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Abstract

In this paper we get some generalizations of Rakotch’s fixed point theorem using the
nation of w -distance on soft metric space.
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2 INTRODUCTION & PRELIMINARIES

Banach fixed point theorem is one of the most crucial and fruitful tool to find solution
of various problems in Mathematics. This result is generalized by many mathematicians in
diverse directions. One of the most popular generalization is given by Rakotch [16] (Rakotch,
E., 1962), Rakotch prove a fixed point theorem on taking monotone function.

On the other hand there are other mathematicians as well, who has generalized the
notion of metric space by taking different conditions. In 1996, O. Kada [9] (Kada, O., Suzuki,
T., Takahashi, W., 1996), T. Suzuki [17] (Suzuki, T., 1997) & W. Takahashi [19] (Takahashi,
W., 1996), introduced the concept of @ —distance on a metric space, gave some examples,
properties of m —distance and they improved Caristi’s fixed point (Caristi, J., 1976 [4]).
Eventually, by the use of the concept of » —distance they proved a fixed point theorem in a
complete metric space.

In the year 1999, Molodtsov [13] initiated a novel concept of soft sets theory as a new
mathematical tool for dealing with uncertainties. A soft set is a collection of approximate
descriptions of an object. Soft systems provide a very general framework with the
involvement of parameters. Since soft set theory has a rich potential, applications of soft set
theory in other disciplines and real life problems are progressing rapidly.

Definition 2.1: Let X be an initial universe set and E be a set of parameters. A pair (F,E) is

called a soft set over X if and only if X is a mapping from E into the set of all subsets of the
set X,i.e.F: E — P(X), where P(X) is the power set of X.
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Definition 2.2: The intersection of two soft sets (F,A) and (G,B) over X is the soft set
(H,C), where C=ANB and Ve € C,H(e) = F(¢) N G(&).This is denoted by (F,A) N
(G,B) = (H,0).

Definition 2.3: The union of two soft sets (F,A) and (G,B) over X is the soft set, where
C=AUBandVe€C,

F(e), ife€e A—B
H(e) =<{G(¢), ifeeB—A
F(e)uG(e), e€EANB

This relationship is denoted by (F,A) U (G,B) = (H,C).

Definition 2.4: The soft set (F, A) over X is said to be a null soft set denoted by @ if for all
€ € A F(e) = ¢ (null set).

Definition 2.5: A soft set (F,A) over X is said to be an absolute soft set, if for all
e€AF(e) =X.

Definition 2.6: The difference (H, E) of two soft sets (H,E) and (H, E) over X denoted by
(H,E)\(H,E), isdefinedas H(e) = F(e)\G(e) forall e € E.

Definition 2.7: The complement of a soft set (F, A) is denoted by (F, A)¢ and is defined by
(F,A)¢ = (F¢, A) where F¢: A - P(X) is mapping given by F¢(a) = X — F(a),Va € A.

Definition 2.8: Let R be the set of real numbers and B($R) be the collection of all nonempty
bounded subsets of R and E taken as a set of parameters. Then a mapping F: E = B(R) is
called a soft real set. It is denoted by (F, E). If specifically (F, E) is a singleton soft set, then
identifying (F, E) with the corresponding soft element, it will be called a soft real number and
denoted 7,3, 1 etc.

0,1 are the soft real numbers where 0(e) = 0,1(e) = 1 for all e € E, respectively.
Definition 2.9: For two soft real numbers
()
(i)

(i) 7 <3, if #(e) < §(e), forall e € E.

=
IA
m

if 7(e) < 5(e), foralle € E.

=:
v
(%1

Jif 7(e) = 3(e), forall e € E.

(V) 7 >3, if #(e) > §(e), forall e € E.

Definition 2.10: A soft set over X is said to be a soft point if there is exactly one e € E, such
that P(e) = {x} forsome x € X and P(e") = ¢, Ve’ € E\{e}. It will be denoted by X..

Definition 2.11: Two soft points %, y, are said to be equal if e = e’ and P(e) = P(e’) i.e.
x=y.ThusX, #j, & x+yore+e'.
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Definition 2.12: A mapping d: SP(X) x SP(X) —» R(E)", is said to be a soft metric on the
soft set X if d satisfies the following conditions:

(M1) d(%,,3.,) S 0forall %, ,7., €X,
(M2) d(%.,,7.,) = 0ifandonlyif %, = 7.,
(M3) d(%e,, Fe,) = d(Fe, %e,) forall z,,, 7., € X,
M3)  d(%e,,2e,) Z d(Fey, e,) + (0, 2e,) forall %, 3., %0, € X,
The soft set X with a soft metric d on X is called a soft metric space and denoted by (X, d, E).

Definition 2.13 (Cauchy Sequence): A sequence {@,n}n of soft points in (X,d,E) is
considered as a Cauchy sequence in X if corresponding to every &S 0,3m € N such that

d(%,, %) SEV L] = mie d(%;, %)~ 0,asi,j > .

Definition 2.14 (Soft Complete Metric Space): A soft metric space (X,d,E) is called
complete, if every Cauchy Sequence in X converges to some point of X.

Definition 2.15: Let (X, d, E) be a soft metric space. A function 6 : (X,d,E) x (X,d,E) -
[0, 00] is called a w -distance on X if the following conditions are satisfied:

W, G(Fey Ze,) S (%o, Te,) + G(Feyr Ze,) Torall %, 3o, 2, € X.
w, ForanyZ%, €X, 6(%,,.):X - [0,00] islower semi continuous.
ws Forany €= 0,36 = 6(8€) > 0 such that,
6(Ze, %o, ) < & and 6(2e,,3,,) < & imply d(%.,,7.,) < &
The metric d is a w -distance on X.

Lemma 2.16: Let (X,d,E) be a soft metric space and & be a w -distance on X. Let {a} }
and {b} } be sequences in [0, +c0) converging to zero and let % ,7.,, Z, € X. Then the
following condition hold

(i) 1f6(x},.5.,) <a; and 6(%} ,Z.,) < b} foranyn € Ntheny,, = Z,.
In particular, if 5(%, ,7.,) = 0 and 6(%.,, Z,,) = 0 then J,, = Z,,.

(i) 1fa(x},y1) <ay and 6(%7 ,Z.,) < b} foranyn € N then {3} } converges to
Zo,.

(iiiy If 6(%7 %) <a; for any n,m € N with m >n, then {%} } is a Cauchy
sequence.

(iv) 1f&(3.,, %7 ) < a; foranyn € N, then {%] } is a Cauchy sequence.
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Definition 2.17: Let (X,d, E) be a soft metric space. A finite sequence {%} , %} , ..., %} } of
points of X is called an e —chain joining 9?,‘1’0 and %7 if

d(%; ", %)) <eforeache>0,i=123,..,n

Definition 2.18: A soft metric space (X,d,E) is said to be an e —chainable if for pair
(%e,,Ye,) Of its points the exists an e —chain joining X, and ,,.

Every connected metric space is € —chainable but the converse is not always true. However,
for compact spaces both are equivalent. The following result was proved in (Takahashi, W.,
1996),

Lemma 2.19: Lete € (0,+)and let (X, d, E) be an e —chainable metric space. Then the
function& : X x X — [0, +o0) defined by

§(%,5,) =inf[¥f, d@® ", %) /(%] , %1, ... % } is an e —chain joining £, and 3] is a
o —distance on X.

Definition 2.21: Let (X, d, E) be a soft metric space and & be a w —distance on X. We denote
by F the family of functions d(a?,l, 37“) satisfying the following condition:

l. a(%,9,) =a (5(32,1, 37#)), i.e., @ is dependent on the w —distance & on X.
Il. o< da(s)<1foreveryd > 0.
I a () is monotonically decreasing function of 4.

Now we introduce the following definition.

Definition 2.21: Let (X,d,E) be a soft metric space and & be a w —distance on X.A
mapping

(f,9):X - X is called a w —Rakotch contraction if there exists a function &(@,yﬂ) EF
such that

& ((f, @), (F,9) () < @(%,7,)5(%07,) Torall .5, € X.

3 MAIN RESULTS

Theorem 3.1: Let (X, d, E) be a complete soft metric space and & be an w-distance on X.
Suppose the soft mapping (f, ) : (X,d,E) - (X,d,E) be an w-Rakotch contraction there
exists a mapping &(%, §,) € F such that:
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5 ((F 0D, (0 (,)) <

o 6(%9.). 6 (% (£, 0)3),6 (70 (F @ (54) ).
@(%, 3,) max 3 (20 (£.0) &)+ (7.0 ()
2

.. (3.1.1)

For each %,, 7, € X,. Then (f, ¢) has a unique fixed point in X, i. e. there exist %; € X such
that (f, ¢)X; = %; and moreover hold 6(%;, ;) = 0.

Proof: Let &) be any soft point in SP(X).

Set = (F. o)) = (F(39))

o)
%, = (f.9)(%,) = (fz(’a)))wzm

= )~ (),

n+1
From (3.1.1) we have

ez, 7i) = 6 (L o(EFL). (o) (%))

1 st ) 6 (B (o)) 6 (=2, (o) (),
~(~n—1 =n
< a(%, ), %,) max o(#t (a2, ) )+ (2, (31,

2

s & ) 6(F L, 5 ), 6 (a0, 7)),
X} ) max

~(~=n—-1 =n ~(~n =n+1
"(xan_l'xan)”("zn'xanﬂ)
2

n-1’

~(en—-1 =n ~(=n =n+il
< (¥}, %, ) max {6(%11:_1,ffn).a(ffn,zfni), ()(>}

Since a(x %) < d(c?(ffn__}f?n))

Then we have

~(~=n =n+1l ~( ~(=n—-1 =n &(ij::i’ffﬁ)’6(Xj;'ij;:i);
oz, Bh) < a(6(B 7)) maxy (et o Vea(ep ap ) .(3.1.2)

2
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Now the following two cases are arise:

Case I: If max{6(%} %, &} ), 6(x , %3+1 )} = (%7, &7+ ) then from (3.1.2) we have

~(~n =~n+1l ~~(=zn—-1 =n ~(~n =n+1
O-(xln’ x/1n+1) s a (O-(x/ln—l’ x)tn)) O-(x/ln’ x)ln+1)
This is contraction.

Case II: If max{6(%; %, %7 ),6(%7 , %1 )} = 6(x7 %, &7 ) then from (3.1.2) we have

o(5F, 40 < @ (6( 5, 6(F A 2) < -
< < TSR (6(RE, 7)) 6(20, (F )2,
and

F(Et ) =6 ((F o)), (o) ()

(zp, w6 (20, (o) (&), 6 (B, (L) (E1)),
o(# o (,))+a(h e (E)

2

< < Tz (6(202, 2 5 (L 0 (D). 22,

< a(x} %31 ) max

It follows that

G(xp, 2t < 6 (%0, (f0)(3))
and foralln =1,2,3, ...
s(x .z ) <6 ((f, w)(fi’o)'fi’o)

Now we prove that 6(%7 , %7 ) < C forsome C > 0 andn = 1,2,3, ...

In fact, 5(%},, #1+1) = 6 ((f. o) (%), (f, @(%))

(7,516 (%, (£ 0)(%,)).6 (=, (F.0)(F)),
3(%3,, (.00 (23,) J+3( 5, ro) (32, ))
2

< &(i,—(fo, iffn) max

<a(o(%, 7)) o(%, )

and by the triangle inequality
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5(f/$o' f/{ln) = 5—(f£o’ fﬂh) + 5(f111’ f}llnti) + 5(%}111:_11; 9’Z)Tfn)

5(f/$o'f/{ln) = 5—(f£o’f)%1) +a (5—(f/(1)0’ffn)) 6-(552(30' x’iln) +a ((f' (p)(f)(n)o)’fﬂ?o)

325, 0)(#,))+a(re)(23,)55,)

1-5(5(9230,(f,<p)(f31n))>

~(=0 ~n
a(xlo,xln <

Now if 6(%}1’0, (f, <p)(9?}fn)) > 7, for a given Z, > 0, then by the monotonicity of @(¢) it
follows that

a(o (5, . 0(,)) < a @)

and therefore

F( %3, (o) (%3, ) )+o( (f.0) (%5, ) %5
(55,3 < CRCREN AR

On the other hand if &(%f,% ") =€,k =012,..(n—1) for any ¢, >0 then by
monotonicity of & it follow that

a (6(xk, 7k1)) < dleo)

and hence (%7, %111 ) < [@(€y)]"6 ((f, <p)(3?,‘fo),£,‘fo)

But 0 < @(ey) < 1 by lemma 2.16 we have
limy, e 6(%7, Z351) = 0

We shall show that {% } is a Cauchy sequence in (X, d, E). form > 0
5(xp, am) < Mpcha (6(x5, #5m)) 6(35,, (f, ) &)

If &(%5, %) = €, forany given e, > 0 and k = 0,1,2,...(n — 1) then

6(x5, 25im) < [@(e)]"e (%, (f, #)(%,)) » 0asn > oo
and by lemma 2.16 we have that {%} } is a Cauchy sequence. Since (X, d, E) is complete,

{7 } converges to some %;. Since #* — %; and §(%} ,.) is lower semi continuous,

G(%3, %) < lima (%7, 2 ) < @(e0)5 (20, (F, ) (%5,))

n—oo

So  lim&(%],%;) = 0.

n-—-»oo
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On the other hand,

5z, (F o)) = 6 (o) (F), (o) &)

G2, %),6 (f;’n‘_ll, f. o) (F ),&(@*, (f, ©) (&),
o( 7t (a5, ) )+ o (700 (7))
2

< a(x;71, %) max

<a(o(xp, %) 6(3 5;)
<o(x 1, %)
So lim 6(%7,, (f, @) (%)) = 0.
and by lemma 2.16 we have (f, ¢)(%}) = ;.
Now (%, %;) = &((f, 9) (%), (f, 9) (%))
§(%1, %), 6(%3, (f, 0) (7)), 6(%3, (f, @) (£)),

< a(X3, %) max 5 (23,0 (7)) )+5(20.0) (%))
2

< 6(%,%)
So &(%},%})=0.
If 5, = (f, ) (5,) then
5(%.7) = 5 (£, O ED, (F, ) (5))
5(%9),5(%, (£, 9) &), 6 (Fu (. 9) (7))

5(fi'(fr<l’)(f;.))+5'(37ur(f'¢)(37u))
2

< &(%;,7,) max

< a(%,5,)
and 6(%;,7,) = 0.So by lemma 2.16 we have %; = 7,,.

Theorem 3.2: Let (X,d,E) be a complete soft metric space and & be an w-distance on X.

Suppose the soft mapping (f,¢): (X,d,E) - (X,d,E) such that for some integer
m €N, (f,9)™ be an w-Rakotch contraction. Then (f, ) has a unique fixed point, i.e.
there exists &; € X such that (f, ¢)%; = %; and moreover holds 6(%;,%;) = 0.
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Proof: Since for some m € N, (f,@)™ is a w-Rakotch contraction, then there exists a
function @(%,, 7,) € F such that:

A (FEEANAILCH)
5’(72/1; 57;1)' 6(321! (f' (p)m(f/'l))! G (y;u (f' (p)m(yu)) ’

F(2 (F0)™ED) +5 (7 (F.0)™ (7))
2

< &(92,1,37”) max

(3.2.1)

For each %,¥, € X. Hence by Theorem 3.1 there exist a unique %; € X such that
% =, o)™ for m €N and
(f, @) &) = (£, ©)((f, ™)) = (f, @)™ ((f, 9)(3)) it follows that %5 = (f, @) (%3).

Theorem 3.3: Let X be a non empty set, d and § two metrics on X, 6 and  their respective
w-distance on X and (f, @) : (X,d,E) - (X,d, E) be a mapping. Suppose that:

a. 6(%,7,) <t (%9, forall %, 9, € X,

b. ()?, d, E) is a complete soft metric space,

c. (f,¢):(X,p)— (X, p)is a w-Rakotch contraction, i.e., there exists @(%;,7,) € F
such that

(0@ F.0G,) <
(29, 1 (F @) ), 2 (50 (£ ) (5,)).

&(%;, 5, ) max (50 @)+ (70 0)(T,))
2

Forall %, 7, € X.

Then there exist exists %; € X such that (f, 9)%; = X; and moreover holds 6(%;,%;) = 0.

Proof: Let %} be any soft point in SP(X) and %} = (f,@)(% ) = (f”(a?,{’)) wy ™€
@

N.

From (c), that {%} } is a Cauchy sequence in (X,p).By (a) and lemma 2.16, {%} } is a

Cauchy sequence in ()? d,E) and by (b) it converges. The rest of the proof is similar to

Theorem 3.1.

Theorem 3.4: Let € € (0,0) be and let (X,d,E) be a complete soft e -chainable metric
space. If (f,¢):(X,d,E) - (X,d,E) be a mapping satisfying the condition, 0 <
d(%,75,) <e

Implies
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A((F. 9@, F.0G,) <
(%3 A (£ ) D). d (30 (F @) (54) ).

a(%, 3, max (%20 @)+ A7) (5,))
2

...(3.4.2)

Forall X;,7, € X, and a(x,l, yﬂ) € F. Then (f, ) has a unique fixed point %; € X such that
%= 0

Proof: Since (X’ d,E) is soft € -chainable for every %,7, € X we define the function
X x X - [0, 00) as follows:
§(%,5,) = inf[¥l, d® ", %) /(%) , %1, ... % } is an e —chain joining %, and 7]

From lemma 2.16 & is a w —distance on X satisfying d(%;, 7,) < 6(%,9,). Given %, 9, €
X and any e —chain {%} , %} , ..., %} } with %} = %, and %] = 7, we have fori = 1,2, ...,n

fd(xll L ”) d(x,ll L (f ‘P)(xal

((f (p)(x/1 ) (f, gp)(x;t )) < d’(~j xl)max (X,w(f ‘P)(XA L
Ik d( -1 (fqo)( i1 ))+d(xl (fqo) J

< da(e)e
< €

Hence (f, p)(%3)), ., (f, @) (&%) is an € —chain joining (f, ¢)(%; ) and(f, )(§,) and
& ((F @D, (F0G) < T d (FOEDR) (Fo)(3))
<yra(d(Es w)d(E" &)
Since {%)., %1, ..., &3 } is an arbitrary e —chain we have

5 (@D, (F () <
6(%.9.). (% (£, 0) ), (0 (F @ (5) ).

&(%;, 7)) max 5 (20,1, 0) )43 (7 0) (7))
2

Hence by Theorem 3.1, (f, ¢) has a unique fixed point %; € X, %; = (f, ) (%;
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Theorem 3.5: Let € € (0,) be and let (X,d, E) be a complete soft e -chainable metric
space. If (f,¢) : (X,d,E) —» (X,d,E) be a mapping satisfying the condition, d(%,,7,) < e
Implies

& (¢, )™ @), (f, )™ (5,))

5(%,3,), 5% (f, )" (G)), & (7 (£, @)™ (7))

(22 (F0)™ED)+5(7(F.0)™(7,))
2

< &@(%,¥,) max ...(3.5.1)

For every %;,7, € X,for m €N and a(%,,5,) € F, then (f,¢) has a unique fixed point
inX.

Proof: As in Theorem 3.4 we define & as follows:

5’(@' 37#) =

inf[¥7; d((Z)i—1, B /{ %y, » %a,» -r %2, } is an € - chain joining %, and 7, |

By lemma 2.16 & is a w — distance on X satisfying d(%;,7,) < 6(%,,7,). as in Theorem
3.3 we have that (f, @)™ satisfies the condition

5 ((F, 0", (F, )" ()

5(%2,3), 6(& (f, )" (5)), & (9 (F, 0)™ ().

520 O™ ED)+3 (7 ()™ (7))
2

< @(%,¥,) max ...(35.1)

For all %;,7, € X,m € N and therefore by Theorem 3.4 we conclude that (f,)™ has a
unique %; € X such that X; = (f, @)™ %;. It follows that (f, ¢) has a unique fixed point %;
and moreover (X, %;) = 0.

Finally, using the ideas of M. Telci-K. Tas [18] we obtain a generalization of Rakotch’s
theorem on non-complete metric spaces.

Theorem 3.6: Let (X, d, E) be a non-complete soft metric space and & be an w-distance on X.
Suppose the soft mapping (f,¢) : (X,d,E) - (X,d,E) be a w-Rakotch contraction and
suppose that there exists a point X; € X such that

6(%;) = inf{6(%) /%, € X}
where 8(%;) = (%, (f, @)%,) forall %, € X. Then %; is a fixed point of (£, ¢).
Proof: Suppose that X; # (f,@)X;, Since otherwise %¥; would be a fixed point of (f, ).

Now (f, ¢) is a w-Rakotch contraction, then there exists a function @(%;, 7,) € F such that:
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& ((f, )@, (f, ) (F)) <
(%2, 9), 6 (%, (£, 0) @), (50 (F. ) (Fi) )

s LD+ (7, 0)(5,))
2

&(3?,1, )7“) max

For all %3, 7, € X. and so

6((f, )%y) = 6((f, @)%, (f, 9)°%;
<
6(%3, (f, ©)%3), 6(%3, (f, ) (&), 6((f, @) %5, (f, )* (X)),
a(xy, (f, ¢)x;) max 5(32;‘1,(f,<p)(az;))+a((f,<p);z3,(f,<p)2(az;‘l))
2

< a@(6(x;, (f, 9)%3)) 6(%5, (f, p)%3)
< 6%, (f, )% = 0(%;)

This is a contradiction. So result is proved.
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