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Abstract 

This paper investigates the effects of viscous dissipation on the hydrodynamic and thermal behaviour of a fully 

developed natural convection flow in a vertical parallel–plate microchannel with suction and injection by the 

Homotopy perturbation method. The velocity slip and temperature jump conditions at the walls are taken into 

account. The influence of viscous dissipation ( Ec ) on the microchannel hydrodynamic and thermal behaviour 

was discussed with the aid of graphs. The study reveals that the presence ( 0Ec ) and variation of viscous 

dissipation parameter in natural convention flow significantly affects the microfluidic system of infinite length 

and should not be neglected. 
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1. Introduction 

Heat transfer by natural convection frequently occurs in many physical problems and engineering applications 

such as geothermal systems, heat exchangers, chemical catalytic reactors, fiber and granular insulation, packed 

beds, petroleum reservoirs, and nuclear waste repositories (Kargar and Arkbarzade, 2012) and so on. In 

particular, devices having their dimension of microns have been used in many fields such as biomedicine, 

diagnostics, chemistry, electronics, automotive industry, space industry, and fuel cells. With the increase in 

integrated circuit density and power dissipation of electronic devices, it is becoming more necessary to employ 

effective cooling devices, and cooling methods to maintain the operating temperature of electronic components 

at a safe level. Especially when device dimension gets smaller, overheating of microelectronic components may 

be a serious issue (Kakac, et al., 2010). This pressing requirement of cooling of electronic devices has initiated 

extensive research in microchannel heat transfer. 

High velocity gradients exist in channels with small hydraulic diameters, especially in flows through 

conventionally-sized microchannels of infinite lengths; hence, viscous dissipation becomes a non-negligible 

phenomenon in such fluid flow (Kakac et al., 2010). Chen and Weng (2005) theoretically investigated natural 

convection in a vertical microchannel, taking into consideration the velocity slip and temperature jump 

conditions at the walls. Haddad et al. (2005) studied the developing free convection gas flow in a vertical open 

ended microchannel with porous media. Shojaefard et al. (2005)
 
investigated flow control on a subsonic airfoil 

by suction/injection and concluded that suction significantly increases lift coefficient while injection decreases 

the surface skin friction, which transitively resulted in a considerable reduction in energy consumed during 

flights of subsonic aircrafts. Jha and Ajibade (2010) studied the effects of suction/injection on free convective 

motion of a viscous incompressible fluid between two periodically heated infinite vertical parallel-plates and 

found that temperature increases near the plate with injection while velocity is enhanced near the plate with 

suction. Jha et al. (2013) studied the effects of suction and injection on natural convection flow in a vertical 

parallel-plate microchannel. In their study, the effects of fluid-wall interaction, rarefaction, and ambient wall 

temperature difference were included. The study finds out that as suction and injection on the channel surfaces 

increases, the volume flow rate increases and the rate of heat transfer decreases. 

On the other hand, Takhar and Beg (1997) have modelled viscous dissipation in the porous medium past a 

vertical porous plate, while, Murthy and Singh (1997) modelled the flow of an incompressible fluid in a 

saturated porous medium, with the effect of viscous dissipation included. The effect of viscous dissipation on the 

development of boundary layer flow from a cold vertical surface embedded in a Darcian porous medium was 

investigated by Rees et al (2003). Nield (2007) made a critical review of recent studies on the modelling of 

viscous dissipation in a saturated porous medium, with application to either forced convection or natural 

convection. Uddin et al. (2013) analyzed the influence of viscous dissipation on free convective boundary layer 

flow of a non-Newtonian power law nanofluid over an isothermal vertical flat plate embedded in a porous 
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medium. The effects of suction, viscous dissipation, thermal radiation and thermal diffusion on a boundary flow 

of nanofluids over a moving flat plate have been discussed by Motsumi and Makinde (2012). Vahid et al. (2011) 

studied the slip flow heat transfer in circular microchannel with viscous dissipation, while Tunc and Bayazitoglu 

(2002) studied the effects of viscous dissipation for rarefied gas flow in slip-flow regime in circular and 

rectangular microchannels. They concluded that viscous dissipation plays an important role in the heat transfer 

through microdevices and also for gas flow. 

The present study seeks to extend the work of Jha et al. (2013) to include the effect of viscous dissipation in the 

flow configuration. This extension is predicated on the fact that, as fluid particles flow in mass with continuous 

interactions of adjacent layers, the work done against viscous forces is irreversibly converted into internal energy 

in a viscous fluid per unit volume, and may significantly affect the characteristic behaviour of micro-fluidic and 

thermal systems. By considering the viscous dissipation term in the present study, the governing equations of 

velocity and temperature become nonlinear and coupled such that solutions by exact methods are not feasible. 

However, solutions of such equations are obtainable by some numerical or approximate analytical approaches, 

amongst which is the Homotopy perturbation method (HPM) adopted in this study. 

2. Mathematical Analysis 

The present problem considers a fully developed steady natural convection flow of a fluid in a microchannel 

formed by two infinite vertical parallel-plates of distance b  apart. A coordinate system is chosen such that the 

x -axis is parallel to the gravitational acceleration g but in opposite direction, while the y -axis is orthogonal to 

the channel walls. The plates are heated asymmetrically with one plate maintained at a temperature 1T  and the 

other plate at a temperature 2T  where 21 TT  . Due to this temperature difference between the plates, natural 

convection flow occurs in the channel. In addition, fluid is being injected into the flow region through the plate 

with temperature 2T and in order to conserve the mass of fluid in the channel, fluid is being sucked out at the 

same velocity 
0V

 
through the plate with temperature 1T . The plates

 
are defined by 0y  and 1y  

respectively. The schematic representation of the system and of the coordinate axes is shown in figure1. 

 

 

 

 

 

 

Figure 1: flow configuration and coordinate system. 

2.1 Governing equations 

The governing equations in dimensionless form for the transport processes in the presence of velocity slip and 

temperature jump conditions are given by: 
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The dimensionless boundary conditions which describe velocity slip and temperature jump conditions at the 

fluid-wall interface are given by: 

by   0y  
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The physical quantities used in the above equations are defined in the nomenclature. However, referring to the 

values of 
vf  and 

tf  given in Eckert and Drake (1972), and Goniak and Duffa (1995), the value of v is near 

unity, and the value of t ranges from near 1 to more than 100 for actual wall surface conditions and is near 

1.667 for many engineering applications, corresponding to: 

1vf ; 1tf ;   4.1s  and 0.71rP  .    (7) 

3. Solutions of Governing Equations 

3.1 Method of solution (Homotopy Perturbation Method) 

To understand and appreciate the basic idea of Homotopy Perturbation Method (HPM), consider the following 

definitions. 

Definition 3.1: Let X ,Y  be topological spaces and let two continuous maps gf , be defined from X to Y

by:    YXgf :,  

A function     YXF  1,0:  

satisfying  )()0,( xfxF   and )()1,( xgxF        for all Xx  

is called a Homotopy from f  to g . 

Definition 3.2: A set 
nRA   is said to be convex if for any: 

   Ayx , ; Atyxt  )1( ,  1,0t
 

 

Definition 3.3: Following definitions 3.1 and 3.2, a function 
      YXF  1,0:  

defined by  )()()1(),( xtgxfttxF  ,  Xx   and   1,0t  

is called convex Homotopy between f
 
and g . Thus, f  and g  are convex homotopic functions. 

 

With the basic definitions above, we consider now a nonlinear differential equation: 

0)()(  rfuA , r       (8) 

With the boundary condition: 

   0, 








dn

du
uB , r        (9) 

where A  is a general differential operator, B  is a boundary operator, )(rf  is a known analytic function,   

is the boundary of the domain . The operator A  can be subdivided into two parts - L  and N , where L  is 

the linear and N  is the nonlinear operators respectively. 

Therefore, (8) can be rewritten as: 

0)()()(  rfuNuL        (10) 

By the Homotopy technique, a convex Homotopy can be constructed thus: 

       
RprV  ]1,0[:),(        (11) 

which satisfies:      0)()()()()1(),( 0  rfvApuLvLppvH    (12) 

Or alternatively:   0)()()()()(),( 00  rfvNpupLuLvLpvH    (13) 
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where r  and ]1,0[p  is an embedding parameter, 
0u  is an initial guess or approximation of (8) which 

satisfies the boundary conditions (9). 

By (12), it easily follows that: 

0)()()0,( 0  uLvLvH         (14) 

and;   0)()()1,(  rfvAvH        (15) 

The changing process of p from zero to unity is that of ( , )H v p  from )()( 0uLvL   to )()( rfvA  . In 

other words, ),( pvH continuously traces an implicitly defined curve from a starting point )0,( 0uH to a 

solution function )1,( fH . In topology, this changing process is called deformation (Definitions 3.1 to 3.3). 

Therefore, )()( 0uLvL   and )()( rfvA  are called convex Homotopy. 

HPM uses ]1,0[p as an expanding parameter to obtain 
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where nH  are the He’s polynomials which can be calculated by 
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If 1p , then (16) corresponds to the solution of (8) given by: 
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On the other hand, if 0p , then (16) reduces to 

  00lim uvU p           (20) 

and becomes the initial guess or approximation of (12) 

 

3.2 Solution process 

By HPM, we construct convex Homotopy of equations (1) and (2) respectively as follows. 
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By (16), the approximate solutions of HPM are given by: 
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By using the appropriate form of (23) in (21) and (22) respectively, expanding and comparing coefficients of 

equal powers of p  yield the following sets of equations with their corresponding boundary conditions. 
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By using (28), (29) and (30) in (23), the approximate solutions of (1) and (2) are given by: 
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The integration constants used are defined by: 
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4. Discussion of Results 
The approximate solutions of the temperature, velocity, volume flow rate, rate of heat transfer, expressed as local 

Nusselt number and skin friction are obtained by HPM with the graphs of the results presented in figures 2 – 10. 

The present problem is governed by Eckert number ( Ec ) (viscous dissipation parameter), Suction and Injection 

(s), fluid-wall interaction (In), rarefaction or departure from continuum regime ( Knv ) and wall ambient 

temperature difference ratio (ξ). The influences of these parameters especially the Eckert number on the flow 

regime are discussed with the corresponding figures. The study is carried out over reasonable ranges of 0  

vKn   0.2, 0  In  13 and
20 (2 10)Ec   , where 10

-3
  Kn  10

-1
. 

Table 4.1: validation of Homotopy perturbation method 

 

 Y 
AM HPM ( 3i ) Absolute Error 

velocity Temperature velocity Temperature Velocity Temperature 

0.0 0.0058008814 0.048947115 0.0057934316 0.048936064 0.0744977841 0.0110504245 

0.1 0.0202979004 0.123671619 0.0202683608 0.123632167 0.2953961217 0.0394527456 

0.2 0.0342709839 0.201096492 0.0342180171 0.201015764 0.5296674266 0.0807273256 

0.3 0.0468993716 0.281319317 0.0468284062 0.281198053 0.7096534198 0.1212631947 

0.4 0.0572915322 0.364441206 0.0572122459 0.364290230 0.7928632428 0.1509758731 

0.5 0.0644804986 0.450566925 0.0644040826 0.450403490 0.7641600045 0.1634348107 

0.6 0.0674189252 0.539805025 0.0673554072 0.539649029 0.6351807237 0.1559954310 

0.7 0.0649738545 0.632267979 0.0649297711 0.632138044 0.4408342850 0.1299359477 

0.8 0.0559211739 0.728072328 0.0558979025 0.727981729 0.2327135584 0.0905991248 

0.9 0.0389397473 0.827338820 0.0389328224 0.827291281 0.0692489413 0.0475391600 

1.0 0.0126052025 0.930192570 0.0126049603 0.930177897 0.0024211831 0.0146738760 

 Error margin:    
4100.1   

3100.1   

Table 1 contains the numerical values of the solutions of velocity and temperature profiles obtained by the 

analytical method and HPM employed by Jha, et al (2013) and the present study respectively. Suppressing the 

effect of viscous dissipation in the present problem (i.e., Ec = 0), the results obtained agree perfectly with those 

of Jha et al (2013). This is evident in the error margin in the order of 
41.0 10 for velocity profile and 

3100.1  for temperature distribution respectively, as shown in the table. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: velocity distribution for 

different values of vKn   at 667.1In , 

5.0s , Pr 0.71 , and  0.0 . 
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  Figure 3: variation of velocity for different 

values of Ec  at 667.1In , 5.0s ,

0.04vKn  , Pr 0.71 , 0.0 . 
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Figures 2 and 3 represent the hydrodynamic behaviour of the fluid across the channel width. Figure 2 shows that 

fluid velocity increases with increase in Eckert number as well as increasing rarefaction ( vKn  ). This is 

attributed to the boundary slip flow at both walls which grows with increasing vKn . On the other hand, Figure 

3 reveals that increasing the viscous dissipation parameter within the flow domain leads to increase in the 

hydrodynamic behavior of the fluid across the channel width. This is attributed to temperature growth due to 

internal heat generation caused by the shear heating in the system. This growth in temperature strengthens the 

convection current, resulting to an increase in the velocity of the system 

 

Figure 4: variation of temperature for different values of Ec  at fixed values of 05.0s , 5.0vKn , 

Pr 0.71 , 1.667ln  , 0.0  . 

Figure 4 captures the thermal behavior of the microfluidic flow. A trend similar to that of hydrodynamic 

behavior of the fluid flow is observed in figure 4 where the thermal characteristics of the fluid is seen to be 

encouraged and continue to grow with increase in Eckert number. This is physically true for rarefied gas where 

increase in velocity leads to increase in interactions of fluid particles which enhance the thermal energy of the 

system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 and figure 6 represent the variation of velocity with suction and injection, and fluid wall interaction 

respectively in the presence of viscous dissipation ( Ec  > 0). In figure 5, the profile reveals that, increasing 
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Figure 5:  Variation of suction and injection 

parameter on velocity profile at fixed Ec =1,

0.04vKn  , Pr 0.71 , 0.5s 
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Figure 6: variation of fluid-wall interaction on 

velocity profile at fixed 5.0vKn , 05.0s , 

Pr 0.71 , 1.667ln  , 0.0   
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injection through the plate at 0Y  strengthens the velocity of the fluid near the plate at 0Y . However, the 

influence of injection on the velocity is reduced near the plate at 1Y .  This physical situation is true since 

fresh injected fluid through the porous plate at 0Y  is sucked out through the porous plate at 1Y  just as 

fluid particles begin to gain energy by the actions of internal shear stress and the temperature ( 1T ) of the plate. 

In figure 6, the growth in the fluid velocity as fluid-wall interaction (ln) increases is evident only in the presence 

of internal shear heating. Where this is absent ( Ec = 0 in figure 6), increase in fluid wall interaction is seen to 

cut down the hydrodynamic strength of the system. It is observed also that the presence of viscous dissipation in 

this fluid flow reverses the influences of variation of fluid-wall interactions on the velocity of the system. This 

effect takes place in the region of 37.0Y  from the plate defined by 0Y .  

      

  Figure 7: volume flow rate for different values of Ec , 0.04vKn  , Pr 0.71 , 

0.5s  , 1.667ln  , 0.0  . 

Figure 7 represents the volumetric flow rate for variations of Ec  as well as Knv . The Figure reveals that 

volumetric flow rate increases with growing Knv  as well as Ec. It is observed here too that the effect of 

viscous dissipation parameter ( Ec ) on volumetric flow rate is negligible at low values of Knv  but becomes 

highly significant at large values of Knv . 
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Figure 8a: variation of skin friction at 0.0Y  

for different values of a Ec  at 0.04vKn  , 

Pr 0.71 , 0.5s  , 1.667ln  , 0.0  . 
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Figure 8b: variation of skin friction 0.1Y  

for different values of Ec at 0.04vKn  , 

Pr 0.71 ,  0.5s  , 1.667ln  , 0.0 . 
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In figure 8(a & b), increasing Eckert number causes the skin friction to increase on both channel plates.  

However, as Knv  increases, the skin friction at the plate ( 0Y ) increases while the skin friction at  

the plate ( 1Y ) decreases. The trend of the shear stress on the surfaces of the fluid can be attributed to higher 

velocity gradient obtained near the plate at 0Y  and which decreases as Knv  increases. As fluid particles 

flow near the plate at 1Y  in figure 8(b) combined with the actions of internal shear heating, the thermal 

characteristics of the fluid is strengthened, thus reducing the skin friction of the system at the porous plate 

defined by 1Y . It is also observed here that the effect of Ec  on skin friction is negligible for low values of 

Knv  while it is clearly pronounced when the value of Knv  becomes large.  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9a: variation of skin friction for different 

values of In  at 0.0Y , 0.04vKn  , 

Pr 0.71 , 0.5s  , 0.0       
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Figure 9b: variation of skin friction for different 

values of In  at 0.1Y , for  0.04vKn  , 

Pr 0.71 , 0.5s  , 0.0   
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In Figure 9, the effects of varying fluid-wall interaction (ln) in the presence of viscous dissipation is observed to 

increase the skin friction of the surface of the plate at 0Y  (Figure 9a) as the values of Knv  become large 

but weakens the skin friction near the hotter plate (Fig. 9b). This physical situation is attributed to the energy 

gained by the actions of viscous dissipation in the system. We observed too that viscous dissipation reverses the 

effect of fluid wall interaction on the skin friction of the system near the plate at 1Y .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 10 represent the variation of rate of heat transfer of the system against the departure from continuum 

regime ( Knv  ) at both walls. In the Figures, it is observed that increasing Ec increases the rate of heat 

transfer of the system at the plate 0Y in Figure 10(a), while it decreases the rate of heat transfer at the plate 

1Y in Figures 10(b). This is due to the induced buoyancy of the hydrodynamic and thermal strength brought 

about by the actions of increase in the internal heat generation. This development causes an increase in surface 

temperature gradient of the fluid near the plate at 0Y  and a reversed phenomenon near the plate at 1Y . 

 

5. Conclusion 

This study has examined the effects of viscous dissipation on natural convection flow in a vertical parallel-plate 

microchannel with suction and injection. Governing equations are developed and appropriate dimensionless 

parameters are employed to transform the equations into dimensionless forms. The solutions to the 

dimensionless form steady state energy and velocity equations, which in no wise displayed any closed form 

solutions, are obtained by HPM. The results of velocity profile, temperature profile, volumetric flow rate, skin 

friction and rate of heat transfer, expressed as local Nusselt number, are presented in graphs and discussed. The 

study finds that the presence and variation of viscous dissipation parameter increases the velocity and 

temperature gradients leading to increase in volume flow rate and rate of heat transfer, even with suction and 

injection. We observe too that the presence of viscous dissipation in the viscous fluid is more to reverse the 

influences of the variation of fluid-wall interaction on the velocity and skin friction of the system than 

reproducing it. This implies that the effect of internal shear heating in any microfluidic flow is significant and 

should not be neglected. The study also substantiates the findings of the existing literatures that HPM is a 

powerful tool for solving any system of nonlinear equations arising from the phenomenon of fluid flow. Finally, 

this study can be conducted in microtubes and in two or three dimensional coordinate geometries. 

 

 

 

 

Figure 10a: rate of heat transfer at 0.0Y  for 

different values of Ec  at fixed values of 

01667.0In , 0.04vKn  , Pr 0.71 , 

0.5s  , 0.0  .     
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Figure 10b: rate of heat transfer at 0.1Y for 

different values of Ec  at fixed values of 

01667.0In , 0.04vKn  , Pr 0.71 , 

0.5s  , 0.0  . 

 

0 0.2 0.4 0.6 0.8 1
1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1.22


v
Kn

R
a
te

 o
f 

H
e
a
t 

T
ra

n
s
fe

r 
( 

N
u
 1

 )

 

 

Ec=0.0

Ec=2.0

Ec=4.0

Ec=6.0

Ec=8.0

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.7, 2018 

 

107 

Reference 

1. Chen, C. K. and Weng, H. C., natural convection in a vertical microchannel. J. Heat Transfer, 127, 1053 – 

1056, 2005Eckert, E. R. G. & Drake, Jr. R. M. (1972), Analysis of Heat and Mass Transfer, New York, 

McGraw Hill. 

2. Haddad, O. M., Abuzaid, M. M. and Al-Nimr, M. A., developing free convection gas flow in a vertical 

open-ended microchannel filled with porous media. J. Numerical Heat Transfer, Part A: Applications, 

48(7), 2005 

3. Goniak, R. & Duffa, G. (1995), Corrective term in wall-slip equations for Knudsen layer, J. Thermophys. 

Heat Transfer, 9, 383-384. 

4. Jha, B. K.  & Ajibade, A. O. (2010), free convective flow between vertical porous plates with   periodic 

heat input. Zamm. z. Angew. Math. Mech., 90(3), 185-193. 

5. Jha, B. K., Aina, B. & Joseph, S. B. (2013), natural convection flow in a vertical micro-channel with 

suction/injection, Proc Imech. E part E: J of Process Mechanical Engineering, 0(0), 1-10. 

6. Kakac, S., Kosoy, B., Li, D., and Pramuanjaroenkij, A., Microfluidics Based Microsystems; fundamentals 

and applications, Springer, http://www.springer.com/978-90-9028-7, 2010. 

7. Kargar, A. & Akbarzade, M. (2012), Analytic solution of natural convection flow of a non-Newtonian fluid 

between two vertical flat plates using HPM, RESEARCH INVENTY: Int’l J. Engineering and sciences, 

1(3), 32-38. 

8. Motsumi, T. G. & Makinde, O. D. (2012), Effects of thermal radiation and viscous dissipation on boundary 

layer flow of nanofluids over a permeable moving flat plate, Physical Scripta,  86(4). 

9. Murthy, P. V. S. N. & Sigh, P. (1997), effects of viscous dissipation on non-Darcy natural convection 

regime,  Int’l J. of Heat and Mass Transfer, ,40, 1251-1260. 

10. Nield, D. A. (2007), the modeling of viscous dissipation in a saturated porous medium, J. of Heat Transfer, 

129/1459. 

11. Ramiar, V & Ranjbar, A. A. (2011), effects of viscous dissipation and variable properties on nano-fluids 

flowing two dimensions at micro-channels”, IJE Transactions A: Basics, 24, 131-142. 

12. Rees, D. A., Magyari, E. and keller, B. (2003), the development of the asymptotic viscous dissipation 

profile in a vertical free convective boundary layer flow in a porous medium, Transport in Porous Media, 

53, 347-355. 

13. Shojaefard, M. H., Noorpoor, A. R., Avanesians, A. & Ghaffapour, M. (2005) Numerical investigation of 

flow control by suction and injection on a subsonic airfoil, Am. J. Applied Sciences, 20(10), 1474-1480. 

14. Takhar, H. G. & Beg, O. A. (1997), effects of transverse magnetic field, Prandtl number and Reynolds 

number on non-Darcy mixed convective flow of an incompressible viscous fluid past a porous vertical flat 

plate in a saturated porous medium, International Limited J. of Energy Research, 21, 87-100. 

15. Tunc, V. & Bayazitoglu, Y. (2002), Heat transfer in rectangular microchannels, IJHMT 45(4), 765-773. 

16. Uddin, M. J., khan, W. A. and Ismail, A. I. (2013), Effects of dissipation on free convective flow of a non-

Newtonian nanofluid in a porous medium with gyolatic micro-organism, Proc Imech E. Part N: J. of Nano 

Engineering and Nanosystems, 98, 553-564. 

17. Vahid, V. Vandadi, A. and Aghanajafi, C. (2011), Slip flow heat transfer in circular microchannel with 

viscous dissipation, IJRRAS, 6(2). 

Ajibade, O. Abiodun (M’99, NMS – M’10, AMS), Born in Zaria on 30th December, 1969. Attended Baptist 

LSMB Primary School, Ipee, Kwara State (1975-1981), Government Secondary School, Ipee, Kwara State 

(1981-1986) and Advanced Teachers College, Ahmadu Bello University, Zaria, Kaduna State (1987-1989) for 

his First School Leaving Certificate, GCE/OL and National Certificate in Education.  He studied at Ahmadu 

Bello University, Zaria, Kaduna State, Nigeria from 1990 to 2009, where he obtained B.Sc. (Hons), M.Sc. and 

Ph.D, all in Mathematics in 1992, 1997, and 2009 respectively. Ajibade O. Abiodun invented a Mathematical 

concept called: Rhotrix. Major Field of study is Fluid Dynamics. 

Otor, D. Omenka, was born in Opiem-Owo, Igede Central District, Oju LGA of Benue State on 1
st
 July, 1980 

and attended All Saints Primary School, Umoda Oju, Benue State, Nigeria where he obtained his First School 

Leaving Certificate in 1989. He attended Government Secondary School, Ikachi from 1990-1995 and College 

of Education, Oju from 1997-2000, all in Oju LGA of Benue State, Nigeria where he obtained West African 

Senior Secondary Certificate (WASSC) and National Certificate in Education (NCE) in 1995 and 2000 

respectively. Otor, D. Omenka studied at Ahmadu Bello University, Zaria, Kaduna State, Nigeria from 2004-

2008 for his B.Sc.(Ed) Mathematics and from 2011-2017 for his M.Sc. Mathematics. Major Field of study is 

Fluid Dynamics. 

 

http://www.iiste.org/
http://www.springer.com/978-90-9028-7


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.7, 2018 

 

108 

NOMENCLATURE/GREEK LETTERS 

 

b   channel width 

Y   dimensionless y  - coordinate 

pC  , vC   specific heats at constant pressure and constant volume, respectively 

tf  , vf   thermal and tangential momentum accommodation coefficients respectively 

g   gravitational acceleration 

In   fluid – wall interaction, (
vt  ) 

Kn   Knudsen number 

m   volume flow rate 

M   dimensionless volume flow rate 

Nu   rate of heat transfer (Nusselt Number) 

Pr   Prandtl number 

Ec   Eckert number (viscous dissipation parameter) 

s   suction/injection parameter 

T   temperature of fluid 

uv,   velocity components in x, y directions 

0V   constant suction/injection velocity 

U   dimensionless velocity 

0U   dimensionless reference velocity 

 

 

 Greek symbols 

   particle mean free path 

  thermal diffusivity 

   thermal expansion coefficient 

t  , v   dimensionless variables 

s  ratio of specific heat (Cp/Cv) 

ϴ  dimensionless temperature 

µ  dynamic viscosity 

   fluid kinematic viscosity 

   wall – ambient temperature difference ratio 

   density 

   

Subscripts 

0T   reference temperature 

1T   temperature of the hotter wall 

2T   temperature of the colder wall 
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