For DTTF distribution it is illustrated by  

 

𝐻(𝑥) =
(
1
𝐶
[(1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
−  2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
])

1 − (
1
𝐶
{[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] − [(1 + 𝜆)𝑒−𝛼𝑚

−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]})
. (21) 

 

4.3. Cumulative hazard function Hc(x) of DTTF distribution is developed by equation (20)  

 

𝐻𝑐(𝑥) = −𝑙𝑛 {1 −
1

𝐶
[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] − [(1 + 𝜆)𝑒−𝛼𝑚

−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]}. (22) 

 

4.4. Reverse hazard function Hr(x) of DTTF distribution is obtained by incorporating equation (1) and equation 

(20)  

 

𝐻𝑟(𝑥) =
(
1
𝐶 [
(1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
−  2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
])

(
1
𝐶 {[

(1 + 𝜆)𝑒−𝛼𝑥
−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] − [(1 + 𝜆)𝑒−𝛼𝑚

−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]})
. (23) 

 

4.5. Mills ratio M(x) of DTTF distribution is obtained by equation (1) and equation (20) 

 

𝑀(𝑥) =
1 − (

1
𝐶
{[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] − [(1 + 𝜆)𝑒−𝛼𝑚

−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]})

(
1
𝐶
[(1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
−  2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
])

. (24) 

 

4.6. Odd function O(x) of DTTF distribution is achieved by equation (2) and equation (20) 

 

𝑂(𝑥) =
(
1
𝐶
{[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] − [(1 + 𝜆)𝑒−𝛼𝑚

−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]})

1 − (
1
𝐶
{[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] −  [(1 + 𝜆)𝑒−𝛼𝑚

−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]})
. (25) 
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4.7. Elasticity e(x) of DTTF distribution is illustrated by equation (1) and equation (2) 

 

𝑒(𝑥) =
𝑥 (
1
𝐶
[(1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
−  2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
])

(
1
𝐶
{[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] − [(1 + 𝜆)𝑒−𝛼𝑚

−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]})
, (26) 

 

where 𝑥 > 0, 𝛼  , 𝛽 >  0 , |𝜆|  <  1, 𝐶 = [(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2], 𝐴 = 𝑒−𝛼g
−𝛽

and 𝐵 =

𝑒−𝛼𝑚
−𝛽

, m and g are lower and upper truncation points. 

 

Possible shapes of survival function, hazard function, cumulative hazard function, reverse hazard function, mills 

ratio and odd function plots are drafted over various selected combinations of the parameters 𝛼, 𝛽 and 𝜆 display 

in Fig. 3 to Fig. 8.  

 

          Survival Function  

 
       Fig.3 

             Hazard Function 

 
               Fig.4 

Cumulative Hazard Function 

 
     Fig. 5 

             Reverse Hazard Function 

 
             Fig. 6 

 

         

Mills Ratio 

 

                

Odd Function 
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             Fig. 7 

 
            Fig. 8 

 

5. Quantiles and Descriptive Statisticsof DTTF Distribution 

 

5.1. Quantile function can be defined as when under investigation CDF is inverted by the method of inversion. 

It is referred to a quantile function.  

 

q-th quantile function of DTTF distribution is given by equation (1)  

 

𝑞 = 𝐹(𝑥𝑞) =
[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] −  [(1 + 𝜆)𝑒−𝛼𝑚

−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]

[(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2]
, (27) 

 

equation (27) can be written as 

𝑞 =
[(1 + 𝜆)𝑦 −  𝜆𝑦2] −  𝐸

𝐷 − 𝐸
    𝑓𝑜𝑟 0 ≤ 𝑞 ≤ 1, 

𝜆𝑦2 − (1 + 𝜆)𝑦 + 𝐸(1 − 𝑞) + 𝑞𝐷 = 0, 

 

 qth quantile function in reduced form 

 

𝑥𝑞 = [−
1

𝛼
𝑙𝑛 [

(1 + 𝜆) − √(1 + 𝜆)2 − 4𝜆[𝑞𝐷 + 𝐸(1 − 𝑞)]

2𝜆
]]

 – 
1
𝛽

. (28) 

 

for simplification we suppose 𝑦 = 𝑒−𝛼𝑥
−𝛽

, 𝐸 = [(1 + 𝜆)𝐴 −  𝜆𝐴2] ,  𝐷 = [(1 + 𝜆)𝐵 −  𝜆𝐵2] where 𝐴 =

𝑒−𝛼g
−𝛽

, 𝐵 = 𝑒−𝛼𝑚
−𝛽

, m and g are lower and upper truncation points. 

 

5.2. Median can easily achieve by placing q =0.5 in equation (28) 

 

𝑥0.5 = [−
1

𝛼
𝑙𝑛 [

(1 + 𝜆) − √(1 + 𝜆)2 − 2𝜆[𝐷 + 𝐸]

2𝜆
]]

 – 
1
𝛽

. (29) 
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To generate random numbers, we suppose that CDF of DTTF distribution follow to uniform distribution u= U (0, 

1).  

 

5.3. Random numbers of DTTF distribution is calculated by 

 

𝑥𝑅𝑑 = [−
1

𝛼
𝑙𝑛 [

(1 + 𝜆) − √(1 + 𝜆)2 − 4𝜆[𝑢𝐷 + 𝐸(1 − 𝑢)]

2𝜆
]]

 – 
1
𝛽

. (30) 

 

5.4. Harmonic mean of DTTF distribution is achieved as we replace r by -1 in equation (7)  

 

𝐻𝑀 =

{
 
 

 
 
−
𝛼
−
1
𝛽(1 + 𝜆)

𝐶
[Γ (1 +

1

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 +

1

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

−
1
𝛽

𝐶
[Γ (1 +

1

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 +

1

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

. (31) 

 

5.5. Mean of DTTF distribution is achieved, simply as we replace r by 1 in equation (7)  

 

𝐸(𝑋) = 𝜇 1
 /
=

{
 
 

 
 
−
𝛼
1
𝛽(1 + 𝜆)

𝐶
[Γ (1 −

1

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

1

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

1
𝛽

𝐶
[Γ (1 −

1

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

1

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

. (32) 

 

5.6. Variance of DTTF distribution may be calculated by incorporating the equation (32) and equation (7) 

 

𝑉𝑎𝑟(𝑋) =

{
 
 
 
 
 

 
 
 
 
 

{
 
 

 
 
−
𝛼
2
𝛽(1 + 𝜆)

𝐶
[Γ (1 −

2

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

2

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

2
𝛽

𝐶
[Γ (1 −

2

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

2

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

−

{
 
 

 
 
−
𝛼
1
𝛽(1 + 𝜆)

𝐶
[Γ (1 −

1

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

1

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

1
𝛽

𝐶
[Γ (1 −

1

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

1

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 
2

}
 
 
 
 
 

 
 
 
 
 

. (33) 

5.7. Mode of DTTF distribution is calculated by taking first derivative of PDF and equate to zero. PDF of DTTF 

distribution rewrite for the simplification approach 

 

𝑓(𝑥) =
1

𝐶
[(1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
−  2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
], 

 

here we find first derivative and set it to zero 
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1

𝐶
{
𝑒−𝛼𝑥

−𝛽
(1 + 𝜆)[(𝛼𝛽)2𝑥(−2𝛽−2) +  𝛼𝛽(−𝛽 − 1)𝑥(−𝛽−2)]

−𝑒−2𝛼𝑥
−𝛽
𝜆[(2𝛼𝛽)2𝑥(−2𝛽−2) + 2𝛼𝛽𝑥(−𝛽−2)(−𝛽 − 1)]

} = 0, 

 

since 𝑒−𝛼𝑥
−𝛽

, 𝑒−2𝛼𝑥
−𝛽

 and 𝜆 can not be zero for any finite value of x 

 

hence 

   

[(𝛼𝛽)2𝑥(−2𝛽−2) +  𝛼𝛽(−𝛽 − 1)𝑥(−𝛽−2)] = 0, (34) 

 

�̂�1 = (
𝛼𝛽

𝛽 + 1
)

1
𝛽
. (35) 

and  

−𝑒−2𝛼𝑥
−𝛽
𝜆[(2𝛼𝛽)2𝑥(−2𝛽−2) + 2𝛼𝛽𝑥(−𝛽−2)(−𝛽 − 1)] = 0, (36) 

 

�̂�2 = (
2𝛼𝛽

𝛽 + 1
)

1
𝛽
, (37) 

 

thus DTTF distribution is declared as a bimodal distribution  

 

where 𝑥 > 0, 𝛼  , 𝛽 >  0 , |𝜆|  <  1, 𝐶 = [(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2], 𝐴 = 𝑒−𝛼g
−𝛽

and 𝐵 =

𝑒−𝛼𝑚
−𝛽

, m and g are lower and upper truncation points. 

 

5.8. Entropy of DTTF distribution 

The degree of disorder or unpredictability / randomness in a system is defined as entropy.  

By definition, Rényi (1961) entropy is described as 

𝐼𝜑(𝑋) =
1

𝜑 − 1
𝑙𝑜g∫ 𝑓𝜑(𝑥)𝑑𝑥

∞

0

         𝑓𝑜𝑟 𝜑 > 0 𝑎𝑛𝑑 𝜑 ≠ 1 . 

 

Rényi entropy of DTTF distribution is obtained by incorporating equation (2) 

 

𝐼𝜑(𝑋) =
1

𝜑 − 1
𝑙𝑜g ∫ {

1

𝐶
[((1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
) − ( 2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
)]}

𝜑

𝑑𝑥,

g

𝑚

 (38) 

 

let’s simplify first 𝑓𝜑(𝑥) 

 

but             𝑓𝜑(𝑥) = {
1

𝐶
[((1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
) − ( 2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
)]}

𝜑

, 

= {
1

𝐶
(1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
[1 − 

2𝜆𝑒−𝛼𝑥
−𝛽

1 + 𝜆
]}

𝜑

, 
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=
1

𝐶𝜑
((1 + 𝜆)𝛼𝛽𝑥−𝛽−1)

𝜑

∑{(−1)𝑗 (
𝜑

𝑗
) (

2𝜆

1 + 𝜆
)
𝑗

(𝑒−𝛼𝑗𝑥
−𝛽−𝛼𝜑𝑥−𝛽)} ,

∞

𝑗=0

 

= (
(1 + 𝜆)𝛼𝛽

𝐶
)

𝜑

∑{(−1)𝑗 (
𝜑

𝑗
) (

2𝜆

1 + 𝜆
)
𝑗

∑
(−𝛼𝑥−𝛽(𝑗 + 𝜑))

𝑘

𝑘!

∞

𝑘=0

}

∞

𝑗=0

, 

 

𝑓𝜑(𝑥) = (
(1 + 𝜆)𝛼𝛽

𝐶
)

𝜑

∑ {

𝛼𝑘(−1)𝑗+𝑘(𝑗 + 𝜑)𝑘

𝑘!
(
𝜑

𝑗
) (

2𝜆

1 + 𝜆
)
𝑗

𝑥(−𝛽(𝜑+𝑘)−𝜑)
}

∞

𝑗,𝑘=0

, (39) 

 

place equation (39) in equation (38), we get  

 

𝐼𝜑(𝑋) = (
(1 + 𝜆)𝛼𝛽

𝐶
)

𝜑

(
1

𝜑 − 1
) 𝑙𝑜g ∫ ∑

{
 
 

 
 (−1)

𝑗+𝑘(𝛼(𝑗 + 𝜑))
𝑘

𝑘!

(
𝜑

𝑗
) (

2𝜆

1 + 𝜆
)
𝑗

𝑥(−𝛽(𝜑+𝑘)−𝜑) }
 
 

 
 

∞

𝑗,𝑘=0

𝑑𝑥

g

𝑚

. (40) 

 

Integrate equation (40) yield the simplified and reduced form of Rényi entropy of DTTF distribution is followed 

by 

 

𝐼𝜑(𝑋) = (
1

1 − 𝜑
) 𝑙𝑜g

[
 
 
 
 
 
 
 
 
 

(
(1 + 𝜆)𝛼𝛽

𝐶
)

𝜑

∑

{
 
 
 
 

 
 
 
 (−1)𝑗+𝑘(𝛼(𝑗 + 𝜑))

𝑘

𝑘!

(
𝜑

𝑗
)

(
2𝜆

1 + 𝜆
)
𝑗

(
g(1−𝛽(𝜑+𝑘)−𝜑) −𝑚(1−𝛽(𝜑+𝑘)−𝜑)

1 − 𝛽(𝜑 + 𝑘) − 𝜑
)
}
 
 
 
 

 
 
 
 

∞

𝑗,𝑘=0

]
 
 
 
 
 
 
 
 
 

, (41) 

 

where 𝑥 > 0, 𝛼  , 𝛽 >  0 , |𝜆|  <  1, 𝐶 = [(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2], 𝐴 = 𝑒−𝛼g
−𝛽

and 𝐵 =

𝑒−𝛼𝑚
−𝛽

, m and g are lower and upper truncation points. 

 

5.9. The Mellin Transformation of DTTF distribution 

  

In the theory of statistics, the Mellin transformation is well-known since it is a distribution of the product and 

proportion for independent r.v.’s. 

 

The Mellin transformation is defined as  

𝑀𝑥(𝑛) = 𝜇 𝑛−1
/

= 𝐸(𝑥𝑛−1) = ∫ 𝑥𝑛−1 𝑓(𝑥)𝑑𝑥

∞

0

 

The Mellin transformation of DTTF distribution, we replace r by n-1 in equation (7), we get  
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𝑀𝑥(𝑛) =

{
 
 

 
 
−
𝛼
𝑛−1
𝛽 (1 + 𝜆)

𝐶
[Γ (1 −

𝑛 − 1

𝛽
 , 𝛼𝑚−𝛽) − Γ (1 −

𝑛 − 1

𝛽
 , 𝛼g−𝛽)]

+
2𝜆𝛼

𝑛−1
𝛽

𝐶
[Γ (1 −

𝑛 − 1

𝛽 
, 2𝛼𝑚−𝛽) − Γ (1 −

𝑛 − 1

𝛽
 , 2𝛼g−𝛽)]

}
 
 

 
 

, (42) 

 

where 𝑥 > 0, 𝛼  , 𝛽 >  0 , |𝜆|  <  1, 𝐶 = [(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2], 𝐴 = 𝑒−𝛼g
−𝛽

and 𝐵 =

𝑒−𝛼𝑚
−𝛽

, m and g are lower and upper truncation points. 

 

5.10. Order Statistics of DTTF distribution   

In reliability analysis and life testing of a component in quality control, order statistics and its moments consider 

noteworthy measures. Let X1 , X2 , X3 , ..., Xn be a random sample of size n follows to DTTF distribution and {X(1) 

< X(2) <X(3) < ...<X(n) }be consider as order statistics. The r.v’s X(i) , X(1) , �̃� (m), X(n) be the i-th, minimum, median 

and maximum order statistics of DTTF distribution are followed by 

 

i-th Order Statistic PDF is defined as 

𝑓 𝑥 (𝑖) (𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
 [𝐹(𝑥)]𝑖−1[1 − 𝐹(𝑥)]𝑛−𝑖𝑓(𝑥) 

for i=1,2,3,…,n. 

by equation (1) and equation (2), i-th order statistics PDF of DTTF distribution may obtain by 

 

𝑓 𝑥 (𝑖) (𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
 

[
 
 
 
 
 
 
 
 
 

(
1

𝐶
{
[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] − 

[(1 + 𝜆)𝑒−𝛼𝑚
−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]
})

𝑖−1

× (1 −
1

𝐶
{
[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] − 

[(1 + 𝜆)𝑒−𝛼𝑚
−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]
})

𝑛−𝑖

×
1

𝐶
[(1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
−  2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
]]
 
 
 
 
 
 
 
 
 

. (43) 

 

Minimum Order Statistic PDF is defined as 

 

𝑓 𝑥 (1) (𝑥) = 𝑛 [1 − 𝐹(𝑥)]𝑛−1𝑓(𝑥) 

 

minimum order statistic of DTTF distribution is given by 

 

𝑓 𝑥 (1) (𝑥) = 𝑛

[
 
 
 
 
 

(1 −
1

𝐶
{
[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] − 

[(1 + 𝜆)𝑒−𝛼𝑚
−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]
})

𝑛−1

×
1

𝐶
([(1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
−  2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
])]
 
 
 
 
 

. (44) 

 

Maximum Order Statistic PDF is defined as 

 

𝑓 𝑥 (𝑛) (𝑥) = 𝑛 [𝐹(𝑥)]
𝑛−1𝑓(𝑥) 
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maximum order statistic of DTTF distribution is given by 

 

𝑓 𝑥 (𝑛) (𝑥) = 𝑛

[
 
 
 
 
 

(
1

𝐶
{
[(1 + 𝜆)𝑒−𝛼𝑥

−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
] − 

[(1 + 𝜆)𝑒−𝛼𝑚
−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]
})

𝑛−1

×
1

𝐶
{[(1 + 𝜆)𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
−  2𝛼𝛽𝜆𝑥−𝛽−1𝑒−2𝛼𝑥

−𝛽
]}]
 
 
 
 
 

. (45) 

 

Median Order Statistic PDF is defined as 

 

𝑓𝑚 (�̃�) =
(2𝑚 + 1)!

𝑚!
 [1 − 𝐹(�̃�)]𝑚−1[𝐹(�̃�)]𝑚𝑓(�̃�) 

 

𝑓𝑚 (�̃�) =
(2𝑚 + 1)!

𝑚!

[
 
 
 
 
 
 
 
 

(1 −
1

𝐶
{
[(1 + 𝜆)𝑒−𝛼𝑥

 −𝛽
−  𝜆𝑒−2𝛼𝑥

 −𝛽
] − 

[(1 + 𝜆)𝑒−𝛼𝑚
−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]
})

𝑚−1

× (
1

𝐶
{
[(1 + 𝜆)𝑒−𝛼𝑥

 −𝛽
−  𝜆𝑒−2𝛼𝑥

 −𝛽
] − 

[(1 + 𝜆)𝑒−𝛼𝑚
−𝛽
−  𝜆𝑒−2𝛼𝑚

−𝛽
]
})

𝑚

×
1

𝐶
{[(1 + 𝜆)𝛼𝛽�̃�−𝛽−1𝑒−𝛼𝑥

−𝛽
−  2𝛼𝛽𝜆�̃�−𝛽−1𝑒−2𝛼𝑥

−𝛽
]}]
 
 
 
 
 
 
 
 

. (46) 

 

5.11. Joint Distribution of DTTF distribution  

 

The joint distribution of i-th and j-th order statistics of DTTF distribution is 

 

𝑓 (𝑥,𝑦) (𝑖,𝑗)  (𝑥, 𝑦) = 𝐸[𝐹(𝑥𝑖)]
𝑖−1[1 − 𝐹(𝑦𝑗)]

𝑛−𝑗
[𝐹(𝑦𝑗) − 𝐹(𝑥𝑖)]

𝑗−𝑖−1
𝑓(𝑥𝑖)𝑓(𝑦𝑗) 

for i=1,2,3,…,n ,  j=1,2,3,…,n and 𝐸 =
𝑛!

(𝑖−1)!(𝑛−𝑗)!(𝑗−𝑖−1)!
 

 

𝑓 (𝑥,𝑦) (𝑖,𝑗)  (𝑥, 𝑦) = 𝐸

[
 
 
 
 
 
 
 
 
 
 
 
 [

1

𝐶
{[(1 + 𝜆)𝑒−𝛼𝑥𝑖

−𝛽
−  𝜆𝑒−2𝛼𝑥𝑖

−𝛽
] −  𝐹}]

𝑖−1

       ×  [1 −
1

𝐶
{[(1 + 𝜆)𝑒−𝛼𝑦𝑗

−𝛽
−  𝜆𝑒−2𝛼𝑦𝑗

−𝛽
] −  𝐹}]

𝑛−𝑗

       ×  [

1

𝐶
{[(1 + 𝜆)𝑒−𝛼𝑦𝑗

−𝛽
−  𝜆𝑒−2𝛼𝑦𝑗

−𝛽
] −  𝐹} −

1

𝐶
{[(1 + 𝜆)𝑒−𝛼𝑥𝑖

−𝛽
−  𝜆𝑒−2𝛼𝑥𝑖

−𝛽
] −  𝐹}

]

𝑗−𝑖−1

×
1

𝐶
[(1 + 𝜆)𝛼𝛽𝑥𝑖

−𝛽−1𝑒−𝛼𝑥𝑖
−𝛽
−  2𝛼𝛽𝜆𝑥𝑖

−𝛽−1𝑒−2𝛼𝑥𝑖
−𝛽
]

×
1

𝐶
[(1 + 𝜆)𝛼𝛽𝑦𝑗

−𝛽−1𝑒−𝛼𝑦𝑗
−𝛽
−  2𝛼𝛽𝜆𝑦𝑗

−𝛽−1𝑒−2𝛼𝑦𝑗
−𝛽
]]
 
 
 
 
 
 
 
 
 
 
 
 

 (47) 

 

where 𝑥 > 0, 𝛼  , 𝛽 >  0 , |𝜆|  <  1, 𝐶 = [(1 + 𝜆)𝐴 −  𝜆𝐴2] − [(1 + 𝜆)𝐵 −  𝜆𝐵2], 𝐴 = 𝑒−𝛼g
−𝛽

and 𝐵 =

𝑒−𝛼𝑚
−𝛽

, m and g are lower and upper truncation points. 
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6. Estimation of Parameters, Simulation Study and Application of DTTF Distribution 

 

6.1. Estimation of DTTF distribution  

 

Parameters of the DTTF distribution are derived by the method of maximum likelihood.  Here equation (2) is 

presented in a simplified way   

 

𝑓(𝑥) =
1

𝐶
𝛼𝛽𝑥−𝛽−1𝑒−𝛼𝑥

−𝛽
{(1 + 𝜆) −  2𝜆𝑒−𝛼𝑥

−𝛽
}, 

likelihood function of DTTF distribution can be written as 

 

𝐿 =
𝛼𝑛𝛽𝑛

𝐶𝑛
∏(𝑥𝑖)

−𝛽−1

𝑛

𝑖=1

∏(𝑒−𝛼𝑥
−𝛽
)

𝑛

𝑖=1

∏{(1 + 𝜆) −  2𝜆𝑒−𝛼𝑥
−𝛽
}

𝑛

𝑖=1

, (48) 

 

log of equation (48) provides the log-likelihood function of DTTF distribution 

 

𝑙 = 𝐿𝐿 =  n[𝑙𝑛𝛼 + 𝑙𝑛𝛽 − 𝑙𝑛𝐶] − (𝛽 + 1)∑𝑙𝑛𝑥 − 𝛼∑𝑥−𝛽 + 

∑𝑙𝑛 [1 + 𝜆 − 2𝜆𝑒−𝛼𝑥
−𝛽
], 

(49) 

 

 partial derivatives of equation (49) w.r.t 𝛼, 𝛽, 𝜆 and C yield 

 

𝜕𝑙

𝜕𝛼
=
𝑛

𝛼
−
𝑛

𝐶

𝜕𝐶

𝜕𝛼
−∑𝑥−𝛽 +∑[

2𝛼𝜆𝑒−𝛼𝑥
−𝛽
𝑥−𝛽

1 + 𝜆 − 2𝜆𝑒−𝛼𝑥
−𝛽
], (50) 

𝜕𝑙

𝜕𝛽
=
𝑛

𝛽
−
𝑛

𝐶

𝜕𝐶

𝜕𝛽
−∑𝑙𝑛𝑥 + 𝛼∑𝑥−𝛽 𝑙𝑛𝑥 +∑[

2𝛼𝜆𝑒−𝛼𝑥
−𝛽
𝑥−𝛽𝑙𝑛𝑥

1 + 𝜆 − 2𝜆𝑒−𝛼𝑥
−𝛽
], (51) 

𝜕𝑙

𝜕𝜆
= −

𝑛

𝐶

𝜕𝐶

𝜕𝜆
+∑[

1 − 2𝑒−𝛼𝑥
−𝛽

1 + 𝜆 − 2𝜆𝑒−𝛼𝑥
−𝛽
], (52) 

where 

 

𝜕𝐶

𝜕𝛼
= (1 + 𝜆) [−g−𝛽𝑒−𝛼g

−𝛽
+𝑚−𝛽𝑒−𝛼𝑚

−𝛽
] − 𝜆 [−2g−𝛽𝑒−2𝛼g

−𝛽
+ 2𝑚−𝛽𝑒−2𝛼𝑚

−𝛽
], (53) 

𝜕𝐶

𝜕𝛽
= (1 + 𝜆) [𝛼𝑒−𝛼g

−𝛽
g−𝛽𝑙𝑛g − 𝛼𝑒−𝛼𝑚

−𝛽
𝑚−𝛽𝑙𝑛𝑚]

− 𝜆 [2𝛼𝑒−2𝛼g
−𝛽
g−𝛽𝑙𝑛g − 2𝛼𝑒−2𝛼𝑚

−𝛽
𝑚−𝛽𝑙𝑛𝑚], 

(54) 

𝜕𝐶

𝜕𝜆
= [𝑒−𝛼g

−𝛽
− 𝑒−𝛼𝑚

−𝛽
] − [𝑒−2𝛼g

−𝛽
− 𝑒−2𝛼𝑚

−𝛽
]. (55) 

One can find ML estimates (�̂�, �̂�, �̂� ) by solving these systems of non-linear equations simultaneously present in 

equation (50), (51), (52). Numerical results are developed by incorporating Statistical software R under the 

package AdequacyModel. Moreover, the second-order derivatives are required for hypothesis testing and interval 

estimation. For this, we require (3 × 3) Fisher information matrix 𝐾(φ).  
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𝐾(φ) =

[
 
 
 
 
 
 
∂2𝑙

∂𝛼2
∂2𝑙

∂𝛼 ∂𝛽

∂2𝑙

∂𝛼 ∂𝜆

∂2𝑙

∂𝛽 ∂𝛼

∂2𝑙

∂𝛽2
∂2𝑙

∂𝛽 ∂𝜆

∂2𝑙

∂𝜆 ∂𝛼

∂2𝑙

∂𝜆 ∂𝛽

∂2𝑙

∂λ2 ]
 
 
 
 
 
 

 . (53) 

 

Since m and g are the lower and upper truncation points of density function of DTTF distribution, as a result 

minimum and maximum value of the sample will be considered the estimate of m and g.  

 

6.3. Simulation Study of DTTF distribution  

The study of simulation is conducted to assess the behavior of a finite sample. For DTTF distribution we conduct 

a small scale experiment and different finite sample of sizes n=100, 200, 300, 400, 500 and 600 are generated 

from equation (30). The performance of the estimates are (present in table 1 and table 2) evaluated based on 

Standard Errors (S.Es). Moreover, numerous statistics are calculated present in table 3 and table 4. Furthermore, 

1000 of times simulation is performed to achieve the results and for this entire situation R (Statistical software) is 

incorporated. 

Table 1 

MLEs and Standard Errors in parenthesis at various sample sizes 

for α=2.5, 𝜷 =2.5, λ= 0.5 as left and right truncation points are m=1.1, g=15.5  

Parameters 
Sample Size 

100 200 300 400 500 600 

�̂� 
1.6113 

(0.9466) 

2.6744 

(0.6982) 

2.7767 

(0.5433) 

2.2997 

(0.4665) 

2.3069 

(0.3721) 

2.4979 

(0.3378) 

�̂� 
2.0335 

(1.1295) 

2.6820 

(0.4573) 

2.8559 

(0.3819) 

2.5394 

(0.4685) 

2.4008 

(0.3789) 

2.4793 

(0.3599) 

λ̂ 
0.7236 

(0.5923) 

0.3078 

(0.4533) 

0.3445 

(0.3275) 

0.4092 

(0.4335) 

0.4772 

(0.3147) 

0.4900 

(0.2858) 

 

Table 2 

MLEs and Standard Errors in parenthesis at various sample sizes 

for α=3.5, 𝜷 =1.5, λ= 0.5 as left and right truncation points are m=1.1, g=75.5  

Parameters 
Sample Size 

100 200 300 400 500 600 

�̂� 
2.7837 

(0.7406) 

4.1905 

(0.7912) 

3.8676 

(0.4956) 

3.3731 

(0.4175) 

3.6364 

(0.3429) 

3.5754 

(0.3191) 

�̂� 
1.3710 

(0.4501) 

1.9228 

(0.2920) 

1.7402 

(0.2114) 

1.5809 

(0.2371) 

1.4952 

(0.1936) 

1.5589 

(0.1791) 

λ̂ 
0.5876 

(0.5634) 

0.1601 

(0.5247) 

0.3015 

(0.3200) 

0.3414 

(0.3873) 

0.4198 

(0.2923) 

0.4075 

(0.2667) 
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Table 3 

Descriptive Statistics at various sample sizes 

for α=2.5, 𝜷 =2.5, λ= 0.5 as left and right truncation points are m=1.1, g=15.5 

Descriptive 

Statistics 

Sample Size 

100 200 300 400 500 600 

CV% 260.90 278.80 195.20 156.40 155.30 154.30 

Skewness 1.7150 1.7320 2.7250 4.8520 4.2340 4.7170 

Kurtosis 5.7280 5.8970 12.5700 39.1800 30.5400 36.5700 

AIC 162.30 361.20 478.60 678.40 886.80 1036 

-Log-likelihood 78.150 177.60 236.30 336.20 440.40 515.0 

 

Table 4 

Descriptive Statistics at various sample sizes 

for α=3.5, 𝜷 =1.5, λ= 0.5 as left and right truncation points are m=1.1, g=75.5  

Descriptive 

Statistics 

Sample Size 

100 200 300 400 500 600 

CV% 136.70 124.30 94.80 69.92 71.55 69.50 

Skewness 2.1550 2.6620 3.8050 6.8350 5.9070 6.6070 

Kurtosis 7.6720 12.3500 21.8500 67.1200 52.7800 62.5200 

AIC 381.60 734.20 1134.0 1560.0 1995.0 2360.0 

-Log-likelihood 187.80 364.20 564.10 776.90 994.60 1177.0 

 

Table 1and tables 2 represent the MLEs along with the standard errors in the parenthesis. We observe the 

decreasing behavior of standard errors as the size of the sample increases. Furthermore, Table 3, 4 represent 

various statistics computed on different simulated sample sizes. One can see in table 3, 4 the decreasing trend of 

coefficient of variation (CV) when the size of sample increases. Moreover, the additional statistics including 

skewness, kurtosis, Akaike Information Criterion (AIC) and negative Log-likelihood, increase with increase of 

sample size. All above conditions in the support of proposed model to declare that MLE estimates of DTTF 

distribution are consistent in their performance and work quit well. 

 

6.3. Application of DTTF distribution 

In this section, flexibility and potentiality of DTTF distribution is demonstrated by experiencing and integrating 

two suitable lifetime datasets. The first dataset presented by Ghitany et al. (2008), entitled waiting time (in 

minutes) before the customer received service in a bank and the second dataset presented by Nadarajah (2007a) 

entitled, the daily ozone measurements in New York, May-September1973. The results of DTTF distribution and 

its competing models (Double Truncated Transmuted Fréchet (DTrF), Transmuted Fréchet (TF) and Fréchet (F)) 

are evaluated based on –LL, Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and 

Kolmogorov-Smirnov (K-S). Furthermore, least values of declared statistics lead to consider a model as a 

reasonable fit for the dataset.  
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Competing Models (x > 0): 

Double Truncated Fréchet (DTrF) Distribution: Abid (2016) 

 

𝐺(𝑥) =
𝑒−𝛼𝑥

−𝛽
− 𝑒−𝛼𝑚

−𝛽

𝑒−𝛼g
−𝛽
− 𝑒−𝛼𝑚

−𝛽
                    , 𝑓𝑜𝑟𝛼, 𝛽 > 0 ,𝑚 < 𝑥 and g > 𝑥, 

 

Transmuted Fréchet (TF) Distribution: Mahmoud and Mandouh (2013) 

 

𝐺(𝑥) = (1 + 𝜆)𝑒−𝛼𝑥
−𝛽
−  𝜆𝑒−2𝛼𝑥

−𝛽
 , 𝑓𝑜𝑟𝛼, 𝛽 > 0 𝑎𝑛𝑑  |𝜆| < 1, 

 

Fréchet (F) Distribution: Fréchet (1927) 

 

𝐺(𝑥) = 𝑒−𝛼𝑥
−𝛽
                                        , 𝑓𝑜𝑟 𝛼, 𝛽 > 0. 

 

6.3.1 Data Set-1: Waiting time (in minutes) before the customer received service in a bank discussed by Ghitany 

et al. (2008). 

 

Table 3 

Descriptive Statistics  

Mean Median S.D Variance Skewness Kurtosis 

9.8770 8.1 7.2370 52.3700 1.4730 5.5400 

 

Table 4 

Parameter Estimates and Information Criterion  

𝑚 = 0.8 and g=38.5 be the lower and upper truncation points 

Models 

Coefficients 

(Standard Error) 
Information Criterion 

�̂� �̂� �̂� -LL AIC BIC K-S 

DTTF 
3.99 

(0.94) 

1.01 

(0.12) 

-0.77 

(0.19) 
319.49 644.99 651.24 0.07 

DTrF 
5.52 

(0.79) 

0.87 

(0.11) 
- 320.92 645.84 651.50 0.08 

TF 
4.93 

(0.91) 

1.28 

(0.09) 

-0.76 

(0.15) 
330.63 667.27 675.09 0.10 

F 
6.53 

(0.89) 

1.16 

(0.07) 
- 334.38 672.76 677.97 0.12 

 

6.3.2. Data Set-2: The daily Ozone measurements in New York, May-September1973 presented by Nadarajah 

(2007a). 
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Table 5 

Descriptive Statistics  

Mean Median S.D Variance Skewness Kurtosis 

42.13 31.50 32.99 1088 1.2260 4.1840 

 

Table 6 

Parameter Estimates and Information Criterion  

𝑚 = 1 and g=168 be lower and upper truncation points 

Models 

Coefficients 

(Standard Error) 
Information Criterion 

�̂� �̂� �̂� -LL AIC BIC K-S 

DTTF 
8.48 

(1.98) 

0.82 

(0.09) 

-0.92 

(0.08) 
542.98 1091.96 1100.22 0.07 

DTrF 
11.92 

(2.27) 

0.71 

(0.08) 
- 545.50 1094.99 1100.51 0.08 

TF 
13.17 

(2.56) 

1.07 

(0.06) 

-0.92 

(0.08) 
560.12 1126.24 1134.51 0.12 

F 
17.99 

(2.99) 

0.97 

(0.06) 
- 566.38 1136.75 1142.26 0.14 

 

PDF and CDF plots drafted over empirical histogram for dataset -1 

 
     Fig. 9 

 
       Fig. 10 

 

PDF and CDF plots drafted over empirical histogram for dataset-2  
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Fig. 11 
 

Fig. 12 

 

Total Test Time (TTT) plots for dataset-1 and dataset-2  

 

TTT Plot for dataset- 1 TTT Plot for dataset- 2 

  
         Fig. 13          Fig. 14 

 

Various descriptive and empirical results are presented in table 1 to table 6. Table 4, 6 present the empirical 

results of fitted models comprising Double Truncated Transmuted Fréchet (DTTF), Double Truncated Fréchet 

(DTrF), Transmuted Fréchet (TF) and Fréchet (F) distribution. The Statistical software R is incorporated for the 

results present in table 1 to 6. Since the minimum results of -LL, AIC, BIC or K-S is the criteria to select the 

better fit model and results (in table 4, 6) are in the support of DTTF distribution. Consequently, we do not 

hesitate anymore to declare that DTTF distribution is a better fitted model on both the datasets as compared to its 

competing models. Furthermore, one can see the empirically fitted PDF (Fig. 9 and Fig. 11) and CDF (Fig. 10 

and Fig. 12) plots of DTTF distribution display the close fit to the empirical histogram. Fig.13 and Fig. 14 

represents the plots of total test time (TTT), proposed by Aarset (1987) may be used as a tool for obtaining 

empirical behavior of failure rate of the DTTF distribution.   

 

7. Conclusion 

The present study is conducted to provide supportive and more fixable results than its competing models on 

skewed datasets. Diverse probabilistic and reliability measures along with Rényi entropy and order statistics are 

developed and discussed. The method of MLE is suggested to derive the estimates and execution of the estimates 

is assessed by simulation study. The application of DTTF distribution is illustrated by two real-time datasets.  
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