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Abstract 

In this paper we discussed the numerical solution to the model of a freely suspended spring with a mass attached. 

Suitable nonstandard finite difference schemes were developed  for the solution of the resulting dynamical system 

which follows a free un-damped harmonic oscillator. The result of the numerical experiment  on the schemes are 

illustrated  with 3D graphs . 
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1. Introduction 

The solutions of continuous dynamical systems given by systems of ordinary differential equations are typically 

computed by various numerical procedures defined on discretized time meshes. It is a well known fact that finite 

difference scheme is one  of the oldest and popular techniques for numerical solution of ordinary differential 

equations. In most of the equations in mathematical physics, engineering and in some physical sciences, finite 

difference schemes have been designed and investigated both from the theoretical point view, which is the 

convergence aspect, and the practical point of view which is the consistency and stability point of view (Anguelov 

and Lubuma, 2000). 

Non-standard finite difference schemes (NSFD) have emerged as an alternative method for solving a wide range of 

problems whose mathematical models involve algebraic, differential and biological models as well as chaotic 

systems (Mickens 2005). These techniques have many advantages over classical techniques and provide an efficient 

numerical solution. In fact, the non-standard finite difference method is an extension of the standard finite difference 

method. Non-standard schemes as introduced by Mickens (1989,1990,1994) are used to help resolve some of the 

issues related to numerical instabilities. Furthermore, Mickens (1999,2000,2005) introduced certain rules for 

obtaining the best difference equations, one of the most important is the  selection of a suitable denominator 

function ϕ(h) for the dicrete derivatives 

1.1 Equation of motion of  a spring suspended freely with a mass attached 

The major reference for this model is Zill (2005). When a spring is suspended vertically from a rigid support, then 

we can assume that the spring do not exert any force. We can then consider a body of mass M attached to the free end  

so that the amount of stretch depend on the value of M. If we displace the body by a distance  S then the spring 

exerts a restoring force F= -kS , where k>0  is the spring constant following Hooke’s Law. Let us neglect t the air 
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resistance and there are no retardation  force acting against the direction of motion(i.e free and un-damped motion). 

At  the equilibrium point the weight  M x g and the initial force exerted by the stiffness of the spring are  equal in 

magnitude i.e Mg = kS.  If the body is displaced by a distance  x from the equilibrium position then the restoring 

force is k(X+S). Since there are no external forces acting on the body against the direction of motion , then we can 

use the Newton‘s second Law to represent the free motion of the displacement from the equilibrium point by the 

expression 

M
𝑑2𝑥

𝑑𝑡2   =  - k(X+S) + Mg              (1) 

If we substitute the fact that Mg = kS then the equation may be written as 

𝑑2𝑥

𝑑𝑡2   + k 𝑥 = 0               (2) 

Which can also be written as  

𝑑2𝑥

𝑑𝑡2   +𝑤2𝑥 = 0                  (3) 

Where  𝑤2 = 𝑘/𝑀 

Any dynamic system whose function obey the equation above is said to perform a simple free undamped harmonic 

motion  

2. Derivation of the Nonstandard Finite Difference Schemes 

There are quite a large number of numerical methods that may be used for obtaining approximate  solution of a 

second order ordinary differential equation among which Finite difference schemes  have been in the fore front.  

While the aforementioned techniques are rather successful at dealing with generic differential equations, they can 

often come unstuck for some particular problems of interest that arise in applications, particularly when such 

problems exhibit special properties such as symmetries or conservation laws, or when there are solutions with some 

special structure. 

Non-standard schemes as introduced by Mickens (1989,1990,1994) are used to help resolve some of the issues 

related to numerical instabilities. Furthermore, Mickens (1999,2000,2005) introduced certain rules for obtaining the 

best difference equations. Many authors including [1], [2], [5], have been contributing to this new technique. Such 

techniques produce numerically stable schemes which provide reliable solution to the differential equation and 

carried along the dissipative & qualitative properties of the original  equation. In this paper we will employ Mickens 

five point rule to obtain a new numerical scheme  for the solution of the model of a suspended spring with mass 

attached  on a free motion. 

 

2.1 Construction 

Consider the equation in  (3) 

The analytic solution is of the form  c1coswt + c2sinwt 

The component  of equation (3) may be approximated in the following manner: 

𝑑2𝑥

𝑑𝑡2   ≡ 
𝑋𝑘+1−2𝑋𝑘+ 𝑋𝑘−1 

h
                  (4) 

𝑤2𝑥 ≡ 𝑤2(𝑋𝑘)                  (5) 
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Using  Micken’s rules 2 and 3,and the subsequent non-local approximation technique introduced by Angueluv and 

Lubume (2003), the denominator function h must be replaced by  a much more complex function of the step size h. 

Experience has shown that such functions perform better when it is related to a particular solution of the ordinary 

differential equation. This is referred to as the renormalization of the denominator function.  Mickens (1994) in his 

paper has shown that such function must obey the following conditions to avoid numerical instability: 

ϕ(h) = h + O(ℎ2)  for first derivative 

ϕ(h) = ℎ2 + O(ℎ4) for second derivative 

For the first derivative the following are suitable ϕ(h) functions: 

Sin(h) , 1-e−h  etc. 

For the second  derivative the following are suitable  ϕ(h) functions: 

sin2(h) , h(
e−λh  −1

λ
 )  etc. 

Hence we may rewrite equation  (4) in the form 

𝑑2𝑥

𝑑𝑡2   ≡ 
𝑋𝑘+1−2𝑋𝑘+ 𝑋𝑘−1 

h
   =

𝑋𝑘+1−2𝑋𝑘+ 𝑋𝑘−1 

ϕ(h)
          (6) 

ϕ(h) = 4sin2(h

2
)               (7) 

The rule 3 also required that the subsequent terms be approximated as a linear combination of several point on the 

grid . 

Hence we may approximate the other term as follows: 

𝑤2𝑥 ≡ 𝑤2(𝑎𝑋𝑘 + 𝑏𝑋𝑘+1),   a+b=1           (8) 

𝑤2𝑥 ≡ 𝑤2(𝑎𝑋𝑘+1 + b𝑋𝑘 +  c𝑋𝑘−1 ),  a+b+c=1         (9) 

𝑤2𝑥 ≡ 𝑤2 (
2𝑋𝑘+𝑋𝑘+1

3
)              (10) 

3. Construction of  new schemes 

We will now  apply the above technique to construction of  new scheme s. 

Consider a slipping chain under free un-damped motion which obeys a second order ordinary differential equation 

given by: 

  
𝑑2𝑥

𝑑𝑡2  + 64x = 0 , y(0) = 2/3, y’(0) = -4/3               (11) 

It can be verified that the analytic solution is   

X(t) = 2

3
 cos8t- 1

6
 sin8t                (12) 

3.1 Construction of  Scheme 1 

Applying  equations (6,7,8 and 11) we can write 

𝑋𝑘+1−2𝑋𝑘+ 𝑋𝑘−1 

ϕ(h)
+  64 (𝑎𝑋𝑘+1 + 𝑏𝑋𝑘) = 0,   a+b=1         (13) 

ϕ(h) = 4sin2(h

2
) 

𝑋𝑘+1 − 2𝑋𝑘 + 𝑋𝑘−1 +  64 ϕ(𝑎𝑋𝑘+1 + 𝑏𝑋𝑘) = 0         (14) 

𝑋𝑘+1 (1+ 64aϕ) = (2- 64bϕ) 𝑋𝑘 − 𝑋𝑘−1             (15) 

(i). 𝑋𝑘+1  =  
(2−  4 ϕ) 𝑋𝑘− 𝑋𝑘−1

1+  4 ϕ
               (16) 
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3.2 Construction of  Scheme 2 

Since cos(h2) is very close to unit “1” for small h we may : 

(ii). Substitute   a=1/4  and  b = 3ψ/4,  ψ= cos(h )   , ϕ =
1

1 
sin2(4h) in (16) to get a new scheme 

𝑋𝑘+1  =  
(2− 4  ) 𝑋𝑘− 𝑋𝑘−1

1+  4 ϕ
            (17) 

 3.3 Construction of  Scheme 3 

Another scheme can be obtained by  applying equations  6,7 and 9 in equation (11) thus 

𝑋𝑘+1−2𝑋𝑘+ 𝑋𝑘−1 

ϕ(h)
+  64 (𝑎𝑋𝑘+1 + b𝑋𝑘 +  c𝑋𝑘−1 ) = 0,   a=b=c=1/3        (18) 

So that 

(iii). 𝑋𝑘+1 (1+ 6 

3
ϕ) = (2- 6 

3
ϕ) 𝑋𝑘 − ( + 6 

3
ϕ)𝑋𝑘−1         (19) 

𝑋𝑘+1  =  
(2− 6 

3 ϕ) 𝑋𝑘− (1+6 
3 ϕ)𝑋𝑘−1 

 (1+ 6 
3 ϕ)

         (20) 

    ϕ =
1

4
sin2(2h)  or  h(

e−λh  −1

λ
 ) 

3.4 Construction of  Scheme 4 

We can also use a direct substitution of equation 6 in equation (11)  to obtain: 

𝑋𝑘+1−2𝑋𝑘+ 𝑋𝑘−1 

ϕ(h)
+  64 (𝑋𝑘) = 0,           (21) 

So that  

(iv).          𝑋𝑘+1  =  (2 −  64bϕ) 𝑋𝑘 − 𝑋𝑘−1         (22) 

  ϕ =
1

4
sin2(2h)  or  h(  

e−λh  −1

λ
 ) 

The  schemes will now be tested for consistency with the analytic solution in a numerical experiment 
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4. Performance of the schemes 

 

Figure1:  Graph showing scheme 1 and the analytic solution 

 

 

Figure 2 Graph showing scheme 2 and the analytic solution 

 

 

Figure 3:  Graph showing scheme 3 and the analytic solution 
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Figure 4:  Graph showing scheme 4 and the analytic solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  Graph showing all the schemes  and the analytic solution 

 

5. Summary and Conclusion 

It can be observed from that all the schemes produced solution curves whose behavior is consistent with the 

analytic solution for the first 20 iterations using a step length  of  h =0.1. The curves of  schemes  1 and 4 

are more consistent for a larger number of iterations (see figure 1,4,5) . For all oscillations, the amplitude 

remains constant with respect to time.  We can conclude that the schemes carried along the qualitative 

properties of the free un-damped harmonic oscillator . 

With carefully chosen parameters a,b, and  step function ϕ we can get as close as possible to the original curve 

of the particular harmonic oscillator . We can also conclude that,  for  a linear second order equation like the 

free  un-damped harmonic  motion it is enough to select parameters a and b such that a + b =1 for non-local 

approximation. It can be observed that  the choice of  h is restricted to a very small  h for scheme ‘2’  

because of  the term cosine(h).  
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