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Abstract: In recent years, several of new improved and extended probability distributions have been discovered 

from the current distributions to facilitate their applications in many fields. A new three-parameter distribution, 

the so called the Type II half logistic Weibull (TIIHLW), is introduced for modeling lifetime data. Some 

mathematical properties of the TIIHLW distribution are provided. Explicit expressions for the moments, 

probability weighted moments, quantile function, order statistics and Rényi entropy are investigated. Maximum 

likelihood estimation technique is employed to estimate the model parameters and simulation issues are presented. 

In addition, the superiority of the subject distribution is illustrated with an application to two real data sets.  Indeed, 

the TIIHLW model yields a better fit to these data than the beta Weibull, Mcdonald Weibull and exponentiated 

Weibull distributions. 
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1. Introduction 

The Weibull (W) distribution is a very popular distribution for modeling lifetime data in reliability where the hazard 

rate function is monotone.  However, in many applied areas, the two-parameter W distribution is inadequate for 

modeling phenomenon with non-monotone hazard rate. Various generalizations and extensions of the W 

distribution have been proposed in the statistical literature to handle with bathtub shaped failure rates. Mudholkar 

and Srivastava (1993) and Mudholkar et al. (1996) pioneered exponentiated W (EW) distribution to analyze 

bathtub failure data. Xie et al. (2002) proposed a three- parameter modified W extension with a bathtub shaped 

hazard function. Carrasco et al. (2008) suggested the generalized modified W distribution, among others. 

Recently, new generated families of continuous distributions have been attracted several statisticians to develop 

new models. These families are obtained by introducing one or more additional shape parameter(s) to the baseline 

distribution. Some of the generated families are: the beta-G (Eugene et al. (2002)), gamma-G (Zografos and 

Balakrishanan (2009)), Kumaraswamy-G (Cordeiro and de Castro (2011)), McDonald-G (Alexander et al. (2012)), 

transformed-transformer (Alzaatreh et al. (2013)),   Kumaraswamy odd log-logistic (Alizadeh et al. (2015)), Type 

1 half-logistic family (Cordeiro et al. (2015)), Garhy generated family (Elgarhy et al. (2016)), Kumaraswamy 

Weibull-G (Hassan and Elgarhy (2016a)), exponentiated Weibull-generated family (Hassan and Elgarhy (2016b)), 

additive Weibull-G (Hassan and  Hemeda (2016)), Type II half logistic-G(TIIHL-G)  (Hassan et al. (2017a)), 

generalized additive Weibull-G by (Hassan et al. (2017 b)), and power Lindley-G (Hassan and Nassr (2018))among 

others. 

The cumulative distribution function (cdf ) of the TIIHL-G family is given by  
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where   is the shape parameter. The probability density function (pdf) corresponding to (1) is given by 
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Our motivation here is to extend the two- parameter Weibull distribution to produce a more flexible model. The 

new model is referred to as the Type II half logistic Weibull distribution. Based on the TIIHL-G family, we 

construct the TIIHLW distribution as well as we provide the main statistical distributions. The remainder of the 

paper is organized as follows: In Section 2, we define the TIIHLW distribution and provide its special models. In 

Section 3, we derive a very useful representation for the TIIHLW density and distribution functions. Further, we 

derive some mathematical properties of the subject distribution. The maximum likelihood method is used to 

estimate the model parameters in Section 4. In Section 5, simulation study is conducted to assess the performance 

of model parameters. In Section 6, we demonstrate the importance of the TIIHLW distribution using two real data 

sets. Finally, we give some concluding remarks in Section 7.   

2. Type II Half Logistic Weibull Distribution  

The cdf of the W distribution with scale parameter 0   and shape parameter 0   is given (for x > 0) by  

                                             
( ; , ) 1 e .xG x

  −= −                                                                 (3)
 

The pdf corresponding to (3) is given by 

                                             
1( ; , ) e .xg x x

    − −=                                                          (4) 

The random variable X is said to have a TIIHLW distribution, denoted by X ~TIIHLW ( , , ),    if its cdf is 

obtained by inserting cdf (3) in cdf (1) as follows 
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The pdf corresponding to (5) is as follows 
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For 1, =   the pdf (6) reduces to a new model called TIIHL- exponential distribution and for  2, =  the pdf 

(6) reduces to another new model called TIIHL- Rayleigh distribution. The pdf plots for the TIIHLW are presented 

in Figure 1. As seen from Figure 1, densities of TIIHLW distribution take different shapes like, symmetric, right 

skewed, reversed J shaped and unimodel. 
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(a)  

(b) 

Figure 1: The pdf of  TIIHLW distribution for different values of parameters 

Further, the survival function of X, denoted byis as follows ( ; , , ),F x      
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Additionally, the hazard rate function (hrf), saycan be written as follows  ( ; , , ),h x      
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The hrf plots for the TIIHLW are displayed in Figure 2. It is clear from Figure 2 that the hrf plots takes different 

shapes according to different values of parametrs.  It can be increasing, decreasing, up-side down and U-shaped. 

 
(a) 

 
(b) 

 

Figure 2: The hrf of TIIHLW distribution for different values of parameters 
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3. Some Statistical Properties  

This section provides some statistical properties of TIIHLW distribution.  

3.1 Quantile function 

The quantile function of the TIIHLW distribution is obtained by inverting cdf (5) as follows 
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               (7) 

Specifically, the first quartile, the median, and the third quartile are obtained by setting Q =0.25, 0.5 and 0.75, 

respectively, in (7). Also, the random variable X has TIIHLW distribution can be generated from (7), where Q has 

the uniform distribution over the interval (0,1). Furthermore, the analysis of the variability of the skewness and 

kurtosis on the shape parameters  and   can be investigated based on quantile measures. The Bowley skewness 

(see Kenney and Keeping (1962)), denoted by ,B  is defined by 
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The Moors kurtosis (see Moors (1988)), denoted by M, can be defined as follows 
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The Bowley skewness and Moors kurtosis measures do not depend on the moments of the distribution and are 

almost insensitive to outliers. Plots of the skewness and kurtosis for some choices of the parameter  as function 

of ,  and for some choices of the parameter   as function of  are shown in Figures 3 and 4. We can reveal 

from these figures that the skewness and kurtosis for   decrease as  increases from 0.5 to 2.5 for fixed value of

0.5 =  . Also, the skewness and kurtosis for  decrease as   increases from 0.5 to 3 for fixed value of

0.5 =  

  

 

Figure 3:  Bowley skewness of the TIIHLW distribution. (a) As function of   for some values of   (b) As 

function of for some values of   
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Figure 4:  Moors kurtosis of the TIIHLW distribution. (a) As function of   for some values of   (b) As 

function of for some values of   

3.2 Important Representation  

 

The pdf and cdf expansions of TIIHLW are provided, which are useful in studying most statistical properties of 

TIIHLW distribution.  From a generalized binomial series, it is known that, for 1,z    and   is a positive real 

non integer,  
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Then, by applying the binomial theorem (8) in pdf (6), then, we have  
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where, ( ) ( )2 1 1 .
i

i i = − +  Now, using the generalized binomial theorem, we can write 
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Inserting the expansion (11) in (10), then the pdf (8) will be converted to 
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 Further, an extra expansion for the [ ( ; , , )] ,sF x    for s an integer, is derived, again the binomial 

expansion is worked out;    
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The binomial expansion is employed another time to the last equation, then [ ( ; , , )] ,sF x      can be 

reformed as follows 
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For s is a real, then [ ( ; , , )] ,sF x    is as follows 
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3.3 Probability Weighted Moments 

 

Class of moments, called the probability-weighted moments (PWMs), has been proposed by Greenwood et al. 

(1979). This class is used to derive estimators of the parameters and quantiles of distributions expressible in inverse 

form. For a random variable X, the PWMs, denoted by ,r s ,  can be calculated according to the following relation 

                                      

, [ F( ) ] f( )(F( )) .r s r s

r s E X x x x x dx


−

= =                                               (13) 

Inserting (11) and (12) in (13), the PWMs of TIIHLW will be converted to  
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So, after some simplifications, the PWMs of TIIHLW can be written as follows 
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3.4 Moments 

In this subsection we derive the 
thr  moment for the TIIHLW distribution.  If X has the pdf (11), then 

thr
moment is obtained as follows  
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The mean and variance of TIIHLW distribution are as follows 
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Figure 5 illustrates the mean and variance whose forms depend basically on the parameters   and .   

 

 

  
Figure 5: Mean and Variance  of TIIHLW distribution for selected values of parameters 

 

Furthermore, for a random variable X, the moment generating function of TIIHLW distribution is given by 
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3.5 Order Statistics 

 

Order statistics have been extensively applied in many fields of statistics, such as reliability and life testing. Let 

X1, X2,…, Xn be independent and identically distributed random variables with their corresponding continuous 

distribution function F(x). Let X(1) < X(2) <…< X(n) be the corresponding ordered random sample from a population 

of size n.   According to David (1981), the pdf of the 
thr order statistic, is defined as  
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where, (.,.)B is the beta function. The pdf of the 
thr order statistic for TIIHLW distribution is derived by 

substituting (11) and (12) in (14), replacing s with 1,v r+ −   
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The distribution of the smallest and largest order statistics can be obtained individually from (15) by setting 1r =  

and .r n=  Further, the 
thk  moment of 

thr order statistics for TIIHLW distribution is defined by: 
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 By substituting (15) in (16), leads to 
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3.6  Rényi Entropy 

The entropy of a random variable X is a measure of variation of uncertainty. It has been used in many fields such 

as physics, engineering and economics. According to Rényi (1961), the Rényi entropy is defined by 
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By applying the binomial theory (8) and (10) in pdf ( ; , , ) ,f x    then it can be expressed as follows   
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Therefore, the Rényi entropy of TIIHLW distribution is given by 
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3.7 Stress-Strength Reliability  

Let X1 be the strength of a system which is subjected to a stress X2, and if X1 follows TIIHLW (λ1 , δ1 , γ) and  X2 

follows TIIHLW (λ2 , δ2 , γ), provided X1 and X2 are statistically independent random variables, then R= P(X2 < 

X1), the measure of system performance (stress strength reliability measure) is given by, 

2
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
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Applying the series expansion (8), on the last two terms of the integrand with some mathematical 

manipulations, we can write the previous equation as  
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Then, we get, finally, the form of R as 
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4.  Maximum Likelihood Method 

This section deals with the maximum likelihood estimators of the unknown parameters for the TIIHLW distribution 

on the basis of complete samples. Let  
1,..., nX X  be the observed values from the TIIHLW distribution with set 

of parameter ( , , ) .T   =  The log-likelihood function for parameter vector ( , , )T   = is obtained as 

follows 
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The elements of the score function  ( ) ( , , )U U U U   =  are given by 

1 1

ln 1
ln 1 2 ,

1 1

i

i

i

x
n n

x

xi i

en
U e

e











 


−

−

−
−= =

 −
  = + − −

    − −
   

 

 

1

1 1 1

1
( 1) 2 ,

1 1 1

i i

i
i

x x
n n n

i
i

i x
xi i i

x e exn
U x

e e

 





 




 


 


−

−
− −

−= = =

 −
 = − + − −

−  + −
 

    

and 

Setting  ,U   U  and U
  equal to zero and solving these equations simultaneously yield the maximum 

likelihood estimate (MLE) ˆ ˆˆ ˆ( , , )   = of ( , , ) .T   =  These equations cannot be solved analytically and 

statistical software can be used to solve them numerically using iterative methods.  

 

5. Simulation Study 

 

In this section, an extensive numerical investigation will be carried out to evaluate the performance of MLE for 

TIIHLW model. Performance of estimators is evaluated through their biases and mean square errors (MSEs) for 
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different sample sizes. A numerical study is performed using Mathematica (7) software. The simulation procedure 

is worked out as follows:  

Step (1): 10000 random samples of sizes 10, 20, 30, 50, 100,200 and 300 are generated from TIIHLW distribution. 

Step (2): Different values of parameters ( ), ,    are selected as (0.5,0.5,0.9), (0.5,0.9,0.5),  (0.5,0.5,1.2) and 

(0.5,1.2,0.5). 

Step (3): For each sample size and for each set of parameters MLE of the parameters ˆ ˆ,   and ̂  are obtained by 

iterative technique. 

Step (4): The biases and MSE for each sample size are calculated. 

Numerical results are listed in Tables 1 and 2. The values in the mentioned tables show that, in general, the mean 

square error for the estimates of the parameters ˆ ˆ,   and ̂ decreases as the sample size increases. 

Table 1: MLEs, biases and MSEs for some parameter values 

    (0.5,0.5,0.9) (0.5,0.9,0.5) 

n Parameter Estimated 

values 

Bias MSE Estimated 

values 

Bias MSE 

   0.5857 0.0857 0.1025 0.5541 0.0541 0.0669 

10   1.0677 0.1677 0.4111 0.6570 0.1570 0.8764 

   0.5129 0.0129 0.0070 0.9441 0.4441 0.2174 

   0.5239 0.0239 0.0226 0.5267 0.0267 0.0203 

20   0.9771 0.0771 0.0817 0.5280 0.0280 0.0240 

   0.5136 0.0136 0.0034 0.9142 0.4142 0.1846 

   0.5146 0.0146 0.0172 0.5268 0.0268 0.0142 

30   0.9656 0.0656 0.0825 0.5402 0.0402 0.0191 

   0.5150 0.0150 0.0030 0.9146 0.4146 0.1803 

   0.5126 0.0126 0.0067 0.5157 0.0157 0.0067 

50   0.9267 0.0267 0.0212 0.5185 0.0185 0.0095 

   0.5049 0.0049 0.0013 0.9032 0.4032 0.1677 

   0.5115 0.0115 0.0033 0.5076 0.0076 0.0034 

100   0.9221 0.0221 0.0171 0.5094 0.0094 0.0044 

   0.4992 -0.0009 0.0008 0.9041 0.4041 0.1664 

   0.5057 0.0057 0.0016 0.5039 0.0039 0.0019 

200   0.9153 0.0153 0.0065 0.5079 0.0079 0.0024 

   0.5011 0.0011 0.0004 0.9049 0.4049 0.1654 

   0.5007 0.0007 0.0012 0.5032 0.0032 0.0008 

300   0.9002 0.0002 0.0054 0.5054 0.0054 0.0011 

   0.5002 0.0002 0.0002 0.9012 0.4012 0.1617 
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Table 2: MLEs, biases and MSEs for some parameter values 

    (0.5,0.5,1.2) (0.5,1.2,0.5) 

n Parameter Estimated 

values 

Bias MSE Estimated 

values 

Bias MSE 

 

10 
  0.5789 0.0789 0.0740 0.5882 0.0882 0.0795 

  1.3384 0.1384 0.2770 0.6480 0.1480 0.2848 
  0.5121 0.0121 0.0087 1.2279 0.7278 0.5708 

 

20 
  0.5486 0.0486 0.0279 0.5347 0.0347 0.0316 

  1.3109 0.1109 0.1835 0.5527 0.0527 0.0698 
  0.5055 0.0055 0.0042 1.2331 0.7331 0.5628 

 

30 
  0.5104 0.0104 0.0136 0.5320 0.0320 0.0171 

  1.2520 0.0520 0.0986 0.5382 0.0382 0.0217 
  0.5101 0.0101 0.0030 1.2123 0.7123 0.5255 

 

50 
  0.5256 0.0256 0.0070 0.5248 0.0248 0.0085 

  1.2602 0.0602 0.0423 0.5296 0.0296 0.0128 
  0.4996 -0.0004 0.0016 1.2027 0.7027 0.5045 

 

100 
  0.5007 0.0007 0.0047 0.5146 0.0146 0.0041 

  1.2041 0.0041 0.0337 0.5169 0.0169 0.0050 
  0.5022 0.0022 0.0008 1.2055 0.7055 0.5036 

 

200 
  0.5004 0.0004 0.0016 0.5006 0.0006 0.0024 

  1.2029 0.0029 0.0132 0.5003 0.0003 0.0030 
  0.5003 0.0003 0.0004 1.2043 0.7043 0.4986 

 

300 
  0.5017 0.0017 0.0013 0.5029 0.0029 0.0013 

  1.2066 0.0066 0.0100 0.5035 0.0035 0.0015 
  0.5011 0.0011 0.0003 1.2022 0.7022 0.4950 

 

 

6. Data Analysis 

In this section, we use two real data sets to illustrate the importance and flexibility of the TIIHLW distribution. 

We compare the fits of the TIIHLW model with some models namely; the beta Weibull (BW) (Lee et al. (2007)), 

Mcdonald Weibull (McW) (Cordeiro et al. 2014) and exponentiated Weibull (EW) (Mudholkar and Srivastava 

(1993)) dsitributions.  

 

The maximized log-likelihood ( 2 ),− l  Akaike information criterion (AIC), corrected Akaike information criterion 

(CAIC), Bayesian information criterion (BIC), Hannan-Quinn information criterion (HQIC), Anderson-Darling 

( )*A  and Cramér-von Mises ( *W ) statistics are used for model selection.  

 

Example 1:  

The data have been obtained from Nicholas and Padgett (2006). The data represent tensile strength of 100 

observations of carbon fibers and they are:  

3.7, 3.11, 4.42, 3.28, 3.75, 2.96, 3.39, 3.31, 3.15, 2.81, 1.41, 2.76, 3.19, 1.59, 2.17, 3.51, 1.84, 1.61, 

1.57, 1.89, 2.74, 3.27, 2.41, 3.09, 2.43, 2.53, 2.81, 3.31, 2.35, 2.77, 2.68, 4.91, 1.57, 2.00, 1.17, 2.17, 

0.39, 2.79, 1.08, 2.88, 2.73, 2.87, 3.19, 1.87, 2.95, 2.67, 4.20, 2.85, 2.55, 2.17, 2.97, 3.68, 0.81, 1.22, 

5.08, 1.69, 3.68, 4.70, 2.03, 2.82, 2.50, 1.47, 3.22, 3.15, 2.97, 2.93, 3.33, 2.56, 2.59, 2.83, 1.36, 1.84, 

5.56, 1.12, 2.48, 1.25, 2.48, 2.03, 1.61, 2.05, 3.60, 3.11, 1.69, 4.90, 3.39, 3.22, 2.55, 3.56, 2.38, 1.92, 

0.98, 1.59, 1.73, 1.71, 1.18, 4.38, 0.85, 1.80, 2.12, 3.65. 

For the data in Example 1, Table 3 gives the MLEs of the fitted models and their standard errors (SEs) in 

parenthesis. The values of goodness-of-fit statistics are listed in Table 4.  
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It is noted, from Table 4, that the TIIHLW distribution provides a better fit than the other competitive fitted models. 

It has the smallest values for goodness-of-fit statistics among all fitted models. Plots of the histogram, fitted 

densities and estimated cdfs are shown in Figure 6. These figures supported the conclusion drawn from the 

numerical values in Table 4.  

Example 2:  

The second data set is obtained from Tahir et al. (2015) and represents failure times of 84 Aircraft Windshield. 

The data are:  

0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467, 0.309, 1.899, 2.610, 3.478, 0.557, 1.911, 

2.625, 3.578, 0.943, 1.912, 2.632, 3.595, 1.070, 1.914, 2.646, 3.699, 1.124, 1.981, 2.661, 3.779, 

1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035, 1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 

2.902, 4.167, 1.432, 2.097, 2.934, 4.240, 1.480, 2.135, 2.962, 4.255, 1.505, 2.154, 2.964, 4.278, 

1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103, 4.376, 1.615, 2.223, 3.114, 4.449, 1.619, 2.224, 

3.117, 4.485, 1.652, 2.229, 3.166, 4.570, 1.652, 2.300, 3.344, 4.602, 1.757, 2.324, 3.376, 4.663. 

Based on first data, the MLEs of the fitted models and their SEs in parenthesis are listed in Table 3. Also, the 

values of goodness-of-fit statistics are presented in Table 4. 

Table 3: The MLEs and SEs of the Model Parameters for First Data Set 

Model Estimates (SEs) 

TIIHLW ( , , )    
1.025 

(0.13809) 

0.022 

(0.013) 

3.15 

(0.416) 
  

BW ( , , , )a b    34.051 

(0.961) 

14.541 

(0.19) 

0.833 

(0.11) 

0.427 

(0.077) 
 

McW ( , , , , )a b c   35.28 

(0.916) 

18.125 

(0.254) 

0.813 

(0.13) 

0.399 

(0.085) 

1.548 

(6.993) 

EW ( , , )a   5.77 

(0.103) 

0.295 

(0.057) 

1135 

(0.662) 
 

 

 

 

Table 4: Goodness-of-Fit Statistics for First Data Set 

Model 2− l  AIC CAIC BIC HQIC *A  *W  

TIIHLW 288.134 294.134 294.384 294.134 297.297 0.49252 0.08745 

BW 317.214 325.214 326.814 325.214 329.431 1.22496 0.23356 

McW 308.116 318.116 319.716 318.116 323.388 1.22090 0.23286 

EW 373.861 377.861 378.305 376.815 378.757 2.81959 0.51324 

  

 

 

As seen from Table 4 that the TIIHLW distribution with provides a better fit than the other competing models.  It 

has the smallest 2 ,− l  AIC, CAIC, BIC, HQIC, *A and *W  values among those considered here. Additionally; 

plots of the fitted densities and the histogram are given in Figure 6. 
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(a) 

 
(b) 

Figure 6: Estimated pdf and cdf plots for first data set 

 

By considering the second real data, MLEs of the fitted models and their SEs in parenthesis are given in Table 5. 

Further, the values of goodness-of-fit statistics are presented in Table 6. 

 

Table 5: The MLEs and SEs for Second Data Set 

Model Estimates (SEs) 

TIIHLW ( , , )    
0.744 

(0.23878) 

0.015 

(0.021) 

3.223 

(0.683) 
  

BW ( , , , )a b    53.874 

(2.717) 

20.528 

(0.278) 

1.076 

(0.278) 

0.231 

(0.184) 
 

McW ( , , , , )a b c   51.321 

(5.329) 

19.762 

(0.605) 

1.119 

(0.48) 

0.23 

(0.424) 

1.525 

(38.539) 

EW ( , , )a   7.017 

(0.134) 

0.144 

(0.063) 

1773 

(0.827) 
  

 

Table 6:  Goodness-of-Fit Statistics for Second Data Set 

 

Model 2− l  AIC CAIC BIC HQIC *A  *W  

TIIHLW 260.905 266.905 267.205 266.678 269.837 0.72636 0.07806 

BW 289.948 297.948 298.455 297.645 301.857 3.34711 0.48715 

McW 283.983 293.983 294.752 293.604 298.869 3.33313 0.4847 

EW 320.347 326.347 326.647 324.196 326.302 32.74879 7.04167 

 

It is observed, from Table 6, that the TIIHLW distribution gives a better fit than other fitted models. 
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(a) 

 
(b) 

Figure 7: Estimated pdf and cdf plots for first data set 

 

 

Figure 7 displays the empirical and four fitted cumulative distribution functions for the second data. The TIIHLW 

model provides adequate fits than the other competing models. 

 

7. Conclusion 

In this paper, we propose a three-parameter model, named the TIIHLW distribution. The TIIHLW model is 

motivated by the wide use of the Weibull distribution in practice and also for the fact that the generalization 

provides more flexibility to analyze positive real-life data. We derive explicit expressions for the quantile function, 

ordinary and incomplete moments, order statistics and Rényi entropy. The maximum likelihood estimation of the 

model parameters is investigated. We provide some simulation results to assess the performance of the proposed 

model. The practical importance of the TIIHLW distribution is demonstrated by means of two data sets.  
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