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Abstract 

Using the likelihood-based Wilks’ method to identify multiple outliers in multivariate datasets can be 

computationally intensive. For example, to identify the most extreme k outliers in a sample of size n, the 

likelihood principle requires that we examine all 








k

n
 subsets of observations. Faced with this amount of 

computation, it seems reasonable to suggest that one examines only observations that lie at the periphery of the 

data ‘cloud’ rather than all the observations. However, this ‘short-cut’ approach raises two major questions. The 

first is how many observations at the periphery one has to examine and second, what the guarantee is that the 

observations that are identified are truly the outliers. This paper is an attempt to provide answers to these 

questions by conducting a simulation study involving a large number of datasets of various sizes, dimensions and 

degree of outlier contamination. In the end, a formula for identifying multiple outliers based on the approach is 

developed. 
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1.  Introduction 

Practical problems in the identification of multiple outliers in multivariate datasets usually make use of the 

Wilks’ ratio statistic given by  

,
)(

S

S
kT

TR                   (1) 

which determines the subset kT  of k observations among the sample of size n for which the ratio is minimum, 

where S  is the sum of squares and cross-product matrix, and )( kTS

 

is the corresponding matrix with the 

observations in kT

 

removed from the sample. The problem also uses any other method based on the likelihood 

ratio principle. This principle requires a two-stage approach to outlier identification. The principle as constructed 

by Barnett (1979) states that given a basic model, F, and an alternative contaminating model, F’, the most 

extreme observation is that one, ix , whose assignment as the contaminant in the sense of F’ maximizes the 

difference between the log-likelihoods of the sample under F’ and F. If this difference is surprisingly large, 

declare xi to be an outlier.  The main concern in this paper is the application of the first stage of this principle 

because of the computational difficulties involved. 

In order to find the most extreme k observations, the first stage of the principle requires that we determine which 
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subset of size k maximizes the log-likelihood under .F   This means that in a sample of size n, we must evaluate 

the log-likelihood for 








k

n
 subsets. If we use the Wilks’ ratio method, for example, it means that we must 

calculate 








k

n
 k-outlier scatter-ratios and examine them for extremeness. In large multi-dimensional datasets, 

this can be computationally prohibitive, even for a moderate value of k. For example, for even 40n  and 

,2k  there are 780 ratios to examine; and for 50n  and ,3k  there are 19,600 such ratios to examine. It 

is obviously prohibitive to examine all of these ratios. 

In univariate data, we could order the n observations as ,)()2()1( nxxx    so that the most outlying k-tuple 

is clearly a subset of the first few elements on either side. We may, for example, choose this subset to contain the 

lowest k and the highest k values:  

)()1()()()2()1( ,,,, knnnk xxxxxx   , 

so we need to examine at most 








k

k2
 subsets. Figure 1 shows a simple one-dimensional scatter-plot of a dataset 

credited to Chauvenet (Barnett and Lewis, 1994). The data relates to 15 observations of the vertical 

semi-diameter of Venus made by Herndon in 1846. If we have to test for 2k  outliers, for example, based on 

the likelihood principle, we have to examine all the 








2

15
 for extremeness.  

 

Figure 1: One dimensional display of semi-diameters of Venus  

However, it is easy to see from the diagram that six observations, 13, 6, 10, 2, 3, and 11 are reasonably separated 

from the rest of the observations and can be considered candidate outliers. Therefore, we may consider 

examining only  








2

6
 rather than all the 









2

15
 subsets. 

By extension to the multivariate case, the p-dimensional )1( p  dataset is reduced to a univariate dataset. A 

dimensional reduction technique employed in this case is the Mahalanobis squared generalized distance of each 

observation from their mean given by  

).()( 1
xxSxx  

iinU                         (2) 

Subsequently, the reduced observations are ordered in order of magnitude of their distances, then examine 








k

m
, 

where )( nm   is the number of observations with largest distances for outliers.  

In a simulated study, Gordor (1994) generated a large number of datasets of different sizes and dimensions. For 

each dataset, he calculated a failure rate, which he defined as the number of times that km  observations with 

largest Mahalanobis squared distance failed to contain the most extreme k outliers. The study showed that 
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providing that the sample size is reasonably large ),30( n  failure rate is only weakly affected by the 

dimension of the data. The objective of this paper is to determine the number of observations, ,km  such that 

examining only 








k

mk   results in the k outliers being identified with 0% failure rate. We call this the optimum 

subset of extreme points. 

 

2. Method 

In this paper we shall determine the optimum subset for 3,2,1k  and 4 extreme points or outliers. This work 

is limited to a maximum of 4, with the understanding that extreme values beyond 4 may not strictly be a problem 

of outlier identification but a discrimination between (two) groups. Given that failure rate is only weakly affected 

by the dimension of the data for large )30( n  sample size, we generated a sample of size 50n  and 

dimensionality of 4p  in each case. 

2.1 Unknown Number of Outliers 

For this purpose, 100 datasets are generated each according to the following rules: With probability 0.9, sample 

from )1,0(pN  and with probability 0.1, sample from ).1,(cN p  Computationally, this means we generate x 

from )1,0(pN  and generate u from the uniform distribution )1,0(U . If  ,9.0u  we add  c to x; if 

,9.0u  we do not add anything. The constant c can be any number. In this study, we chose 1c  for the first 

20 datasets,  3c  for the next 30 sets, and 5c  for the remaining 50 sets. This strategy is to ensure that we 

have three potential sources of outlier contamination. Table 1 shows failure rates when m observations with the 

largest distances are examined for the most extreme k outliers. 

Table 1: Failure rate (%) in the case of unknown outliers 

No. of observations 

examined, m 
Single Pair Triple Q’duple 

1 0 - - - 

2 0 39 - - 

3 0 15 84 - 

4 0 7 65 100 

5 0 3 49 98 

6 0 2 39 97 

7 0 0 35 94 

8 0 0 31 90 

2.2 Two Known Outliers in Each Dataset 

Dataset of size 50 are generated from )1,0(4N  as before. Then we introduced two discordant outliers by 

adding two suitably chosen constants randomly to two of each of the 50 observations. (Two outliers are judged 

discordant at 5% significant level when their Wilks’ ratio 2r  is such that .688.02 r  The process was 

repeated until 100 datasets, each contaminated with two discordant outliers, were obtained. Table 2 shows failure 

rates when m observations with the largest distances are examined for the most extreme k outliers. 
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Table 2: Failure rate (%) for a pair of outliers 

No. of observations examined, m 2 3 4 

Failure rate (%) 3 1 0 

 

It can be observed from the table that in 3% of the samples, the process fails to identify the two outliers. In other 

words, failure rate for samples contaminated with two outliers is 3% when we limit the search to the two most 

extreme values; and if we extend the search for these outliers to three most extreme values, the failure rate falls 

to 1%. Finally, when the search for the outliers is extended to four most outlying observations, the failure rate is 

absolutely 0%. We can therefore conclude that to identify two outliers in a dataset, it is safe to search for them 

among the four most extreme observations only. Computationally, it means we need to search for a pair of 

outliers by examining only 6
2

4









 most extreme observations. 

2.3 Three Known Outliers in each Dataset 

We again generated data sets of size 50 each from )1,0(4N  as before. Then we introduced three discordant 

outliers by adding three suitably chosen constants randomly to three of each of the 50 observations. The process 

was repeated until 100 datasets, each contaminated with three discordant outliers, were obtained. Table 3 shows 

failure rates when m observations with the largest distances are examined for the most extreme k outliers. 

Table 3: Failure rate (%) for triple outliers 

No. of observations examined, m 3  4 5 6 7 

Failure rate (%) 46 20  3 1 0 

It can be observed from the table that in 46% of the samples, the process fails to identify the three outliers. In 

other words, failure rate for samples contaminated with three outliers is 46% when we limit the search to the 

three most extreme values; and if we extend the search for these outliers to four most extreme values, the failure 

rate falls to 20%. Finally, when the search for the outliers is extended to seven most outlying observations, the 

failure rate is absolutely 0%. We can therefore conclude that to identify thee outliers in a data set, it is safe to 

search for them among the seven most extreme observations only. Computationally, it means we need to search 

for a triple of outliers by examining only 35
3

7









 most extreme observations. 

2.4 Three Known Outliers in each Dataset 

A similar simulation study shows (Table 4) that in the case of four outliers, we need to search among the nine 

most extreme observations.  

Table 4: Failure rate (%) for quadruple outliers 

No. of observations examined, m 4  5 6 7 8 9 

Failure rate (%) 91 63   30 16 8 0 

Searching for four outliers among the four or five most extreme points is prone to large failure rate. 
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3. Results and Discussion 

3.1 Optimum Number of Extreme Observations to Examine for Outliers 

The results of the simulation exercise displaced in Tables 1 to 4 are summarized in Table 5. We refer to this table 

as ‘Risk Table’ for identifying multiple outliers in a multivariate data set. In the table, the figures represent failre 

rates when m observations with the largest Mahalanobis squared distances are examined for k-tuple  (k = 1, 2, 3, 

4) outliers.   

Table 5: Risk table for finding multiple outliers in multivariate data 

No. of outliers, k 

No. of observations examined, km  

1 2 3 4 5 6 7 8 9 

1 0 0 0 0 0 0 0 0 0 

2 - 3      1 0 0 0     0 0 0 

3 - -       46 20 3 1             0 0 0 

4 - -       - 91 63 30             16 8 0 

 

From the table, it can be observed that the optimum number, ,km  of most extreme observations that guarantees 

the correct choice of two discordant outliers is 4; that for three outliers is 7; and that for four outliers is 9. A 

striking relationship between ,km and k is now clear. This is,  

 









2,12

2,2

kk

kk
mk  

The relationship above therefore provides the following simple rule for identifying multiple outliers in 

multivariate datasets. The rule states that:  

To find the k-tuple of discordant outliers in a multivariate dataset, one needs to examine at most 12 k  

most extreme observations, as ordered by their generalized squared distances.  

3.2 Comparing Results with Wilks’ Ratio Method 

We now find it appropriate to compare our modified method with the well-known Wilks’ method of identifying 

outliers in multivariate data sets. Note that in the case of Wilks, the outliers are identified by examining all the 










k

n
 outlier ratios rather than ,









k

mk   where .nmk   

The data used are the well-known Iris Setosa data (Anderson, 2003) and the Transportation Cost data (Johnson & 

Wichern, 2002). We used these datasets because they are well-used in the literature (Wilks, 1963; Hadi, 1992; 

Caroni & Prescott, 1992; Nkansah & Gordor, 2012a; 2012b; 2013) on the study of outliers. The outliers 

identified in each case are shown in Table 6. 
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Table 6: Identifying Outliers in Iris Data using Wilks Ratio and Modified Method 

 

Dataset 

No. of 

outliers, k 

Observations selected by the 

Wilks’ Ratio Method Modified Method 

Iris Setosa 1 42 44 

2 42      23 44     42 

3 42      44       23 44     42       23 

Transportation Cost 1 9 9 

2 9       21 19     21 

3 9       21       36 9      21       36 

 

It can be observed from the table that the two methods tend to identify the same set of outliers, except in the Iris 

Setosa case, where the modified method identified the single outlier as 44 as opposed to 42 by Wilks ratio 

method. In the case of the pair of observations, 42 is identified by both methods. However, the other member of 

the pair is different. For the transportation cost data, there is perfect agreement between the two methods. It is 

interesting to note that the observations selected by Wilks ratio method are among the 12 k  observations with 

the largest distances. Hence, it is not necessary to search for outliers by considering all the scatter ratios as in 

Wilks method.  

 

4. Summary and Conclusion 

The paper looked at the computational difficulties associated with identifying multiple outliers in multivariate 

data sets and considered a short-cut approach to the problem by simulating a large number of multivariate data 

sets with varying contamination levels. The approach involves examining only a subset of extreme observations 

determined by ordering their Mahalanobis distances for the outliers. It was found that there exists an optimum 

number, ,km for every k such that when one searches among them for k-tuple outliers, a correct identification of 

the outliers is guaranteed. In terms of k, this optimal value is kmk 2  for two outliers, and 12  kmk  for 

three or more outliers.  

The performance of this modified method is then compared with Wilks’ method. It was observed that the 

observations selected by Wilks ratio method are among the 12 k  observations with the largest distances. 

Consequently, we conclude that the amount of computation involved in using Wilks method is greatly reduced 

by the application of the modified method. Since it has been shown by Gordor (1994) that for large sample sizes 

)30( n  results are not affected by dimension and size, the modified approach can be applied to any 

multivariate normal datasets. 
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