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Abstract

This paper investigates the Kiefer optimality in the third-degree Kronecker model for mixture experiments. For
mixture models on the simplex, a better design is obtained, by matrix majorization that yields a larger moment
matrix due to increase of symmetry and Loewner ordering. The two criteria together constitute the Kiefer design
ordering and any such criteria single out one or a few designs that are Kiefer optimal. For the third-degree mixture
models with three ingredients, an exchangeable moment matrix was constructed by use of Kronecker product
algebra. These moment matrices are symmetrical, balanced, invariant and have homogenous regression entries
which are good and have desirable properties for an optimal design. Then, the necessary and sufficient conditions
for two exchangeable third-degree K-moment matrices to be comparable in the Loewner matrix ordering were set
up. The weights obtained from the original design were used in the construction of the weighted centroid designs.
Based on the results obtained, it was shown that the set of the weighted centroid designs constitutes a minimal
complete class designs for the Kiefer design ordering and that any design that is not weighted centroid design can
be improved upon by convex combination of an appropriate elementary designs.
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1. Introduction

The description of the original mixture problem is when two or more ingredients are mixed together to form a
product. This product has desirable properties that are of interest to the manufacturers. It is assumed that these
properties are functionally related to the product composition and that by varying the composition through the
changing of ingredients proportions, the properties of the product will also vary. In the general mixture problem,
the measured response is assumed to depend only on the relative proportions of the ingredients present in the
mixtures and not on the amount of the mixture Cornell (1990). The study of functional relationship between the
measured property (response) and the controllable variables is to determine the best combination of ingredients
that yield the desired product. In this basic example of Cake formulations using baking powder, shortening, flour,
sugar, eggs and water, the experimenter is looking for fluffiness of the cake, such that fluffiness is related to the
ingredient proportions. Similarly, in building construction concrete formed by mixing sand, water, and one or more
types of cement building, then the desired property is the hardness or compression strength of the concrete, where
the hardness is a function of the percentages of cement, sand, and water in the mix. Cornell (1990) lists numerous
examples and provides a thorough discussion of both theory and in practice. Therefore, a mixture experiment
involves varying the proportions of two or more ingredients, called components of the mixture, and studying the
changes that occur in the measured properties (responses) of the resulting end products. Clearly, if we let g
represent the number of ingredients (or constituents) in the system under study and if we represent the proportion
of the ith constituent in the mixture by t; ,then;

t20,i=12..,q 1)

and ?:1 ti = t1+ t2+t2+ + tq = 10 (2)

According to Eqg. (2), the sum of the nonnegative component proportions or fractions is unity. This latter condition
(2) will be the fundamental restriction assigned to the proportions comprising the mixture experiment. Satisfying
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the restrictions in Egs (1) and (2) means only that a mixture composition will be formed by adding together
nonnegative quantities. Actually, since in Eq (2) an individual proportion t;, could be unity, a mixture could be a
single ingredient or constituent. Such a mixture is called a pure mixture or a "single-component” mixture. Single-
component mixtures are used mainly as a benchmark or as a standard against which multicomponent blends are
compared. By virtue of the constraints on the t; ,shown in Eqgs.(1) and (2) the geometric description of the factor
space containing the g components consists of all points on or inside the boundaries (vertices, edges, faces, etc.)
of a regular (q — I)-dimensional simplex. For q = 2 components, the simplex factor space is a straight line. With
three components g = 3, the simplex factor space is an equilateral triangle, and for g = 4 the simplex is a
tetrahedron.

1.1 Mixture Experiments

A mixture experiment is an experiment in which the m factors t;, t, ,A , t,, are non-negative and subject to the
simplex restrictionst; +t, + A +t =1, that is the factors represent relative proportions of m ingredients
blended in a mixture (Cheruiyot et al, 2017). The experimental conditions are points in the probability simplex,
which constitute the independent and controlled variables (factors). A real-valued quantitth , observed under the
experimental condition te T assumed random with an expected value, E rYt forms the dependent variable.
Under experimental conditionst €7, the experimental response Yt is taken to be a scalar random variable.
Replication under identical experimental conditions or responses from distinct experimental conditions are
assumed to be of equal (unknown) variance o? and uncorrelated. The functional relationship between dependent
and independent variable within the range of interest is represented by a Taylor polynomial of low degree, d. There
are three types of mixture design; simplex-lattice design, simplex-centroid design and simplex axial design. When
the mixture components are subject to the constraint that they must sum to one, then standard mixture designs for
fitting standard models used are Simplex-Lattice designs and the Simplex-Centroid designs. A simplex design is a
mixture design in which the design points are arranged in a uniform way known as lattice. The word, lattice means
an array of points and is used in reference to specific Taylor polynomial equation. The simplex centroid design is
constructed to form a triangle with data points located at each corner, at the three midpoints on each side and as
well as the point located in the centre(centroid). In the simplex lattice design, the points are located on the vertices
and mid-edges of an equilateral triangle only, gives more information about response surface behaviour for binary
blends, while the points that are located within(inside) the triangle in simplex centroid design and axial design,
more uniform distribution is in the interior of the triangle (Draper and Pukelsheim, 1998a, 1999).

1.2 Simplex centroid Designs

The simplex is defined in geometrical terms as a regular figure, where all of its angles are congruent and all of its
sides are congruent, such as equilateral (3-sided), tetrahedron (4-triangular faces), and other polygons with
triangular faces. In the simplex centroid design, the points are located on the vertices, mid-edges and in the centre
(centroid) a triangle .Generally, in a g-component simplex-centroid design, the number of distinct points is 29 —
1.These points correspond to g permutations of (1,0,0, ...,0 ) or g single-component blends, the (Z) permutations

of G % 0,0,...,0 ) or all binary mixtures, the ()| permutations of G%% 0,0,...,0 ) ,...and so on, with finally
11 1

the overall centroid point (5'5’ g ) or g-nary mixture. In other words, the design consists of every

(nonempty) subset of the g components, but only with mixtures in which the components that are present appear
in equal proportions. Such mixtures are located at the centroid of the (qg— I)-dimensional simplex and at the
centroids of all the lower dimensional simplices contained within the (g— I)-dimensional simplex. At the points of
the simplex-centroid design, data on the response are collected and a polynomial is fitted that has the same number
of terms (or parameters) to be estimated as there are points in the associated design (Muriungi et al, 2017).

For example, a case where g = 3 component system and the factor space for all blends is an equilateral triangle,
then each component assumes the proportions

ti=o,§ and1fori=1,2,3 ©)
Setting d = 2 for the proportions in equation (1), that is the second-degree model is used to represent the response
surface over the triangle, then {3, 2} Simplex centroid designs consist of the seven points on the boundary of the
triangle such that;
11 1 1 11 111
{tli tZJ t3} = {(11 OJ O)I (01 1J O)I (01 Ol 1); (E; EJ O) ] (_ 0' _) ’ (0 ) ) ( ) } (4)

2’72 ’272)\3’3’3
The three points which are defined as

(1, 0, O) or tl = 1, tz = t3 = 0, (0,1,0) or tl = t3 = 0, tz =1 and (0,0,1) or tl = tz = 0, t3 =1
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represent pure blend or single-component mixture and these are the three vertices of the triangle as shown in fig.1.

Fig. 1: {3,2} Simplex Centroid design (Cornell, 1990, 2002)

. 11 1 .1 11 . .
The points (E'E' 0), (E’ 0, 5) and (0'5'5) represent the binary blends or two-component mixtures t; = t; =
> ty = 0,k # i,j for which non-zero components proportions are equal. The binary blends are located at the

. . . . . . 11 1Y).
midpoints of the three-edges of an equilateral triangle and the centroid point (E’E’E) is located at Centre of the

triangle. For a {3, 2 } Simplex centroid designs with 7 points as in equation (4), then if the second-degree model is
used for a three-component system, we have the expected responses and the polynomial equation of the form;

n = Pity + Pty + Pats + Piatity + Pistitis + Pastats + Prastitats (%)

which is a polynomial fitted that has the same number of terms (or parameters to be estimated) as there are points
in the associated design where 1, B2, B3, 815 B3 B3 and B, unknown parameters.

2. Methodology

The Kronecker product has been applied in this study to derive the exchangeable moment matrices since Kiefer
design ordering does not depend on the coordinate system that is used to represent the regression function, though
both Kronecker and the Scheffe’ are based on the same space of regression polynomials, but differ in their choice
of representing this space. (Draper and Pukelsheim, 1998) and (Prescott, et. Al, 2002) put forward several
advantages of the Kronecker model such as homogeneity of regression terms, attractive symmetry, compact
notation, great transparency, and invariance properties. We refer to the corresponding expressions as K-models or
K-polynomials. In particular, polynomial regression model for mixture experiments as suggested (Draper and
Pukelsheim, 1998a, 1999) in the first and second-degree Kronecker mixture models in which they obtained the
results for Kiefer design ordering of mixture experimental design were reviewed.

For a linear model with regression function f (t), the statistical properties of a design 7 are captured by its moment
matrix

M (7) =ij f(t;) f(t;) = _[f(t)f(t)’dr (6)
IN T
and its regression function is given by
1
1
f(t)—@ (0 t | fo-| | 0
t) - ’ | tet
t®t
Ot ®t

for first, second- and third-degree Kronecker model respectively.
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2.1 Kronecker product

The Kronecker product, denoted by ®, is an operation on two matrices of arbitrary size resulting in a block matrix.
The Kronecker product should not be confused with the usual matrix multiplication which is an entirely different
operation. For a K xm matrix A and an | x N matrix B, their Kronecker product A® B is defined to be the
Kl x mn block matrix

a,B A a,B
A®B=| M O M |. (®)
a,B A a,B

The Kronecker product approach bases second-degree polynomial regression in m variables such that
t = (t,,t,,A ,t,)" on the matrix of all cross products is given by,
2 tt, Attt
tt, t2 A tt

tt'= 9)
M M O M

tt tt, At

m
rather than reducing them to the Box-Hunter minimal set of monomials

(Ut At L A Lt it ).
The benefits are that distinct terms are repeated appropriately, according to the number of times they can arise, so
that transformational rules with a conformable matrix R become simple (Rt)(Rt)’ = R(tt")R’ and that the

approach extends to third-degree polynomial regression. However, the arrangement of triple products titjtk ina

set of “layered” matrices appears rather awkward. This is where Kronecker products prove useful; they achieve
the same goal with a more pleasing algebra. The idea underlying the use of Kronecker products is familiar from
elementary statistics, that is the Kronecker product of a vector S €R™ and another vector t € R" then simply is a
special case,

sqt
1

s®t=| M| = (sitj)i=1J\,m§ j=1A.n e R™ (10)
Smt in lexicographic order

One of the key property of Kronecker product is the product rule (A® B)(s®t) = (As)® (Bt). Therefore,

the transpose, (A®B)’ = (A") ® (B'), for Moore-Penrose inversion, (A®B)" = (A") ® (B"), and if

possible, for regular inversion, (A® B)_l = (A_l) ® (B_l) . The other properties of Kronecker product are (A

®B)® C=A® (B ® C) for associativity, (A+B)® C=(A® C) + (B ® C) for distributive property, Trace
(A®B)=Trace (B ® A) = Trace (A) ® Trace (B) and det (A ® B) = det (B ® A)=(det (A))" (det (B))™ VA €
M, B € N. Thus while the matrix tt" assembles the cross products titj inan Mx M array, the Kronecker square
t &t arranges the same numbers as a long m? x1 vector. The Kronecker cube t® t®t is an even longer
m®x1 vector, listing the triple products titjtk in lexicographic order. Yet the algebra is easy to handle. The

transformation with a conformable matrix R simply amounts to (Rt) ® (Rt) = (R®R)(t ®t). This greatly

facilitates our calculations when we now apply Kronecker products to response surface models of third-degree K-
model.

2.1.1 The first-degree K-model
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The first-degree K-model which was proposed by Draper, N. R., Pukelsheim, F, (1998) is of the form
m
EN]=Dt6 =to (11)
i=1

If the linear model has regression function f (t) = t, which is an identity matrix, the statistical properties of a
design 7 are captured by its moment matrix,

M(r):_zm:wi f(t) ) = [f©fEyde =Jtrde (12)

T

The first-degree moment matrix of an exchangeable design 7 isthe m x m matrix

Hy  Hyy ANy

M (7) = My My Ay (13)
M M O M
My e N,
with identical on-diagonal entries /¢, , the pure second moments and identical off-diagonal entries £, , the mixed
second moments. Furthermore, the simplex restriction entails
1, M(?) 1, = mu, +m(m-1)u, =1 (14)
that is, the entries of any first-degree moment matrix sum to one, for every design on the simplex. For the first-
degree model on the simplex, the regression function is the identity whence the groups ¢ and perm (m) coincide,
f(R)= Rt=Qt =Qf(t) foralter = Q=R
The group ¢ = perm(m) acts on moment matrices by congruence, M — QMQ’.
A first-degree moment matrix M is said to be permutationally invariant when M = RMR' for all

R e perm(m). We call a design with this invariance property an exchangeable design.

Lemma 1

Let 7 be an exchangeable design on the simplex T . Then we have M (77,) = M (7) with equality if and only
ifz=mn.

Proof:

From Lemma 2.1 (Korir, 2008), we have M (77,) — M (7) = ll o K., withd = 1_ U, (7). The
m— m

simplex restriction yields & = (M—1) z,(7) = 0. This proves M (77,) = M (7) .Equality holds if and only if
0=y, (%) = [ t;t; d foralli # j.

Therefore the support points of 7 must be among the vertices €; . Because of exchangeability the design 7 assigns

constant weight 1/ m to each vertex, whence T = 717, .Now we view matrix majorization and Loewner ordering
together, to obtain the main result on the Kiefer design ordering in first-degree models.

Theorem 1
Among all designs on the simplex T', the unique Kiefer optimal design for a first-degree model is the vertex

1

points design 77, , with moment matrix M (77,) = — 1 .

m
Proof:
Let 7 be an arbitrary design on the simplex T. Lemma 1 yield M (77,) > M(7) ©= M (7). This establishes
Kiefer optimality of M (771). Let 7 be also Kiefer optimal. Then 7 and 77, are Kiefer equivalent, and the
antisymmetric property of the Kiefer ordering entails M (7) = M (771) . Now Lemma 1 proves uniqueness, so

T =17,. While there are plenty of exchangeable designs, just two of them suffice to generate all possible
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exchangeable first-degree moment matrices. To this end let 77, be the overall centroid design, that is the one-point

design in the overall centroid point of the simplex T,
1 - 1 ' :
M (—1m = land therefore, the moment matrix is M (77,) = —1, 1. For an arbitrary exchangeable
m m
design 7 with moments £, and £y, we definec; = m(u, — ), a, = m? My, . These two numbers
satisfy ; > 0 and @; + «,, =1 . Hence the convex combination &, 17, + &, 17,, is alegitimate design. Infact,
this design reproduces the given moments,
Ho(oqng + omnm) = ag o (1) + am o (iy) = Ko,
11 (@qngq + amnm) = oq g (q) + &y kgq (i) = 1. The convex combinations of the vertex points design

n, and of the overall centroid design 77,, exhaust all possible exchangeable first-degree moment matrices.

2.1.2 The second-degree K-model
The second-degree K-model which was proposed by Draper and Pukelsheim (1998b) is of the form

EV]=)Dtt6, =t®1)6 (15)

i=1 j=1

An arbitrary design 7 has second-degree K-moment matrix
M(z) = [t @) ®1) dr (16)

The K-regression function chosenis f (t) = (t ® t) which proves convenient in determining the group ¢ that
is induced on the K-regression range, f(Rt)= (Rt®Rt)=Q(t®t) =Qf(t) for all
ter = Q=R®R. Therefore, the induced group consists of the Kronecker squares of all permutation

matrices 3= {(R ®R):Re Perm(m)}

2
This is a proper subgroup of the permutation matrices on the space R™ where the regression function takes its
values. In fact, ¢ only has order m: while Perm(mz) has order m?. A second-degree K-moment matrix is said

to be permutationally invariant when M = (R ® R) M (R ®R)’ forall R € Perm(m) . We call a design
with this invariance property an exchangeable design.

(&) Two factors

For the second-degree K-model with two-ingredient, let 7 be an arbitrary exchangeable design on 7 ,then, the
second-degree K-moment matrix is of the form;

My Mz Mz Hp
M(3) = Map Moy Hap Mg (17)
Mar Mo My Mg

oo Mz Hi Uy

An exchangeable second-degree K-moment matrix depends on the various pure moments of order four, L1, , mixed

fourth order moments, Lt and W,, suchthat, M, = jtf dt, M3, = Itf t,dtand p,, = th t2dz.

The simplex restriction has the effect on moment matrix, that is the entries of any second-degree K-moment matrix
sum to one;

L®L)YME@) (L ®L,) = [1,t) dr =1 (18)

and its simplex restrictions entail:
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1= 2p, + 8uy +6u, (19)
Lemma 2

Let 7 and 7 be two exchangeable designs on the simplex T . Then we have

M) =2 M([7) < H2) (n) = H) (@), #y (1) 2 py (7).
Proof:
For the direct part we assume A = M (77) — M () is nonnegative. Then (1, ®1,)'A(1,®1,) =1-1=0

forces A(l,®1,)=0, which implies M(n)1,®1,)=M(7)1,®1L). This means
Hey (1) = pyy (7), since

4, (7)

4, (7)

11 (7)

4, (7)

In addition, we have 0< (e, ®e,)'A(e, ®e,) = 1, () — 1, (7) .For the converse part note that for two
ingredients, equality of second order moments implies equality of third order moments. The fourth order moment

differences then are, using 7 = 41, (1) — 14, (Z) 2 0 , 115, (1) — 115, (7) = =7 . 11, (1) — 11, (¥) = 7.
In terms of matrices this means

M (7)(1, ®1,) = j(t ®t)(t ®t) (1, ®1,)d7 :j(t ®t)dr =

1 -1 -1 1
. -1 1 1 -1 -
M) =M@ =1y | | | _j|= vE=0, where E=w,w,adw,=( —¢&,)®(E, —e,).
1 -1 -1 1
Again the be vertex points design 77, and the overall centroid design 77, play a special role
1 0 1 1/2
= = — and = 1. Their moments of order four are
nl(oj nl@ 2 nz(lf 2)

1 1 .
Ha(ng) = E, u31(n1) = Hgp(nq) =0 and Hy(ny) = Mgl(nz) =99 (Nny) :E- We call the designs

n, and 17, elementary centroid designs. They are used to generate weighted centroid designs; in the sense of the
following definition.

Definition 1
For weights ; , &, = 0 with ; + a, = 1, the design 17 = 77, + ,17, is called a weighted centroid

design. In order to find a weighted centroid design 77 = a1, + &,1], that improves upon a given exchangeable
design 7, in the Loewner ordering sense of having M (77) > M (7) , Lemma 2 is instrumental. We determine the

1 1 1
weights «, and «, by equating selected lower order moments, “1(”)250‘1 + Eaz = E

1
yq() == ay = pyq. The solutions are @, = 444, >0, and oy = 1 -4pqq = 2(uy — pyq)20. Inthe
4

fourth order terms we get &, = 8(15, + f45,) and g = 2(y — Hoy)

Lemma 3
Let 7 be an exchangeable design on the simplex T', with fourth order moments s¢,, f43, , ,, . Then the

weighted centroid design 77 = a7, + &,1, , with weights @, = 2(u, — fby,) and @, = 8(ty; + L)
, satisfies M (17) > M (7) with equality if and only if 7 = 77.
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Proof:

The simplex restriction entails 24, + 845 + 644,, =1 and o, + ¢, = 1. Cleary we have o, > 0. We
also have «; > 0 , since the function w(t,,t,)=(t7 —t7)® is nonnegative and satisfies

a, = jw (t,,t,)d7 > 0. Hence the weighted centroid design 77 is well defined. The following theorem joins

the partial steps together to obtain the main result on the Kiefer ordering, that the mixtures of the vertex points
designs 77, and of the overall centroid design 77, form a minimal complete class.

Theorem 2

In the two-ingredient second-degree model, the set of weighted centroid designs

C={am +a,n, : (a,,a,) € T}, constitutes a minimal complete class of designs for the Kiefer
ordering.

Proof:

Completeness of C means that for every design 7 not in C there is a member 7 in C that is Kiefer better than 7
. That is, we must show that 77 is more informative thanz , M(n) >> M(t), but that the two are not Kiefer
equivalent, M(t) >> M(n) .From the above section and with the weights from Lemma 3, the weighted centroid

design 17 = ayn, + a,n, satisfiesM(n) > M(T) = M(r), that is, M(n) >> M(t). The implication of the

above is that any design which does not consist of a mixture of elementary centroid designs can be improved upon,
in terms of symmetry and Loewner ordering, by using an appropriate combination of elementary centroid designs.

(b) Three factors
The second-degree K-moment matrix with three-ingredients is of the form;

M4 K31 M31 H31 Hz2 K211 K31 H211 M22
31 H22 HM211 K22 K31 H211 H211 H211 Hon
M31 H211 K22 K211 K211 H211 H22 K211 B3
M31 K22 H211 M2z H31 K211 H211 K211 Monm (20)
M@ =| Bz HM31 HM211 HM31 Bg M3 Haqq M3 Hpp
K211 H211 H211 H211 M31 K22 H211 K22 H3q
M31 H211 K22 K211 K211 H211 H22 K211 B3
H211 H211 H211 H211 M31 K22 H211 M2z H3
22 H211 M31 K211 H22 H31 K31 M31 Mg

With an additional moment of mixed order four given by, £,,, = Itf t,t, d7 . The simplex restriction has the

effect on moment matrix, that is the entries of any second-degree K-moment matrix sum to one;

LOLYM() (L, ®1) = [(Lt) dr =1 (21)

And its simplex restriction entails;

1= 3y, + 24u, +18u,, + 364, (22)

2.1.3 The Third-degree K-model
The third-degree K-model, which was proposed by (Korir, 2008), is of the form;

E[Y,]=f(t)0 :iiititjtkﬁijk - (t®t®1)'0

i=1 j=1 k=1

Let 7 be an arbitrary exchangeable design on 7 , the third-degree K-moment matrix for two-ingredient is of the
form;
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(Korir, et al, 2009)

He Hs51 K51 H4g2 Hs51 K2 Hg2 K33
51 K42 Mgz H33 K42 K33 K33 Hyg2
51 K42 Mgz H33 K42 K33 K33 Hg2
M(T)= Ha2 K33 H33 Hgz2 M33 Ha2 K2 M5 (23)
51 K42 Hg2 H33 Ky K33 H33 Hy
Hga2 H33 M33 K42 H33 Hg2 P42 M5
42 H33 H33 K42 K33 Haz K42 Hsq
33 Hg2 Ha2 Hs51 MPg2 K51 P51 Mg

The sixth order moment £, and the mixed sixth order moments f,, f,,,and [y, are the averages over the
corresponding; possibly distinct individual moments of 7 such that;

=u6(f)=Jt6dr jt dr _j Zt dr
sy = 115, (7) = jt t, A7 | phay = g (T) = jt A7, fy =y (F) = It t;d7

The simplex restrlctlon has the effect on moment matrlx, that is the entries of any K-moment matrix sum to one
(Korir, et al, 2009).

1, ®L,8L) M) (1, ®1,8L) = [@,t) dr =1 (24)

Therefore, its simplex restrictions entail;

1= 2u, +12pu, +30u,, + 204, (25)
Definition 2:
For the weights o , a,, a3 = 0 with a; + a, + a;=1, the design 1 = aym, + a,n, + agn; is

called a weighted centroid design. In order to find an appropriate set of weights, we equate selected moments of
order lower than four:

(n) = 1 1 1 1 () = 1 1 () 1

H n =—-0a t - a + - = T “’ n +—a = H ’ “’ n = —_—a = l’l

1 1 3 2 3 3~ 3 11 12 a2 3 3 110 7111 27 3 111
The solutlons are ag = 27pqqq, Gy = 12(pqq = 3pqq7) . and o = 1—-a,— a;. When the lower order

moments are expressed using fourth order moments, these weights are seen to be the ones given in the following
Lemma.

Lemma 4

Let 7 be an exchangeable designs on the simplex T , with fourth order moments 14, , £y, £y, , Liyy, - Then the
weighted centroid design 77 = a7, + 17, + 371, with weights  aq = 3(ny — 2090 + Hogq),
0y =24(pgq +ioy —2lyq1) @nd Oy = 8Blp,,, satisfies M(n) > M(T), with equality ifand only if 7 = 7

Proof:
The relation 3p, + 2444, +18p1,, + 36 11, =1 entails a; + a, + a3 = 1. Clearly we have a5 >0.

We also &, >0, since the function ¢ (t,t,,t;) =12(t, —t,)? (t,t, + 2t7) is nonnegative and integrates
to «r, . For &, we use the symmetric function
wo(t,t,t) =t + t5 +t) —2t7t2 - 2t7t2 — 2t2t2 + t7tt, + t t2t, + t ]

It can be shown that, on the simplex, y is nonnegative. This ensures &, = 0. Hence the weighted design 77 is
well-defined. Again, we conclude that, in the Kiefer design ordering it suffices to restrict attention to the vertex
points design77, , the edge midpoint design77,, and the overall centroid design 77, as indicated in the following
theorem:
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Theorem 3

In the three-ingredient second-degree model, the set of weighted centroid designs
C= {%771 +a,m, + an, (o, a,, ) € T}constitutes a minimal complete class of designs for

the
Kiefer ordering.

Proof:
The Completeness part is as established just as in Theorem 2. For minimal completeness, we remove a weighted

centroid 7 from C and assume that 77 € C improves upon7 , M (77) > M (7) . By Lemma 2.7 (Korir,2008),
the two designs share the same lower order moments. The latter determine the weights uniquely, contradicting the
assumption that 7 and 7 are distinct. Hence the class C is minimal complete.

3. Design problem
Many practical problems are associated with the investigation of mixture ingredients tl, tz,A ,tm of m factors,

with t; >0 and further restricted by Zti =1. Early seminar work was done by Scheffe’ (1958; P.347,1963) who

suggested and analysed canonical model forms when the regression function for the expected response is a
polynomial of degree one, two, or three. We refer to these as the S-polynomial or S-models. In this paper, the
alternative representation of mixture models is used to investigate the third-degree mixture models with three
ingredients. This version is based on the Kronecker product algebra of vectors which was introduced by Draper
and Pukelsheim (1998, 1999). The Kronecker algebra gives rise to homogeneous model function and moment
matrices. We refer to the corresponding expressions as K-models or K-polynomials.

In the third-degree mixture model, whereby the S-polynomial and the expected response takes the form;

m m m

E[Y1=F(®)'0=>t6+>>tt0,+> > >0, titt, (26)
i=1 i<j i<j<k

and when the regression function is the homogeneous third-degree K-polynomial, the expected response takes the

form (Korir, 2008), (Gregory et al, 2014).

ENY]=f@®)0=>>>ttto, = (tdta1)0 27)
i=1 =1 k=1
in which the Kronecker powers t® =(t®t®t), (m3x1) vectors, consists of pure cubic and three-way

interactions of components of t in lexicographic order of the subscripts and with evident that third-degree
restrictions are &, =0, =60, =0, =0,; =0,; forall i, j, and k.

3.1 Exchangeability in Third-degree K-model
Given an arbitrary design 7, we obtain an exchangeable design (permutation invariant) = by averaging over the

permutation group, f:i ZT oR-1

m: Reperm(m)
If the original design r itself is exchangeable, then it is reproduced, 7 =7 . Otherwise the average 7 is an
improvement over 7, in that it exhibits more symmetry and balancedness. In terms of matrix majorization, the
moment matrix of the average design 7 is majorized by the moment matrix of z,such that M (7) 7 M (7). The

moment matrix M (7) is superior to M (7) since it exhibits more symmetry than M (7). Let Perm (m) be the
group of all M X M permutation matrices. A design 7 is said to be permutationally invariant when 7R =7 for
all R e Perm(m) . We call a design with this invariance property an exchangeable design. The group R that acts

on the experimental domain T, induces a group
@ that acts on the range of the regression function, f (t) =t ®t &t ;(Korir,B.C,2008).

f(Rt)=(Rt®Rt®Rt) = (RORXR) (t®t®1t) = Qf(t) forall t e T =Q=R®R®R. This
induced group consists of Kronecker cubic of all permutation matrices, 9:{R ®R®R:Re Perm(m)}.
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This is a proper subgroup of the permutation matrix on the space $Rm* where the regression takes its values.
Therefore, a third-degree K-moment matrix is said to be permutationally invariant when
M=(R®R®R)M (R®R®R)" for all R e Perm(m) then, we speak of an exchangeable third-

degree K-moment matrix. In a third-degree mixture model, the moment matrix is the form;
M(7) :I (t®t®1t)(t®t®t) dz and has all entries homogeneous of degree six and the simplex restriction

has an immediate effect on these moment matrices, as follows

(1, ®1 ®1 )M(r)(1,®1 ®L )= I(l;n t)yedr =1. (28)
That is, all the entries of any third-degree K-moment matrix sum to one; for every design on the simplex.

3.2 Kiefer Design Ordering

The optimality properties of designs are determined by their moment matrices (Pukelsheim 1993, chapter 5). We
compute optimal design for the polynomial fit model, the third degree Kronecker model. This involves searching
for the optimum in a set of competing exchangeable moment matrices (Gregory et al, 2014). The Kiefer partial
ordering is a two-stage ordering, reflecting an increase in symmetry by matrix majorization and a subsequent
enlargement in the Loewner ordering (Pukelsheim, 2006). In view of the initial symmetrization step, it suffices to
search for improvement in the Loewner ordering sense, among exchangeable moment matrices only. First, we
obtain the exchangeable moment matrices, then find the necessary and sufficient conditions for two exchangeable
third-degree K-moment matrices to be comparable in the Loewner matrix ordering. The comparison of moment
matrix inequalities reduces to the comparison of individual moment inequalities which is part of the condition. In
terms of matrix majorization relative to the congruence action that is induced on the moment matrices by
9={QR ‘RePerm(m)y, M a Q; M Q, the moment matrix of the averaged design 7 is majorized by the
moment matrix of 7, M (7) 7 M(z) and of course M (7) being more balanced is superior to M (7) since
it exhibits more symmetry. When M is greater than or equal to some intermediate matrix F under the Loewner
ordering, and F is majorized by A under the group action that leaves the problem invariant, that is,
M>A < M>F rn A for somematrix £. We call two moment matrices M and A Kiefer
equivalent when M >>A and A>>M : we call M Kiefer better than A when M >> A without M and A
being equivalent. We say that two designs zand ¢ are Kiefer equivalent when their moment matrices are Kiefer
equivalent, and that = is Kiefer better than & when M () is Kiefer better than M (&); M (z) >> M(&) , hence
M (7) is Kiefer optimal (Kennedy, et al, 2015).

Further, the weights were derived from the initial design and these are assigned to the points of support in
experimental domain T , these are points on or inside the boundaries (vertices, edges, faces, Centres) of a regular
dimensional simplex. These weights were used to obtain the weighted centroid designs in which a convex
combination of the elementary centroid designs give rise to the set of weighted centroid designs. Pukelsheim (1993)
gives a review of the general design environment. Klein (2002) showed that the class of weighted centroid designs
is essentially complete class for m >2 for the Kiefer ordering design. As a consequence, the search for optimal
designs may be restricted to weighted centroid designs for most criteria.

3.3 Third degree K-model with Three Factors
In the third-degree model, with three-ingredients proposed by Korir, B.C.(2008), an exchangeable moment matrix
on design 7 is of the form

A B C
M(z)=|B D F (29)
C F G

where A, B, C, D, F, and G are 9x9 block matrices as follows,
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He HMs51 H51 Hsp Haz Ha11 Hs1 Pa1q1 Ha2
51 Ha2 K411 Hg2 K33 H321 Ha11 H321 H321
51 Ha11 K42 Harr K321 K321 Haz H321 K33
51 Ha2 K411 Kg2 K33 K321 Ha11 H321 H321
A=| B2 M33 HM3p1 H33 Ha2 H321 K321 H321 H222
K411 H321 K321 K321 M321 K222 H321 H222 K321
51 Ma11 K42 Ha11 M321 K321 Mgz H321 K33
Ha11 B321 H321 K321 K321 M222 M321 MH222 H32q
a2 H321 M33 K321 Hz22 M321 H33 K321 Mg

51 K42 Hg1r K42 K33 K321 Bgq1 K321 K321
Kg2  M33 K321 K33 Hg2 H321 H321 H321 K222
Ha11 M321 B321 K321 H321 M222 H321 M222 H32q
Ha2 K33 HM321 M33 Haz K321 H321 K321 H222
B =| u33 Ha2 H3zr M4z M5y Maqq M3p1 Map M3z
M321 M321 H222 H321 Hag11 H321 H222 K321 H321
Ha11 K321 H321 M321 M321 H222 K321 H222 M321
M321 M321 H222 H321 Hag11 H321 H222 K321 H321
M321 H222 K321 K222 H321 M321 H321 K321 H4n

51 Hg11 HPa2 HPa11 H321 H321 K42 M321 H33
Ha11 H321 B321 K321 K321 M222 H321 K222 H321
Hg2 M321 H33 H321 K222 K321 M33 H321 Mg
Ma11 H321 H321 H321 K321 H222 M321 H222 321
C =] M321 M321 M222 K321 Ha11 M321 M2z H321 H321
K321 K222 H321 M222 K321 M321 M321 H321 M4n
g2 M321 H33 H321 M2 M321 M33 H321 Mg
K321 H222 M321 H222 K321 H321 H321 H321 K4mn
M33 H321 K42 K321 K321 Har1 K42 K411 M5

a2  H33 HM321 K33 K42 H321 K321 H321 K222
33 K42 M321 K42 Hs1 K411 B321 B411 H321
M321 H321 M222 H321 Mg11 M321 H222 K321 H321
M33  HMg2 M321 MKg2  Hs1 K411 B321 H411 H321
D =| ka2 K51 Ha11 K51 Mg M5y Kapq Moy Mg
321 Mg11 H321 K411 Hs1 Haz K321 Mg M33
K321 K321 M222 K321 K411 M321 H222 K321 K321
321 K411 H321 Ba11 Hs1 Bg2 H321 P2 K33
222 M321 M321 M321 Ha2 H33 H321 H33z Hypp
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Ma11 H321 M321 H321 H321 H222 M321 M222 K321
K321 K321 K222 K321 Ma11 K321 H222 M321 321
M321 M222 M321 H222 K321 K321 H321 M321 MHan
M321 K321 K222 K321 Ma11 K321 H222 M321 321
H321 K411 H321 Ka11 Hs1 Ba2 H321 Mgz M33
M222 M321 H321 M321 K42 H33 HK321 K33 MKy
K321 M222 M321 H222 K321 K321 H321 K321 MHan
M222 M321 H321 M321 K42 H33 K321 K33 Mg
M321 K321 Ha11 K321 K33 MKa2 H411 Haz P55

a2 K321 H33 H321 K222 M321 K33 H321 Hg2
M321 K222 M321 H222 M321 K321 M321 K321 M4t
M33  H321 Haz2 H321 K321 Ha11 Ha2 K411 M5
M321 H222 H321 H222 M321 H321 M321 K321 K411
G =|Hpp M3z M3p1 M3z Maz M3z M3y M3z My
M321 M321 K411 M321 M33 K42 Ha11 Ha2 Hsq
K33 K321 Haz2 K321 K321 Ha11 Ha2 K411 M5
M321 H321 Ha11 K321 H33 Hg2 Hg11 Hg2 Ko
Ha2 H411 K51 K411 K4g2 HB51 K51 M5 Hg

An exchangeable third-degree K-moment matrix depends on the various moments of order six and its moment of
order six as follows; H,,, = J.tl2 122 AT, oy = J.tl3 t2t,d7 and g, = J.tl4 t,t, d7 .The simplex

restriction has the effect on moment matrix that is
1, ®1L,®L) M) (L, ®1,8L) = [@1) dr =1 (30

That is, the entries of any third-degree K-moment matrix sum to one,
1=13ug + 36pg + 0py, + Ouyyy + 60p4; + 360055, + 90Uy, (31)
The Kronecker representation evidently causes over thirty null vectors of (1x 27), e.g.

’

x=(010000000-104 0),

x=(0 01000 1004 0,
«=(000100000-10a 0,

’

x=(0 000100000 -10A 0), etc,

such that vector x' M (T) = 0.

The set of moments of order six determines all lower order moments. For instance, the pure fifth moments expand
to order six by

s = s (T) = Itf (t+t, +t)d7 = pe +2u5 32)
In this way we get the foilowing relations:
Hs = Hg + 2Ug
Hy = Hsy T Hyp+
Hyp = Hyp + Hag T Hay
Moy = Hay + 25
Moy = 2y + Ly (33)
My = Ho + B +20 + gy,
May = Hsy + 2fg +2 gy + g +3f5,
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Mo = Hay + 6llgy + 215

Moy = 2y + 2+ ALy + fy,

My = Hg + Ops + 611, + 24155 + 61035 + 611y

Moy = Mo+ Aty + 3ty + 131055 + 3ptgy + 315

Mg = 3plyy + 181y +6115,

fhy = 2pg+ 8ligy + Oty + 6145 + AA sty

My = Hg + 8+ 1401, + 1200, + 8ligg + 32145 + 6145y

Therefore, its simplex restrictions entail:

1= 3u, +6u,
1= 3uy +18p, + 61y,
1= 3u, +24u,,+18u,, + 36u,, (34)

1= 35 + 302, +602s5 +601s5, +90115,
1= 3 + 3645 +90u,, + 9021y, + 602155 + 360115, + 9012y,

The Loewner comparison of two third-degree moment matrices can now be expressed in terms of moment

conditions. Let fus) = (fps fuy} Has Moy Haass Mas M Hovys Hop Hsy Hags Mg s Hogys Magy)' be the

vector of moments up to order five as given in lemma 3.1 (Korir,.2008), then the sixth order moment differences
are as follows;

() — ps(T)=y

() = () = 7

_ 1
My (17) — sy (T) = 57/ -0

- -1
M (17) — pas(7) = ?7/ +26 (35)

Mz (77) — Hn (1_') =-0
Moo () = s (T) = 20
Han (77) — My (2_') =0

Lemma5
Let 7 and 7 be two exchangeable designs on the simplex T . Then we have 4 (17) — s (7)=y and

_ ~ -1 2
0= tyy (1) = by (T) ;M) 2M(T) < ug (7) = g (7); 773531—17-

Proof:
For the direct part we assume that A = M (77) — M (7) is nonnegative definite. Then

(1, ®1, ®1,)'A(l, ®1,®1,) =1 -1=0 forces A(1;, ®1, ®1,) = 0, which implies that
M(17)(L; ®1, ®1;) = M (7)1, ®1; ®1,). This means 116, (17) = p5) (T) , since
1, ®1; ®1;)'A(l, ®1, ®1;) =3(as —pe) + 36(as; — s )+ 90(a,, —yp) +90(840; — Han)
+60(ag; —Hgs) +360(a35 — Hgp) + 90(a, —Hyp)
=(3a, + 36a,, +90a,, + 60a,, +360a,,, + 90a,,,) — (3 + 364, +901,, + 60115, +360445,, + 904,,,)
=1-1=0

77


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online)  DOI: 10.7176/MTM l'H.i.l
Vol.9, No.1, 2019 NSE

The nonnegative definiteness of A is equivalent to non-negativity of the two coefficients  + 26 and 4y — 226

, that is, _—17/£§££;/.
2 11
Also
M(7)(1, ®1, ®1,) = j(t@)t@ot)(t@t@t)’(l3 ®1,®1,)dT = j(t@t@t)df
T T
Mg * 6Hgq + 61y + 6y + 2U33 + BH3p9 M3 (@)
M5q + 4 +3K33 +3Hg99 + 131329 +3Hpp) Hq (@
Mgq +4Hgp + 3133 +31g97 + 131379 +3H33; Hpq (D)
Mgp +4Hgp + 3033 +31g11 + 131327 + 3Hp3; H21 (™
Mgq +4Hgp + 3133 +31g91 + 131379 + 33U, Hpq (D)
3ugq1 +18H31 + 6 ) H111(®@
Mg +4Hgp + 3133 +31g91 +1313pq + 33U, H21(T)
3ug11 181321 + 6K K111
B51 * 4Kap + 3033 + 30491 + 13031 + 3022 K21
K51+ 4Hgz +3K33 + 3Mg1q + 13K31 + 3M222 K21(®
B51 +4Hgp + 3033 3017 + 13K3q + 3222 K21(®
3u411 + 181321 + BH22p K111 (0
H51 *4Kap +3H33 +3Mgq1 + T3H3q + 3Kz K21(®
M(f)(13 ®13 ®13)= Mg +6Hgq + 6l p + 6l 11 +2H33 +613pq [=] M3 (D
Mgq +4Hgp + 3133 +31g17 + 131321 + 33U, H21 (™
3ugq1 + 181321 + 61 H111 (@
Mg1 +4lgp + 3133 +3Hgqq + 13031 + 302 H21 (™M
Mg +4Hyp + 3133 +31g9q +1313pq + 33U, H21(T)
Mgq +4Hgp + 3133 +31g99 +1313p¢ + 33U, H21(T)
3Hg19 + 18Uz + 6HRp) H111(®
Mgq +4Hgp + 3133 +31g97 + 1313p¢ + 33U, H21(D
3ugq1 + 18131 + 6 H111(@
Mgy +4Hgp + 3133 +31g91 + 131379 + 33U, "21‘? (36)
Bgq +4Hgp + 3033 + 397 + 13037 + 3K, H21(M
Hgq +4Hyp + 3133 +31g99 + 131359 + 33U, K21
B5p +4Hgp +3K33 + 3419 + 13327 + 3022 K21
Mg +6Hgq + 6l p + 6l qq + 2133 + 6l35q 3@
Since, 145 (T) = tg + 645y + 61145 + 610,11 + 21155 + 6113y,
oy (T) = sy + Aty + 3oy +3ptyyy +13 1ty + 31ty and gy, (T) = 3tyy +18 155, + 614, .
In addition, we have
(e, ®e, ®e,) A, ®e, ®e)) = (1) — 14(7) . Thatis
1
1 1 1 1 1 1
0|®|0(®[ 0| (Mim)-M(@))|0|®0[®|0||= 1)~ 15 (7) (37)
0 0 0 0 0 0

of course, there is an infinite number of ways to parameterize the two degrees of freedom in equation (35). y and

O are natural choices to work with. Using the indicator matricesV; , the moment matrices of nand 7 differ by
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A=M(n)-M(7)
1 1 -1 (38)
=7)‘/6 _57\/51+ 57_5 FY i ?7‘*‘25 33_6\/321 +é\/411+25v222

This decomposition has seven terms although there are only two degrees of freedom, y and O . There are, however,
simpler representations for A involving four matrices, C, X, Y, and Z. A convenient choice for the matrix is

H J K
C =22V, -11V, + 1V, +4V,,, —5V,;; — 2V, +4V,,, ,where C=| J L M |and such
K M N

that H, J, K, L, M and N are 9x9 block matrices;

2 -1 -1 -1 7 4 -11 4 7 7 -5 -2 -5 7 -2 -2 -2 4
-1 7 4 7 -5 -2 4 -2 -2 4 -2 -2 -2 _2 4 -2 4 -2
-11 4 7 4 -2 -2 7 -2 -5 7 _5 _2 _5 7 _2 _2 _2 4
-1 7 4 7 -5 -2 4 -2 -2

J=| -5 7 -2 7 -1 4 -2 a4 -2

H-| 7 -5 -2 -5 7 -2 -2 -2 a4

4 -2 -2 -2 -2 4 -2 4 -2 -2 -2 4 -2 4 -2 4 -2 -2

11 4 7 4 -2 -2 1 -2 -5 4 -2 -2-2 -2 4 -2 4 -2
4 —2 -2 -2 -2 4 -2 4 -2 -2 -2 4 -2 4 -2 4 -2 -2
7 -2 -5 -2 4 -2 -5 —2 71 2 4 -2 4 -2 -2 -2 -2 4

-1 4 7 4 -2-2 7 -2 -5
4 -2 -2 -2 -2 4 -2 4 -2
7 -2 -5 -2 4 -2 -5-2 71
4 -2 -2 -2 -2 4 -2 4 -2
K=|-2 -2 4 -2 4 -2 4 -2 -2
~2 4 -2 4 -2 -2 -2 -2

7 -2 -5-2 4 -2 -5 -2 7
~2 4 -2 4 -2 -2 -2 -2

-5 -2 7 -2 -2 4 7 4 -1

-5 7 -2 7 -11 4 -2 4 -2
-2 -2 4 -2 4 -2 4 -2 -2
-5 7 -2 7 -1 4 -2 4 -2
L=| 7 -1 4 -1 22 -11 4 -1 7
-2 4 -2 4 -1 7 -2 7 -5
-2 -2 4 -2 4 -2 4 -2 -2
-2 4 -2 4 -1 7 -2 7 -5
4 -2 -2 -2 7 -5 -2 -5 17
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As usual, let €; denote the i Euclidean unit vector in 9R> with i component one and zeros elsewhere; these are

_ 1 1 -
the vertices of the simplex. Let € = EZei = §13 be the overall centroid point with contrastC; = €; — € we
i=1

defineU;; =C; ® C; ® C,. Now we get C = 2432umui’“ whence C is nonnegative definite matrix. The
second matrix is X =V, +V,, +V,,, where V; are the indicator matrices which have entries one or zero
according to where the associated moment appears in the matrix M. The third matrix is Y =V, +V,;; +V,,,
where V/; are also the indicator matrices in the matrix M; and Z =V, is also an indicator matrixV; in the moment
matrix M. In summary, the representation for A = M (77) — M (7) takes the form
_ 7+25C N 8y —446 X+ —107/+705Y N —47/+225Z

30 30 30 30

A similar argument can be used to establish the corresponding result for the S-model as follows. A third-degree S-
moment matrix is of the form

A

(40)

K2 H11 M1 H21 K21 K111 Mo
K11 B2 K11 P21 P11 K21 Hon
_ K11 K11 K2 Hq11 B21 K21 Hon
MS—ModeI = H21 P21 P11 H22 H211 H211 B2 (41)
21 K111 H21 H211 H22 K211 H221
H111 H21 P21 H211 B211 B22 M221
K211 H211 M211 M221 M221 M211 M222
The difference between the S-moment matrices of the weighted centroid design 77 and of the given design 7 is

000000 O 0000000
000000 O 0000000
_ _ 000000 O 0000000
M@#n)-M(GZ)=A=|000000 0 Ms_Model = &[0 000000
000000 O 0000000
000000 O 0000000
000000 25 0000002

This establishes M (n) = M (7) . The alternate proof is complete.

There are three elementary centroid designs: 77, is supported on the vertices, 77, on the edge midpoints and 774
the overall centroid point
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1 0 0 1 1/2 1/2 0 1 1/3
MmO =mng1] =m0 =§, Ny 1/2 =ny| 0 =Ny 1/2 =§' andn3 1/3| =1.
0 0 1 0 1/2 1/2 1/3
The moments of order six of these designs are respectively
1
e (1) = 5
sy () = (1) = pa(11) = 4y () = 1500 (17,) = gy (17,)= 0
1
te(n,) = %
1
Hs1(M2) = Hie(M2) = Mas(ny) = 102 @)
R (M2) = Mg (My) = Hap(M,)= 0
e (115) = ﬁ
M5 (M3) = Hi(Ms) = Hgs(Ms) = 7_29
1
Hu1(Ms) = o (M) = Mapn(Ms)= ﬁ

These designs 7, , 77, and 77, are elementary centroid designs and they are used to generate the weighted centroid
design as given in the definition..

Definition 3:
Forthe weights & , @, a3 =2 O withay + @, + a3 = 1,thedesign 7 = a1, + a,n, + a1, iscalled
a weighted centroid design.

i_emma 6
Let 7 be an exchangeable designs on the simplex T, then we have g, (T) > p,, (T) 2 g, (7), with
equality if and only if 7 is a weighted centroid design.

Proof:

On the simplex T , the function w/(t, ,t,,t;) = t;t, (t, —t,)* +t,t;(t, —t;)* +t,t;(t, —t;)* isnonnegative
giving
_ _ 1 _
Us; (T)— gy (T) + gy (7) =5 jl//(tl,tz,ts)dr >0. Equality holds if and only if y/(t; ,t,,t;) vanishes
for all support points t = (t; ,t,,t;)" of 7. Hence the support points of 7 must be the vertices, edge midpoints
or the overall centroid point. Because of exchangeability, 7 is a weighted centroid design. For the case when
n =oyn, + a,n, +a,n, is a weighted centroid design, we can now express the difference between the pure
sixth moments of 77 and 7 in the converse part of the proof of Lemma 5, solely in terms of moments of 7. When
we calculate the difference of lines two, three and four of equation (35), the contribution vanishes due to
s, (17) = g, (7) = a3 (7). Suppressing the dependence on 7 of the remaining moments, we get
_ _ _ 3
s (T) = gy (T) + s (7T) = 57 - 36 (43)

From this we determine  in terms of & and the moments of 7, that is
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2 _ _ _
Y= g(ﬂSl(T) — gy (T) + 1 (7) + 35) (44)
oo =1 2 -
The restrictions 77 <o < E}/ provide initial bounds for J ,
-1 4
?(ﬂSl — Hap ¥ H5) <6 Sz(ﬂsl = Hap + H3) (45)
In order to find an appropriate set of weights for 7 =7, ¢, +17,x, + 17505 We equate sixth order moments,
1 1 1
Mg :gal"' 50‘2 + 5053: Het Y
I S S
Hsy 192 ©2 7 799 X3 Hsy 5 v
- L o, + — a, = +1 -0
Hap 192 ¥2 7 799 43 Hap 5 v
I S Y (46)
Hzs 192 “2 7 799 %3 Hszs 5 v
1
Mz = 729 Oy = Uy =0
1
My = 729 Oy = My +0
Moz = 729 O3 = Uy +20

2
The solutions are, inserting y = 5[/151 — Uyt Uss +3§],

1 1

) 5“51"’5“42_5“33"'6
o,] [3 —64 —64 —64 —2685 —2685 —2685 o2 L
o,|=|0 64 64 64 —-96 -96  —96 13 . 13 “2 23 .
o, [0 0 0 0 3645 3645 3645 | %u51+§u42+§p33+8

Moy =

Mg+ 3
Mo +20

which finally gives,

122 258 126
a = 3’”6 - ?,um —T,u42 3 Hoa = 268.5,u321 - 268.5;1411 - 268.5/1222 - 6590

_ 1@
a, = 3 28,u51 + 256;142 +128 Haa —96,u321 —96,u411 -96 Hooo |~ 640 (47)
oy = 364.5[/1321 g ooy + 25|

In addition to the initial bounds (45), the requirements «; > 0 in (47) enforce further bounds on & . Overall, we

get the range 5min (7)<o< 5max () where

_ .| 4 1
5max (7)= mm{z (tsy = Hyy + H33), g (Bpasy +8igy +Attyy — ptay) — 3tyyy — 3pyp )} ,
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.1 1
mm (7)= mm{_ (Usy = Hap + H3), = (ﬂ321 T Uy + Hop )}
The following lemma shows that 5 (r) < 0 < 5 (f) . Inparticular, & =0 is always a feasible choice. The
lemma says that, for every exchangeable design 7, there indeed exists a weighted centroid design 77(5) improving

upont .

Lemma 7
Let 7 be an exchangeable designs on the simplexT, with sixth order moments

VM Moo : : , and .Th h _‘__ 7),and fi
,u6 y51 ,u33 ,u42 ,u321 ,u222 ,u411 en we have 5 (r)<5<5max(r) and for every

e lgmin (f),&max (f)Jthe weighted centroid design 77 (9) = am + a,, + a3773

equation (47), satisfies M (77(5)) = M (7), with equality if and only if 6 =0 and 7 = 77(0) .

, with weights from

Proof:
The simplex restriction relation is given by

o to +a = 3u6 + 36u51 +90M42 + 90 Rt 60u33 =1
In order to show that the weights «; are nonnegative we start with the special case & =0. Clearly we have.
_ 3.2 2,3 2 3 2,22 4 4 4
oy = 60.75(t1t2t3+t1t2t3+t1t +t13t +t1t + t t ) + 364.5t1t2t3 + 121.5(t1t2t3+t1t2 t3+tlt2t3)
S 50
which integrates to 364.5|_p321 i W L J_ 0. Wealso have,
A |
=3 28p51 + 256;442 +128]J33 - 96}1321 - 96u411 -96 bl

since the nonnegative function

4.2 4.2 2 2 _ 4 4

—tt3t

5 5,.5 5 33,433 32 .3 _
V) - 32 tlt2+t1t2+tlt3+tt +4t1t2+4t t +2t1t2+2tt t1t2t3 t1t2t3 5 1t2t3 t1t2t3
123 3 “tttd _ 34242
123 123
integratesto &, . For ¢, we use the symmetric function
6,,6 5.5 5 ,:5 2.4 4 2
(t1 t2 3) —t +t2 +t3 61(t t +t1t2 +t1t3 +t t3 +t2t3+t t ) 129(t t1 t3 + t2 3 )
3 3 3 2 .2, .2 .2 3 3 .2
—126(t t 1 3 ) 60. 75(t1t2t3 +t1t2 3 +t1t2t3 +t1t2t3 +t1t2t3 +t1t2t3)
4 2 2 2
-121. 5(t1t2 t3 +t1t2t3 +t1t2t3) 364. 5t1 2 3

Hence, in the special case wheno =0, the weights a; are nonnegative. This entails

in (r)<0< 5max (7). Generally then, as long as & stays in the range lgmin (r),&max (r)J, the weights

«; remain nonnegative. Therefore the weighted centroid design 77() is well-defined.

Theorem 4
In the three-ingredient third-degree model, the set of weighted centroid designs (Korir, 2008)

C={an +a,n, + ag; : (o, ,a, ,a,) € T} constitutes a minimal complete class of designs for
the Kiefer ordering.

Proof:
The Completeness of C means that for every design 7 not in C there isa member 77 in C that is Kiefer better

than 7 . That is, we must show that 77 is more informative than 7 , means that M (77) >> M (7), but that the two
designs are not Kiefer equivalent, M (7) >> M (77) .The weights obtained are contained in Lemma 6, therefore
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the weighted centroid design 77 = o7, + a1, + 31, satisfies M (77) > M(7) © M (), that is,

M (77) >> M (7) .The implication of the above proof is that any design which does not consist of a mixture of

elementary centroid designs can be improved upon, in terms of symmetry and Loewner ordering by using an
appropriate combination of elementary centroid designs.

4. Conclusion

This study investigated the Kiefer design ordering in the third-degree Kronecker model for mixture experiments.
For mixture models on the simplex, the improvement of a given design is obtained, by increase of symmetry that
yields a larger moment matrix under the usual Loewner ordering. The two criteria together constitute the Kiefer
design ordering. For the third-degree mixture models, three ingredients, an exchangeable moment matrix was
obtained for each factor-case, then the conditions of any two designs to be comparable were set up; by use of
moment matrices. The construction of weighted centroid designs becomes visible. The weights were obtained
from an original design, which are used in the construction of the weighted centroid designs. It is shown that the
set of the weighted centroid designs constitutes a minimal complete class designs for the Kiefer design ordering.
Itis also shown that any design that is not weighted centroid design can be improved upon by convex combination
of an appropriate elementary design. This study agrees with other studies done earlier for the second —degree
Kronecker mixture models by Draper and Pukelsheim (1998, 1999). The results obtained were used to get the
information matrices and therefore Kiefer optimal designs, hence Kiefer optimality (Gregory. K,2012).
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