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Abstract 

The paper examines the suitability of the Kaiser-Meier Olkin’s Measure of Sampling Adequacy (KMO) as a 

measure of suitability for factor analysis for a number of selected multivariate datasets. It first explores a 

systematic approach that determines the initial dimensionality of the dataset. It then identifies two sets of 

indicators that could create distortions in assessing factor-suitability: variables that do not influence any 

dimension; and those that influence multiple dimensions. Dimensionality is also affected by negatively 

correlated indicators leading to a small suitability measure, which portrays such datasets as unsuitable for factor 

analysis. It is found that for KMO to be high, the zero- and first-order partial correlations must be almost the 

same for indicators that influence the same dimension. It follows that generally, a KMO value within the range 

0.6 – 0.7 is a typically good measure of factor-suitability. The results show that the overall KMO generally 

reflects factor-suitability. The study does not find the expected intuitive relation that should exist between the 

individual KMO value and the communality for a suitably selected factor solution. A high variable KMO 

appears to be associated with moderate value of coefficient of multiple determination of its model in terms of 

the others. A reasonable assessment of the KMO should therefore be made only by a good understanding of the 

correlation structure of the indicator variables.    

Keywords: KMO, Factor-suitability, Factor analysis, Dimensionality 

1. Introduction 

The key concept of factor analysis is that multiple indicator variables have similar patterns of responses 

as they are all associated with a latent (i.e., not directly measured) variable. Factor analysis is based on the 

correlation matrix of the indicator variables. The dimensionality of this matrix can be reduced by “looking for 

variables that correlate highly with a group of other variables, but correlate very badly with variables outside of 

that group” (Field, 2000). These variables with high inter-correlations could well measure one underlying 

variable, which is called a ‘factor’. The factors jf , mj ,,2,1  , are constructed from a set of variables 

),,,,( 21 pXXX X  such that   
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where ,pm   and i  are the factors specific to the individual indicator ix . The factors are labelled by the 

size of their loadings )( ijl  on the indicators. Usually, a cut-off value of 0.5 is used to associate a variable with a 

factor. Indicators with loadings higher than 0.5 are considered to be influential in the formation of the factor. 

However, the choice of the cut-off depends on the size of the correlation coefficients. Using the m factors, the 

correlation matrix R could be approximated by the fundamental factor analysis equation  

ψΛΛR      ,               (2) 

The matrices ψ  and Λ are defined as the diagonal matrix of specific variances and loading matrix, 

respectively. In Equations (1) and (2), we could have ,pm   or .pm    

The suitability of factor analysis for a dataset is influenced by the sample size (Tabachnick & Fidell, 2007;  

Comrey & Lee, 1992), the nature of the data (van der Eijk & Rose, 2015) with particular reference to ordered 

categorical survey data, and the type of correlation coefficients involved which could be polychoric, or Pearson 

correlations.  

A number of guidelines are used to determine the suitability of a dataset for factor extraction. One of the 

commonly used guidelines is the Kaiser-Meier-Olkin’s Measure of Sampling adequacy, usually referred to as the 

KMO. It is a diagnostic measure for assessing the extent to which the indicators of a dimension belong together. 

A small value of the KMO indicates that the correlation between pairs of variables cannot be explained by a 

well-defined latent factor and that factor analysis may not be appropriate. Table 1 gives a guideline for the KMO 
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measure (Kaiser, 1974). 

Table 1: A Guide for Interpreting KMO Measure 

KMO Measure Recommendation 

≥ 0.90 Marvelous 

 0.80+ Meritorious 

 0.70+ Middling 

 0.60+ Mediocre 

 0.50+ Miserable 

≤ 0.50 Unacceptable 

By the guideline in Table 1, it is generally expected that to have satisfactory results, the overall KMO measure 

should be 0.8 or higher. This rule of thumb appears to have been accepted widely, although a measure of above 

0.6 is acceptable (Rencher, 2002). The index compares the magnitude of the observed correlation coefficients to 

the magnitude of the partial correlation coefficients. An equation for calculating the KMO is given by 
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where 
2

ijr  is the square of the correlation coefficient between any pair of variables ),,( ji XX and is an element 

of the correlation matrix, R.  The corresponding value 
2

ijpr  is the square of the partial correlation coefficient 
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The relation shows that as 1
R  approaches a diagonal matrix, KMO approaches one. Thus, drastic reduction in 

partial correlations is required for a high KMO. This has implications for individual variable KMO, as will be 

pointed. In the Anti-image matrix, the diagonal elements are the KMO of the individual variable. The study 

intends to explain the practical representation of the overall KMO and variable KMO for determining the 

factor-suitability of the dataset and the variable, respectively. It is already the opinion of some (e.g., Sharma 

1996) who suggest that one could subjectively examine the correlation matrix to determine its factor suitability, 

suggesting a restraint on the use of the KMO. 

It is possible to obtain a graphical view of the factor suitability of a dataset. This is usually obtained by a 

scree plot of the eigenvalues of the factors against their respective factor numbers. If the scree plot does show a 

pronounced bend or the eigenvalues show a large gap around one, then the correlation matrix is likely to be 

factor-suitable. The point where the ‘elbow’ is located gives an indication of the number of factors that could be 

extracted from the data.  

Figures 1 and 2 are scree plots of some datasets used in the study that show the extent of their 

factor-suitability. In Figures 1(a) and 1(b), there is no clear bend in the plots. Figure 1(a), in particular, suggests 

that the corresponding dataset is highly unsuitable for factor extraction, as there is no systematic decrease in 

eigenvalue for higher numbers of the factors. It will be realised, however, that the lack of suitability is not as a 

result of low correlations among the variables. Thus, the source of factor suitability may be attributable to 

causes other than the correlation coefficient on which KMO is based.  
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(a)        

       

        (b) 

Figure 1: Graphs indicating lack of factor suitability of data.  

 

On the other hand, Figure 2 shows a scree plot that has quite a clear bend, suggesting that the respective 

dataset is factor-suitable. Thus, in Figures 1(a) and 1(b), the KMO values are expected to be small, whiles in 

Figures 2, the KMO value is ‘expected’ to be large. 
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Figure 2: Graphs indicating suitability of data for factor analysis. 

Unlike Figure 2, the determination of the elbow point could be quite subjective in many scree plots, 

which calls for other methods such as the parallel analysis. A well-defined elbow point, unfortunately, does not 

suggest a high KMO value. In Figure 2, for example, the KMO associated with the data (see description of 

Dataset 1) is just 0.616. Thus, one may suspect that the KMO value (and as interpreted in Table 1) may not 

provide a fair representation of the factor-suitability of some datasets.  As a result, assessment of homogeneous 

groupings of indicators has been suggested (e.g., Field, 2000). This paper demonstrates a way of carrying out 

such an assessment by outlining a procedure for determining the dimensionality of the dataset. Subsequently, the 

KMO value of the data is computed and compared with the value given in the software output. This is intended 

to verify the consistency of the preliminary dimensionality assessment and the reliability of the KMO value 

given in the output. To proceed, descriptions of the datasets used in the study are given next.  

1.1 Description of Datasets 

A number of datasets have been used in Section 4 to carry out the study. The following provides 

explanation to the background of these datasets and the rationale for their selection. The datasets have been 

numbered in the section for convenience of reference in Section 4.  

Dataset 1 (Performance of Sales Personnel): The data covers assessment of performance of sales personnel 

employees of a marketing company (Johnson & Wichern, 2007). The firm attempts to evaluate the quality of its 

sales staff and tries to find an examination, or series of tests, that may reveal the potential for good performance 

in sales. It has selected a random sample of 50 salespeople and has evaluated each on three measures of 

performance: growth of sales, profitability of sales, and new account sales. These measures have been converted 

to a scale, on which 100 indicates “average” performance. Each of the 50 individuals would take each of four 

tests, which purportedly measures creativity, mechanical reasoning, abstract reasoning, and mathematical ability, 

respectively. The 50n  observations on 7p  variables are listed. The data is interesting in that it has a 

well-defined single dimension (see Figure 2) which, however, is not significant under a confirmatory test.  

Dataset 2 (Performance of High School Students in Nine Subjects): This is unpublished data which covers marks 

scored out of 100% obtained by 72 students in a senior high school on nine subjects. These subjects include 

Information Communication Technology (ICT), Economics, Elective Mathematics, English Language, 

Geography, Integrated Science, Core Mathematics, Physical Education (PE), and Social Science. By design, this 

data is typically suited for principal components, and hence, factor analysis. 

Dataset 3 (Benefits of Students Industrial Attachment): The data is obtained from 525 students of a Technical 

University in Ghana. Structured questionnaires are used which contained 48 indicators of benefits and 

challenges of students industrial attachment. Twenty of the indicators cover issues of benefits whilst 

twenty-eight cover issues of challenges. Data on these indicators are obtained on a five-point Likert scale. The 

data is used (Frempong, Nkansah, & Nkansah, 2017) to determine the salient latent dimensions of benefits of 

the programme.  

Dataset 4 (Prices of Food Items in Ghana in 2012): The main variables of study are the prices of selected 

commodities collected from 91 leading market centres across the country. The food items include those that 
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form the basis for the computation of the monthly Food Price Index (FPI) by the Ghana Statistical Service 

(GSS). Nineteen food items are studied which include:  Maize, White Yam, Cassava, Tomato,  Garden  Egg, 

Dried Pepper, Red Groundnut, White Cowpea, Palm Oil, Orange, Banana, Smoked Herring, Salted fish, Onion, 

Eggs, Plantain, Gari, Local Rice, and Imported Rice, with appropriate respective unit of sale for each item. 

The information is obtained from the Statistical, Research and Information Directorate (SRID) of the Ministry of 

Food and Agriculture (MoFA). The selection of the markets is based on results of previous related studies 

(Seglah, 2013). Data for Year 2012 is particularly selected as a result of negative correlations observed among 

prices of the items in that year, which suits this and related studies. 

Dataset 5 (Concrete Compressive Strength): The concrete compressive strength (CCS) is a highly nonlinear 

function of age and ingredients and was studied as a regression problem. These ingredients include Cement, 

Blast Furnace Slag, Fly Ash, Water, Superplasticiser, Coarse Aggregate, and fine aggregate.  The actual 

concrete compressive strength (MPa) for a given mixture under a specific age (days) was determined from 

laboratory. Each ingredient is measured in kg in m
3
 mixture. Thus, there are eight input quantitative variables 

and one output variable, and covers 1030 observations. The data was studied by Yeh (1998a) and subsequently 

in Yeh (1998b, 1999, 2003a, 2003b, 2006). In the paper, only the seven ingredient variables will be studied.  

Dataset 6 (Challenges of Students Industrial Attachment): The data were obtained in the same study (Frempong, 

Nkansah & Nkansah, 2017) that made use of Dataset 3. There are twenty-eight indicator variables involved in 

this part of the study.  

Section 2 presents some useful mathematical background on the subject. In section 3, an outline of a 

procedure for examining the homogeneity of groupings is explored. Based on the observations in Section 3, 

Section 4 will examine the consistency in the KMO value using the datasets described. Conclusions are drawn 

in Section 5.  

2  Some Mathematical Background  

Suppose that data is obtained on the variable ),,,( 21 pXXX X . The Kaiser-Meyer-Olkin’s measure 

of sampling adequacy, usually simply referred to as the KMO, is given by Equation (3). The simple correlation 

coefficient ( ijr ) between  iX  and jX
 

is given as  
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ss

s
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              (4) 

The value ijs
 

is the ),( ji  element of the matrix of sum of squares and cross-product matrix of the data 

which may be given as ,))((  1xX1xXSXX  where )1,(ones p1
 

is a vector of ones. Next, we 

examine the partial correlation component  2
ijpr

 
in Equation (3).  

The sample partial correlation coefficient (PCC) between iX  and jX
 

controlling for the other 

variables,   ji XX ,\XY  , is given by  
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The element Yii XXS
 

in Equation (5) is the ),( ji  entry of the variance-covariance matrix   

   YXYYXYXX SSSS
1 .                       (6) 

Proof 

Consider the pair jiXX ji ),,( . Then define the vectors ),( ji XX(1)
Χ  and 

)()(
ΧXΧ

12 \  with 

corresponding mean vectors )( (1)
1 Χμ E

 
and )( (2)

2 Χμ E , and variance-covariance matrices, 

)cov( (1)
11 ΧΣ   and  )cov( (2)

22 ΧΣ  . We partition the vector of variables as   )2()1(
ΧΧX . 

Subsequently, define the vectors (e.g., Johnson & Wichern, 2007) 
(2)(1)

BΧΧY1 
 

and  
(2)

2 ΧY  ,                                (7) 

so that information about 
(1)

Χ  could be extracted through 1Y . The covariance between 1Y
 

and 2Y  is given 

by  
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Since (1)
Χ  and  (2)

Χ  must be independent, 0),cov( 21 YY . Hence,  

    
1

2212
 ΣΣB .                        (8) 

Finding the variance-covariance matrix of 1Y , we obtain 
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Expanding and simplifying gives 

BΣBΣBBΣΣY  122122111)cov(  

Substituting for B from Equation (8) and simplifying gives 
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Taking expectation of 1Y , and making substitution for B, gives 
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Therefore, 1Y  is normally distributed as 
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Since, (1)
Χ  is a translation of 1Y , the conditional variance-covariance of cΧ

(1)  is the same as that of 1Y . 

Therefore,  
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                              (10) 

This ends the proof. 

Equation (10) is the same as that of the sample conditional variance-covariance matrix in Equation (6).  

Remark 2.1 

If we define the sub-vectors ),((1)
ji XXΧ
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with indicated dimensions of variance-covariance sub-matrices. 

Remark 2.2 

Given the conditional variance-covariance in Equation (10), the partial correlation coefficient (PCC) between 

the pair ,,,2,1,),,( pjiXX ji  after controlling for ,\ 12 )()(
ΧXΧ   may be restated as  
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where ij)(
11 c

Σ
 

is the ),( ji  element of the conditional matrix .
11 c

Σ   This is the thp )2(  -order partial 

correlation since 
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Χ
2

 contains 2p  variables. 

Remark 2.3 

In this remark, the nature of the expression in Equation (11) is examined if it involves the same 

component variable iX . Does it become equal to 1, as in the case of the zero-order correlation coefficient? 

Without loss of generality, consider the variable component 1, iX i . Then re-define the vectors )( 1
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is a constant (i.e., just one model).  

Now, the numerator ij)(
11 c

Σ
 

in Equation (11) may be seen as the covariance between )( 1
(1) XΧ

 
and the 

estimated model given in Equation (12) in terms of the set (2)
Χ . Denote the model by  

)(ˆ
2

(2)1
22121

(2)(1)
μΧΣνΧΧ   . 

Now, the variance of the estimated random variable is given as 

        

   

12
1

2212

12
1

2222
1

2212

12
1

22
(2)1

2212
(2)(1)ˆvar

νΣν

νΣΣΣν

νΣΧΣνΧΧ











 D

 
 

 

 

12
1

2212

2
121

(2)(1)1
2212

2
1

(1)
1

(1)
2

(2)(1)1
2212

(1)
1

2
(2)1

22121
(1)

2
(2)1

22121
(1)(2)(1)(1)

)(

)())()((()(

)(()(

))((()ˆ,cov(

νΣν

μμΧΧΣν

ΧΧμΧΧΣνΧ

μΧΣνΧ

μΧΣνΧΧΧΧ





























E

EEEE

EE

E

 

Therefore,  

 
12

1
2212

(2)(1)(1) )ˆ,cov( νΣνΧΧΧ  
                    (13)  

The partial correlation of )( 1
(1) XΧ  is then the conditional correlation between cΧ

(1)   and 
(2)(1)ˆ ΧΧ

 and given by 

        

 
    12

1
221211

12
1

2212

(2)(1)(1)

(2)(1)(1)

ˆvarvar

ˆ,cov

)1(

νΣν

νΣν

ΧΧΧ

ΧΧΧ

cx










r  

Simplifying and squaring the result becomes 
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The result in Equation (14) is the coefficient of multiple determination (CMD) between )( 1
(1) XΧ  and the 

estimated regression function in terms of .\ (1)(2)
ΧΧΧ    

The notion of the CMD could be linked to the individual KMO of variable iX )(
ixKMO  which is 
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similarly obtained by Equation (3) but includes only correlations that involve variable iX . Denoting 

},,3,2,1{ pI 
 

the index set of all variables, 
ixKMO  is given by  
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where iI \  denotes the index set that excludes i. It should be noted from the discussion that if iX  has a high 

correlation coefficient with each of the other variables, its  
cx

)1(r

 

would be high, and the (sum of) PCC with 

other variables will be high, leading to a low individual KMO value, suggesting that the variable is not 

factor-suitable. Thus, we expect the CMD of a variable to be related with its individual KMO. The question is: 

How can a variable that has very high correlations with other variables be represented as not too good for 

factoring? A high 
cx

)1(r

 

means that the variable could ‘overlap’ in almost all sub-groupings and hence may not 

be a clear indicator of a particular underlying dimension. Thus, if CMD is high and the data is factor-suitable, 

we expect the individual KMO to be of moderate values.   

 

Effect of Partial Correlation Coefficient on the KMO 

The effect of the partial correlation coefficient is clear from Equation (3). The effect may also be explained from 

the point of view of the first-order PCC given in Equation (16), expressed in terms of correlation coefficients 

between iX
 

and jX  after controlling for kX  as  

   
,

11 22

kjki

kjkiji

kji

XXXX

XXXXXX

XXX

rr

rrr
r




                          (16) 

where 
ji XXr
 

is the zero-order (or simple) correlation coefficient between iX
 

and jX
 

and kX
 

represents 

the controlled component. If 
ki XXr and  

kj XXr are both  large, then the denominator is very small and could 

lead to a large value of 
kji XXXr 

, and hence a small value of the KMO. This suggests that ),( ji XX  does not 

form a strong group. On the other hand, if 
ki XXr  and  

kj XXr  are both small, the denominator is large and 

could lead to a small 
kji XXXr  , and hence a large KMO. This means that ),( ji XX  could constitute a strong 

group. The implication is that PCC between two variables iX  and jX
 

after controlling for other variables, 

depends to a large extent on the correlation coefficient between each of iX  and jX
 

and other variables. A 

high value of the KMO also indicates that the PCCs are generally low. Consequently, we will conclude that the 

variables ),( ji XX  belong together. Therefore, a high KMO value is an indication that there are distinct 
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groupings among the variables, and hence, a justification for using a dimensionality reduction technique. There 

are two scenarios to the case of a low KMO value: it is an indication of generally low or high simple 

correlations coefficients, and hence there are no distinct groupings among the variables. Thus, the suitability of 

factor analysis technique requires generally moderate simple correlation coefficients and low elements of the 

matrix of PCC.  

In this section, the overall KMO and the individual variable KMO has been studied. It has been shown 

that the CMD between a variable )( 1
(1) XΧ  and the estimated regression function in terms of 

(1)(2) \ΧΧΧ   is closely linked to the factor-suitability of a variable. The partial correlation coefficient 

between two variables is another important element of factor-suitability. It is observed that for any pair of 

variables, if their association is not much influenced by the other variables (i.e., high partial correlations), then 

the overall KMO is likely to be low and reflect a lack of factor-suitability. It is also shown that the CMD of a 

variable could be high when in fact, the associated individual KMO is low. It shows that moderate values of 

KMO may actually reflect factor-suitability.  

In the next section, the datasets described in Section 1 will be used to verify some of the observations 

made in the theoretical Section 2.  

3.  Exploration of Initial Dimensions in Datasets 

The computation of the KMO requires knowledge of homogeneity of sub-groupings among the indicators. This 

section therefore explores a procedure for identifying groupings among indicators that could suggest 

factor-suitability.   

Illustration1 

Dataset 1 (Performance of Sales Personnel) 

Table 2 is the correlation matrix of seven indicators ),,,( 721 xxx   in Dataset 1.   

Table 2: Correlation Matrix of Dataset 1 

 1x  2x  3x  4x  5x  6x  

2x  0.926      

3x  0.884 0.843     

4x  0.572 0.542 0.700    

5x  0.708 0.746 0.637 0.591   

6x  0.674 0.465 0.641 0.147 0.386  

7x  0.927 0.944 0.853 0.413 0.575 0.566 

Generally, the correlation coefficients in the table are high, enough to justify the use of factor. Using a cut-off 

value of 0.5, we construct sets of indicators that are pair-wisely correlated with correlation coefficient of at least 

0.5. First, take the pair )7,,2,1(,),,(  IjiXX ji with the highest correlation coefficient. This pair is 

),( 72 xx .  Thus, we obtain the first set }.,{ 721 xxS 
 

Let )7,2(1 I . If any other variable ix
 

is such that 

the correlation coefficients ,\,,5.0 11, IIiIkr
ik xx  then 1Sxi  , otherwise, 1Sxi  . Using this rule, 

it is noticed that 11 Sx  . The set 1S
 

is then updated as },,{ 1721 xxxS   and the index set is also updated as 

)1,7,2(1 I . Following the process again for the updated set, we notice that 13 Sx  . The updated sets are 
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},,,{ 31721 xxxxS 
 

and ).3,1,7,2(1 I
 

Clearly, 14 Sx 
 

since .5.0413.0
47 , xxr

 
By the rule, 15 Sx   

and we obtain the updated sets },,,,{ 531721 xxxxxS 
 

and ).5,3,1,7,2(1 I
 

Lastly, 16 Sx 
 

since 

.5.0465.0
62 , xxr Thus, the first homogeneous set is  }.,,,,{ 531721 xxxxxS 

 
We should form a new set 

2S
 

from  the elements 1Sxi  , },6,4{\ 1  IIi and naturally, .\ 11  III  Denote .\ 12 III   

However, for these two elements, 2, ,,5.0 Ijir
ji xx  . Therefore, we conclude that in this dataset, only one 

dimension underlies the correlations among the variables. 

It should be noted that the two variables which are not part of this single dimension have a low correlation 

coefficient between them, but quite high with other variables that constitute the main dimension. 

There may yet be other features of this rule that are yet to emerge. The use of another dataset with more 

variables will, hopefully, highlight all the desired features of the procedure.  

Illustration 2 (Dataset 3) 

In this dataset, there are twenty indicator variables. Denote the variables as ),,,( 2021 xxx  . The correlation 

coefficients are generally low (see Appendix), with the highest coefficient being 0.492. However, they are all 

statistically significant. Even the smallest coefficient of 0.107 is significant (with p-value of 0.015). On the basis 

of this, one may attempt to conduct factor analysis on the data. To determine the expected dimensionality in the 

dataset, we will use a cut-off value of 0.34, on the basis of the low correlation coefficients. We follow the same 

rule prescribed for Illustration 1. We construct sets of indicators that are pair-wisely correlated with correlation 

coefficient of at least 0.34. First, take the pair )20,,2,1(,),,(  IjiXX ji
 

with the highest correlation 

coefficient. This pair is ),( 65 xx . Thus, the first set is }.,{ 651 xxS 
 

Let )6,5(1 I . If any other variable ix
 

is such that the correlation coefficients 11, \,,34.0 IIiIkr
ik xx  , then 1Sxi  , otherwise, 1Sxi  . By 

this rule, 19 Sx  . The set 1S
 

is then updated as },,{ 9651 xxxS   and )9,6,5(1 I .  Following the 

process again for the updated sets, 113 Sx  , since 11, \,,34.0
13

IIiIkr xxk
 . Updating gives 

},,,{ 139651 xxxxS   and )13,9,6,5(1 I .  Now, ,34.0, 
ik xxr

 
for some 1Ik 

 
and some 1\ IIi . 

Thus, the first homogeneous set is  },,,{ 139651 xxxxS  .  

Next, form a new set 2S
 

from the elements 1Sxi  , 1\ IIi . Denote .\ 11 IIT  Take the pair 

1\,),,( IIjiXX ji 
 

with the highest correlation coefficient. This pair is ).,( 21 xx Thus, we obtain the second 

set },{ 212 xxS  . Let )2,1(2 I . Now,  ,34.0, 
ik xxr

 
for some 2Ik 

 
and some 2\ IIi . Thus, the 

second homogeneous set is  },{ 212 xxS  .  

Proceeding similarly, we obtain the sets },,,,,{ 14151118163 xxxxxS   },{ 20194 xxS   and  

},,{ 9735 xxxS  . 
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Next, to form a sixth set 6S
 

from the elements 


















5

1k

ki Sx ,  ,\

5

1


















k

kIIi  denote 


















5

1

5 \

k

kIIT . 

Then take the pair 5,),,( TjiXX ji 
 

with the highest correlation coefficient that meets the cut-off value. 

Now, for 5, ,,34.0 Tjir
ji xx  . The procedure therefore terminates. It is therefore expected that there would 

be five main dimensions in this dataset. 

The following remarks are about the detection of dimensions in this dataset.  

Remarks 3.1 

The five remaining variables in }17,12,10,8,4{5 T
 

are not independent of each other. By the procedure, 

there is an incidence of overlapping element. This occurs between the sets 1S
 

and 5S  with the overlapping 

element being }.{ 9xV   The cut-off value is chosen particularly to minimise the incidence of overlapping sets.  

Illustration 3 (Dataset 5) 

In this dataset, there are seven indicator variables. In the order described in Section 1, we will denote the 

variables as ),,,( 721 xxx  , where 1x  denotes ‘Cement’ and 7x
 

denotes ‘Fine Aggregate’ components of 

the concrete strength. From Table 3, almost all the coefficients are negative, indicating that for any two 

components, one is very low on the ingredient in the other component. Another observation is that the 

correlation coefficients are generally low, with the highest coefficient being -0.658. However, they are all 

Table 3: Correlation Matrix of Dataset 5 

 1x  2x  3x  4x  5x  6x  

2x  -0.275      

3x  -0.397 -0.324     

4x  -0.082 0.107 -0.257    

5x  0.092 0.043 0.378 -0.658   

6x  -0.109 -0.284 -0.010 -0.182 -0.266  

7x  -0.223 -0.282 0.079 -0.451 0.223 -0.178 

 

statistically significant, with exception of the coefficient of -0.010 (with p-value of 0.75) between 3x  and 6x . 

To determine the expected dimensionality in the dataset, we will use a cut-off value of 0.2, on the basis of the 

low correlation coefficients. In this case, let us suppose that an absolute value of the coefficient is considered. 

Following the rule prescribed for previous illustrations, construct sets of indicators that are pair-wisely 

correlated with absolute correlation coefficient of at least 0.2. Denote ).7,,2,1( I  Thus, the first set is 

}.,{ 541 xxS 
 

Let )5,4(1 I . Now, 11, \,,2.0
7

IIiIkr xxk
 , so .17 Sx   Updating gives 

},,{ 7541 xxxS 
 

and  ).7,5,4(1 I  Now, ,2.0, 
ik xxr for some 1Ik  and some 1\ IIi . Thus, the 

first homogeneous set is  },,{ 7541 xxxS  .  

We form a new set 2S
 

from the elements 1Sxi  , 1\ IIi . Denote .\ 11 IIT 
 
The pair 

131 \,),,(),( IIjixxXX ji 
 

has the highest absolute correlation coefficient. Thus, the initial second set is 
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}.,{ 312 xxS 
 

Let )3,1(2 I .  Now, ,2.0
2, xxk

r 2Ik  , and hence 22 Sx  . Thus, },,{ 2312 xxxS   

and )2,3,1(2 I .  Since ,2.0, 
ik xxr

 
for some 2Ik 

 
and some 2\ IIi , the second homogeneous set 

is },,{ 2312 xxxS  . We therefore expect that there would be two main dimensions in this dataset. It is also 

observed that the dimensions are distinct. 

The remaining variable in }6{)(\ 212  IIIT
 
is not independent of all the other variables since its 

correlation coefficient with all others are not insignificant. Again, the first subgroup },,{ 7541 xxxS 
 

in this 

dataset is made up of variables some of which are negatively correlated and others positively correlated.   

Remark 3.2 

In order that the procedure would work in this dataset which has widespread negative correlations among 

indicators, there was the need to fix a cut-off value using the absolute correlation coefficient. Homogeneous sets 

thus formed are made up of variables that are negatively correlated. The question is, can variables that are 

negatively correlated constitute homogeneous set? Again, can variables that are both negatively and positively 

correlated among themselves constitute a homogeneous set? To attempt an answer, we follow the procedure 

with positive cut-off value as used in the previous illustrations. First, take the pair 

  )7,,2,1(,,,  IjiXX ji with the highest correlation coefficient. This pair is  53 , xx . Thus, the first set is 

}.,{ 531 xxS 
 

Let )5,3(1 I . Now  ,2.0, 
ik xxr , for some 1Ik  )3( k and all 1\ IIi . Thus, the first 

homogeneous set is  },{ 531 xxS  .  

Attempt to form a new set 2S from the elements 1Sxi  , 1\ IIi . Denote .\ 11 IIT  The only pair 

  1\,,, IIjiXX ji  with the highest correlation coefficientis ),( 75 xx . However, since 15 I , we cannot 

have this starting pair. Thus, there is only a single homogeneous set given as },{ 531 xxS  . Therefore, only one 

main dimension is expected in this dataset.  

Generalisation of the Rule for Determining Expected Dimensions of Datasets 

Suppose the dataset is generated on a set of p variables ),,,( 21 pXXX   with correlation coefficients 

that are generally significant. On the basis of the level of correlation coefficients, we fix a cut-off value   for 

which variables may be considered to belong together if their pair-wise correlation coefficients exceed  . First, 

take the pair   ),,2,1(,,, pIjiXX ji 
 

with the highest correlation coefficient. Let this pair be  
21

, ii xx , 

and label the set as },{
211 ii xxS   and the index set },{ 211 iiI  . If the correlation coefficients  

11, \,, IIiIkr
ik xx  , then 1Sxi  , otherwise, 1Sxi  . The sets 1S  and 1I  are updated each time. 

Now, if ,, 
ik xxr for some 1Ik 

 
and all ,\ 1IIi  then the final first homogeneous set 

is },,,{
1211 giii xxxS   with index set IiiiI g  },,,{ 1211  . 
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We will form a new set 2S from the elements 1Sxi  , 1\ IIi . Denote .\ 11 IIT 
 

Consider the pair 

  1\,,, IIjixx ji  with the highest correlation coefficient that meets the cut-off value .
 

Suppose this pair is 

 
21

, ff xx . Thus, we obtain the second set },{
212 ff xxS  , and an index set  ., 212 ffI 

 
Now, if the 

correlation coefficients  22, \,, IIiIkr
ik xx  , then 1Sxi  , otherwise, 1Sxi  . The sets 2S  and 

2I  are updated each time. Now, if  ,, 
ik xxr for some 2Ik 

 
and all 2\ IIi  then we obtain a final 

second homogeneous set  
221

,,,2 gfff xxxS   with index set IfffI g  },,,{ 2212  . 

Consider all elements )( 21 SSxi  ,  ).(\ 21 IIIi 
 

Denote )(\ 212 IIIT  . To form the new 

set, take the pair 2,),,( Tjixx ji 
 

with the highest correlation coefficient that meets the cut-off value .
 

Let 

the pair be ),(
21 tt xx . Then },{

213 tt xxS  , and },{ 213 ttI  . If the correlation coefficients 

33, \,, IIiIkr
ik xx  , then 3Sxi  , otherwise, 3Sxi  . The set 3S  and 3I  are updated each time. 

Now, if ,, 
ik xxr for some 3Ik 

 
and all 3\ IIi  then we obtain the final third homogeneous set 

 
221

,,,3 gttt xxxS   with index set ItttI g  },,,{ 3213  . 

We attempt to form the qth set qS
 

from the elements




















1

1

q

k

ki Sx , .\

1

1








q

k

kIIi  Denote  


1

1

1 \





 

q

k

kq IIT . Take the pair 1,),,(  qji Tjixx
 

with the highest correlation coefficient that meets the 

cut-off value .   Thus, },{
21 ddq xxS  , and },{ 21 ddI q  .  Now, if ,, 

ik xxr for some qIk 
 

and 

all ,\ qIIi  then we obtain the final qth homogeneous set  
gqdddq xxxS ,,,

21
  with index set 

.},,,{ 21 IdddI gqq    

Now, if for some set 1lS  and index set 1lI , and for 


















l

k

ki Sx

1

, ,, 
ii xxr for all 

l

l

k

k TIIji 




1

\, , then lS  is the last set of variables in the original set of p variables and there are a total of  

l dimensions underlining the correlation matrix. 

Remarks 3.3 
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By the outlined procedure, there is an incidence of overlapping elements in two or more of the sets. The 

remaining variables in lT
 

that do not influence any dimension may not be independent of the others. If these 

‘non-classified’ variables are independent of the others, they potentially constitute a one-variable dimension. It 

is expected that the overall level of homogeneity of the dataset that determines its factor suitability would be 

affected by this non-classified set of elements and the overlapping elements.  

4  Computation of the KMO Measure of Sampling Adequacy 

 First, Table 4 presents a summary of some statistics obtained from the datasets used in the study. The 

number of homogeneous sets is obtained by the procedure of dimensionality determination discussed in Section 

2. 

Table 4: Summary Statistics of Datasets used in the Study 

Data Number Data Description 
No. of 

Indicators 
KMO Cut-off   

Number of  

Sub-groups 

1 
Sales personnel 

Performance 
7 0.616 0.50 1 

2 SubjectScores 9 0.822 0.50 2 

3 StudBenInd Attach  20 0.924 0.34 5 

4 ComPrice 19 0.734 0.30 5 

5 ConcStrength 7 0.140 0.20 1 

6 
StdtChall in Ind. 

Attach 
28 0.797 0.20 8 

In this section, we examine various values of the KMO and determine how practical the interpretation is as 

given in Table 1.  

 The discussion in the methods show scenarios of correlations under which we could expect low or high 

value of the KMO. It is pertinent therefore, to expect the value to be influenced by the number of sub-groups 

among the original set of variables. Again, the number of variables in each group may also influence the value 

of the KMO. This is the motivation for the discussion in this section. 

We can deduce from our previous discussion on Equation (3) that a KMO value which is not too high 

(see Table 1) may be an indication that there is generally one (or few) major dimension underlining the 

correlation matrix. This case is demonstrated using Dataset 1. 

Illustration 4 

Dataset 1 (Performance of Sales Personnel) 

Generally, the direct correlations given by the PCC matrix in Table 5 are high reflecting generally high 

zero-order correlations as pointed out earlier.  

Table 5: Partial Correlation Matrix for Dataset 1 

 1x  2x  3x  4x  5x  6x  7x  

1x  0.663       

2x  0.248 0.783      

3x  -0.570 0.103 0.630     

4x  0.723 -0.077 0.876 0.410    

5x  0.123 0.681 0.014 0.018 0.750   

6x  0.794 -0.398 0.763 -0.799 0.140 0.417  

7x  0.609 0.528 0.623 -0.669 -0.515 -0.413 0.632 
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It should be noted further that the diagonal elements are the KMO of the individual variables. These are not the 

coefficients of multiple determination of the variables (See Table 9) which are pointed out in the mathematical 

background.  

From Table 2, we obtain 82497.9566.0575.0884.0926.0 22222  ijr  

and from Table 5, we obtain 122616.6413.0515.0570.0248.0 22222  ijpr , 

Using Equation (3), we have .6161.0KMO  This value is the same as that in Table 4 generated in SPSS. 

Now, consider the two sets },,,,{ 531721 xxxxxS 
 

and },{ 642 xxS 
 

of variables identified earlier 

in the dataset with indexed sets )5,3,1,7,2(1 I  and ).6,4(2 I
 

Consequently, KMO is computed in 

terms of each of these components. That is, we consider the results for 

.2,1;

,

2

,

2

,

2













k

prr

r

KMO

kk

k

k

Iji

ij

Iji

ij

Iji

ij

I The two components of  2
ijpr  gives 

484215.5413.0515.0570.0248.0 2222

,

2

1





Iji

ijpr , excluding values involving )6,4(2 I , and 

943498.3413.014.0077.0723.0 2222

,

2

2





Iji

ijpr , including all values that involves variables in 

.2I  The values involved in the sum for the set 2I  are highlighted in the table with the intersection (0.799) 

counted once. Each of the values is used once in the summations. The three KMO values are summarised in 

Table 6 shown. 

 Table 6: KMO for Dataset 1 Based on Sub-groupings of Variables 

SN Grouping 
 kIji

ijr

,

2
 

 kIji

ijpr

,

2
 KMO Value 

1 All 9.8250 6.1226 0.6161 

2 1S
 

only 9.8034 5.4842 0.6413 

3  1S  3.2031 3.9435 0.4482 

Since only one main dimension is detected in the dataset, it can be deduced that on the basis of the single 

dimension in the data, the KMO of this dataset could be approximately 0.64. This value has the same description 

as the original value as being ‘mediocre’ (Table 1). 

Of interest is to assess the KMO of the individual variables of this dataset. In this dataset, variable 1x  

has the highest correlations with all other variables. Its partial correlation coefficients are therefore expected to 

be high in general. We see this in Table 5. It can be verified that the variable KMO, 663.0
ixKMO  as seen in 

Table 9. We can obtain the CMD for the variable as in Table 9.  

To highlight the point further we obtain the CMD for the models for each of the variables. The coefficient 

estimates of the regression model for 7x  in terms of the other variables and corresponding significance as well 

as the partial correlation coefficients are given in Table 7. 
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Table 7: Coefficients and Description of Model for 7x in Dataset 1 

Model 

Unstandardized 

Coefficients 

t Sig. 

Correlations 

B Std. Error Zero-order Partial 

(Constant) -173.303 14.408 -12.029 0.000   

1x  0.790 0.157 5.038 0.000 0.927 0.609 

2x  0.471 0.115 4.080 0.000 0.944 0.528 

3x  0.989 0.189 5.228 0.000 0.853 0.623 

4x  -0.882 0.150 -5.897 0.000 0.413 -0.669 

5x  -0.522 0.132 -3.941 0.000 0.575 -0.515 

6x  -0.914 0.307 -2.977 0.005 0.566 -0.413 

It is noticed that all of the variables are significant in the model (all sig. are less than 0.05), and that the variables 

have little reduction in size (in absolute terms) in PCC compared to the zero-order correlation. We present one 

other model for variable 5x  with high KMO value in Tables 9. It is noted that as much as four variables (out of 

six) are insignificant in the model, and these are those with drastic reduction in partial correlations.  

It must be pointed out that there could be a complete change in sign (from positive to negative) for which 

the partial correlation in absolute terms shows rather a small decrease or an increase and does not cause the 

variable to be insignificant. 

 

 

Table 8: Coefficients and Description of Model for 5x
 

in Dataset 1 

Model 

Unstandardized 

Coefficients 

t Sig. 

Correlations 

B Std. Error Zero-order Partial 

(Constant) -55.956 28.468 -1.966 0.056   

1x  0.158 0.194 .814 0.420 0.708 0.123 

2x  0.600 0.098 6.103 0.000 0.746 0.681 

3x  0.022 0.239 .091 0.928 0.637 0.014 

4x  0.024 0.199 .118 0.906 0.591 0.018 

6x  0.307 0.330 .930 0.357 0.386 0.140 

7x  -0.509 0.129 -3.941 0.000 0.575 -0.515 

Remark 4.1 

The models show that variables in the partial models for a variable ( ix ) would be significant for those with little 

reduction in size in partial correlation coefficients compared to the zero-order correlation. On the other hand, 

variables will not be significant in a model for those with drastic reduction in size of the partial correlations. A 

small reduction in the partial correlation, for example, is an indication of ‘consistency’ of relationship between 

the variable and the others. In this case, all groupings of variables can explain the variation in the variable, hence 

a high CMD. Thus, the presence of other variables does not influence its relationship with another. This will 
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translate into a low KMO (about 0.5). A low KMO value therefore reflects a uniform relationship with all other 

indicators and may reflect a ‘lack’ of meaningfulness of factor-suitability of the variable. A high CMD could 

therefore translate into a low to moderate individual KMO value. 

We examine these observations in Table 9 which gives the CMD ( 2R ) of all (partial) models for each of 

the variables in terms of the other variables and their corresponding KMO value, as well as the communalities 

from a specified factor solution. Table 9 shows that there is no apparent connection between variable KMO and 
2R  in general. As expected, however, a low KMO value is associated with a high 2R . It can be observed that 

a high KMO is not necessarily associated with a high communality, even though for a suitable factor solution, 

some association is quite discernible. The result shows that a one-factor model which was initially identified for 

this dataset would be more consistent with the KMO values. We can however conclude from this dataset that 

there is no definite representation of the individual KMO value. A much lower KMO (less than 0.5) in this case 

definitely suggests that the variable does not influence any dimension. 

 

Table 9: Summary of Factor and Model Statistics for each variable in  

Dataset 1 

Variable  KMO 2R  

Communality  

One Factor 

Solution 

Two-Factor 

Solution 

1 0.663 0.972 0.947 0.959 

2 0.783 0.968 0.889 0.890 

3 0.630 0.954 0.893 0.893 

4 0.410 0.905 0.436 0.853 

5 0.750 0.781 0.614 0.695 

6 0.417 0.885 0.421 0.806 

7 0.632 0.977 0.836 0.873 

Illustration 5 

Dataset 2 (Performance of High School Students in Nine Subjects) 

Table 10 is the zero-order correlation matrix of Dataset 2. Generally, the correlation coefficients are high. 

However, the coefficients are not too high among sub-groups of variables. Thus, by the argument presented 

earlier, the moderate high coefficients would cause a significant reduction in the PCC. This is precisely what we 

observe in Table 11. To verify the value of the KMO for this dataset, we compute from Table 10, the following 

sums: 

,577275.5067.0422.0160.0135.0 22222  ijr  and from Table 11,  

.206068.1413.0515.0570.0248.0 22222  ijpr . Using Equation (3), the KMO value is 0.8222. This 

value is the same as that in Table 4. 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.7, 2018 

 

69 

 

Table 10: Zero-Order Correlation Coefficient Matrix of Dataset 2 

 1x  2x  3x  4x  5x  6x  7x  8x  

2x  0.135        

3x  0.160 0.637       

4x  -0.085 0.549 0.402      

5x  0.180 0.431 0.318 0.407     

6x  0.126 0.693 0.616 0.381 0.289    

7x  0.020 0.627 0.746 0.447 0.317 0.604   

8x  -0.113 0.010 -0.018 -0.029 -0.028 -0.011 -0.019  

9x  0.045 0.692 0.464 0.504 0.386 0.395 0.422 0.067 

 

 Table 11: Partial Correlation Coefficient Matrix of Dataset 2 

 1x  2x  3x  4x  5x  6x  7x  8x  9x  

1x  0.410         

2x  0.106 0.808        

3x  0.170 0.089 0.831       

4x  -0.213 0.178 0.008 0.876      

5x  0.191 0.100 -0.005 0.227 0.881     

6x  0.032 0.451 0.184 -0.001 -0.023 0.849    

7x  -0.162 0.148 0.542 0.103 0.048 0.153 0.824   

8x  -0.118 0.008 -0.002 -0.072 -0.011 0.004 -0.022 0.415  

9x  -0.047 0.503 0.105 0.173 0.098 -0.168 -0.064 0.089 0.806 

In this datasets, only two groups of variables are identified that could constitute the main dimensions. These are  

variables with index ),6,7,3(1 I   and
 

)4,9,2(2 I .  Thus, the set of variables that are not classified has 

the index set }.8,5,1{2 T   

Hence, the following results given by 3,2,1;

,
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I  are considered. The 

values of the three components of  2
ijpr  are given in Table 12. It also gives the overall KMO value that 

involves the two sets, the combined set 21 SS   and the non-classified set   21 SS  given respectively by  
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Table 12: KMO for Dataset 2 Based on Sub-groupings of  Variables 

SN Grouping 
 kIji

ijr

,

2
 

   


 kIji

ijpr

,

2
  

KMO Value 

1 All 5.5773 1.2061  0.8222 

2 1S
 

only 3.9637 0.6978  0.8503 

3 2S only 3.9027 0.7626  0.8365 

4 
2

1i

iS  only 5.5313 1.1555 

 

0.8272 

5 




















2

1i

iS only 0.9071 0.2532  0.7818 

Since only two main dimensions are detected in the dataset, it can be deduced that the KMO of this dataset 

could be approximately 0.8503.  

As in Dataset 1, the individual variable KMO could be assessed for this dataset. Presented in Table 13 are 

the CMD ( 2R ) of all (partial) models for each of the variables in terms of the others and their corresponding 

KMO value, as well as the communalities from two- and three-factor solutions. In the table, there appears to be 

some significant correlation (obtained as 0.749 with p-value 0.02)  between 2R  and KMO.  

Table 13: Summary of Factor and Model Statistics  for each variable in 

Dataset 2 

Variable KMO         
2R  

Communality  

2-Factor 

Solution 

3-Factor 

Solution 

1 0.410 0.137 0.669 0.900 

2 0.808 0.732 0.795 0.797 

3 0.831 0.632 0.667 0.675 

4 0.876 0.405 0.519 0.624 

5 0.881 0.264 0.342 0.342 

6 0.849 0.558 0.599 0.608 

7 0.824 0.624 0.644 0.646 

8 0.415 0.026 0.388 0.974 

9 0.806 0.529 0.560 0.561 

The low 
2R  values are for those variables in the set }8,5,1{2 T  which are non-classified in along any major 

dimensions. From the table, there is no clear association between communality and the .2R  A high KMO is not 

necessarily associated with a high communality, even though the two-factor model, which was initially identified 

for this dataset, would be more consistent with the KMO values. We can however conclude from this dataset that 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.7, 2018 

 

71 

generally, there does not appear to be a clear representation of the KMO regarding the factor-suitability of the 

individual variables. However, a very low KMO definitely suggests the variable does not influence any 

dimension. The overall KMO, however, appears to reflect the general factor-suitability of the dataset. 

 Table 14 gives the computation of the KMO for various groupings in Dataset 3 (Industrial Attachment 

Benefits) as identified in Section 3.  

Table 14: KMO for Dataset 3 Based on Sub-groupings of  Variables 

SN Grouping 
 kIji

ijr

,

2
 

 kIji

ijpr

,

2
 

 KMO Value 

1 All 17.7609 1.3987  0.9270 

2 1S only 7.1020 0.5357  0.9299 

3 2S only 2.7479 0.2419  0.9191 

4 3S only 8.5097 0.5509  0.9392 

5 4S only 2.4937 0.2393  0.9125 

6 5S only 5.1622 0.4830  0.9144 

7 
5

1i

iS  only 17.0100 1.3631 

 

0.9258 

8 




















5

1i

iS only 7.2650 0.5326  0.9317 

An interesting observation is the high value of the KMO of the non-classified variables. Table 15 shows very 

high individual KMO values for all indicators. The impression is that the variables would be adequately 

explained by a suitably identified factor solution. However, from the table, there is rather a negative relationship 

between communality and KMO (correlation obtained as -0.8, with p-value 0.000 for both factor solutions). 

Thus, a high KMO is rather associated with a low communality, and this association is not connected to a 

particular factor solution. We can therefore conclude from this dataset that there does not appear to be a clear 

representation of the KMO regarding the factor suitability of the individual variables, as it is expected that a 

high KMO would be associated positively with a high communality. The table also shows rather low values of 

the CMD. This is a further indication that most of the variables are not too highly pair-wisely correlated, which 

does not support the formation of parsimonious homogeneous groups. It is therefore not surprising that in this 

dataset, several groupings were identified, with several unclassified indicators. Thus, these low to moderate 
2R  

are to be expected. It should be noticed that the lowest
2R  values are associated with those variables in the 

unclassified set }.17,12,10,8,4{6 I  The overall KMO, however, appears to reflect the general 

factor-suitability of the dataset. 
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Table 15: Summary of Factor and Model Statistics  for Variables in 

Dataset 3 

Variable  KMO 2R  

Communality  

4-Factor 

Solution 

5-Factor 

Solution 

1 0.888 0.325 0.594 0.607 

2 0.902 0.336 0.556 0.653 

3 0.927 0.338 0.498 0.621 

4 0.926 0.313 0.533 0.538 

5 0.908 0.431 0.531 0.638 

          

16 0.924 0.375 0.530 0.539 

17 0.938 0.319 0.351 0.430 

18 0.932 0.367 0.449 0.460 

19 0.894 0.345 0.578 0.579 

20 0.868 0.243 0.646 0.682 

Illustration 6 

Dataset 5 (The Concrete Compressive Strength) 

 It is recalled that in this dataset, only one dimension is formed involving only two variables ),( 53 xx . 

Thus, there are five unclassified variables with index }.7,6,4,2,1{2 I
 

In Table 16, we have the overall 

KMO value of Dataset 5 as well as the KMO of the single dimension.  

Table 16: KMO for Dataset 5 Based on Sub-groupings of Variables 

SN Grouping 
 kIji

ijr

,

2
 

 kIji

ijpr

,

2
 

 KMO Value 

1 All 1.6254 9.9743  0.1401 

2 1S only 1.0416 3.4600  0.2314 

3  1S  1.4266 9.3193  0.1328 

That PCC matrix shows very large correlations between variables after controlling for others. As pointed out, the 

high PCC values suggest highly unstable correlations between pairs of variables and are influenced by the 

presence of others. This has resulted in very low KMO values. The result shows that the identification of the 

single dimension in the dataset is appropriate and consistent with the factor structure of the data.  

 Table 17 shows very low individual KMO values for all indicators, with exception of variable 5 

(Plasticiser). The impression is that the variables could not be adequately explained by a suitably identified 

factor solution. However, from the table, though the relationship between communality and KMO appears high 

particularly for the one-factor solution (correlations obtained as 0.646 with p-values 0.117) the relationship is 

not significant. One- and Two-Factor solutions are examined as the initial dimension does not exceed two. Thus, 

the individual KMO is not clearly linked with the communality.  
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Table 17: Summary of Factor and Model Statistics  for each 

variable in Dataset 5 

Variable  KMO 2R  

Communality  

1-Factor 

Solution 

2-Factor 

Solution 

1 0.083 0.866 0.016 0.019 

2 0.095 0.861 0.105 0.692 

3 0.136 0.836 0.372 0.402 

4 0.201 0.857 0.681 0.682 

5 0.613 0.662 0.600 0.761 

6 0.066 0.802 0.003 0.628 

7 0.108 0.856 0.386 0.386 

The table also shows rather high values of CMD, suggesting that each variable can be reliably predicted by the 

others. It further indicates that most of the variables are significantly pair-wisely correlated. However, this does 

not translate into formation of well-defined homogeneous groups. There is negative correlation (obtained as 

-0.906 with p-value 0.005) between 2R  and KMO. The element with the highest KMO (variable 5) rather has 

the least (moderate) 2R  value, which is expected. The KMO is consistent with the factor structure of the data 

as it has very few elements constituting the single dimension.  

5 Conclusions and Recommendations 

The paper attempts to identify problems encountered with the use of KMO as a suitability measure for 

Factor Analysis technique. It has made use of a number of datasets that are selected to highlight various 

problems.  

 In order to understand the factor structure of any data, the paper has systematically described an approach 

that explores the dimensionality of the dataset that could justify the use of Factor Analysis. The procedure shows 

that there are some indicators that may not influence any of the dimensions. It is observed that this set of 

‘unclassified’ indicators could be excluded in the determination of the factor-suitability of the data. In addition, 

there could be a number of indicators that influence multiple dimensions, and could adversely affect the 

factor-suitability, especially when they are many. This may be avoided if variables are constructed so that they 

do not correlate too highly. Exploring dimensions in future studies will provide an algorithm that will make easy 

applications in datasets with several variables. 

Another important observation is that the dimensionality of datasets could be affected by prevalence of 

negative correlations among indicators. Negative correlations distort the notion of homogeneity. As a result, in 

datasets with negative correlations, the determination of dimensionality is eventually based on a few significant 

positive correlations, leading to a small adequacy measure. This has the tendency to portray such datasets as 

unsuitable for factor analysis.  

It is found that for KMO to be high, the zero-order and partial correlations must be almost the same for 

indicators that influence the same dimension. Following this pattern, it is found that generally, a KMO value 

within the range 0.6 – 0.7 is typically a good measure of factor-suitability. Although the overall KMO typically 

reflects factor-suitability, the KMO of the individual variables does not appear to have a general representation. 

A high variable KMO is found to be associated with moderate coefficient of multiple determination, but its 

relation to the communality is not discernible for a suitably selected factor solution.  

The study further shows that the KMO may not be a golden rule for determining factor-suitability. The 

nature of the relationship among indicators and the design of the study could inform the factor-suitability of the 

data. 
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Appendix 

 

  

 

 

 

Table A1: Correlations among Indicators of Dataset 3 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

2 0.476                   

3 0.276 0.347                  

4 0.269 0.293 0.396                 

5 0.361 0.327 0.360 0.416                

6 0.345 0.332 0.243 0.293 0.492               

7 0.219 0.274 0.400 0.289 0.254 0.296              

8 0.250 0.285 0.203 0.179 0.326 0.334 0.352             

9 0.255 0.268 0.338 0.237 0.402 0.388 0.368 0.326            

10 0.232 0.287 0.224 0.203 0.310 0.266 0.290 0.324 0.316           

11 0.162 0.239 0.292 0.318 0.278 0.278 0.352 0.175 0.314 0.288          

12 0.279 0.274 0.331 0.259 0.290 0.263 0.345 0.278 0.292 0.298 0.372         

13 0.277 0.255 0.340 0.325 0.401 0.369 0.302 0.297 0.412 0.269 0.415 0.455        

14 0.200 0.245 0.373 0.311 0.379 0.206 0.313 0.222 0.381 0.245 0.338 0.372 0.394       

15 0.277 0.249 0.307 0.352 0.391 0.324 0.306 0.282 0.339 0.334 0.370 0.313 0.445 0.392      

16 0.204 0.206 0.255 0.318 0.237 0.247 0.308 0.201 0.271 0.274 0.427 0.284 0.373 0.346 0.427     

17 0.266 0.301 0.286 0.257 0.296 0.246 0.307 0.234 0.336 0.264 0.305 0.288 0.257 0.394 0.391 0.339    

18 0.255 0.246 0.299 0.245 0.321 0.283 0.351 0.198 0.295 0.268 0.366 0.306 0.306 0.380 0.387 0.453 0.424   

19 0.160 0.269 0.277 0.313 0.242 0.239 0.324 0.282 0.257 0.252 0.278 0.279 0.257 0.314 0.370 0.375 0.266 0.319  

20 0.193 0.193 0.162 0.228 0.232 0.180 0.170 0.107 0.182 0.209 0.219 0.197 0.225 0.272 0.238 0.298 0.187 0.286 0.438 
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Table A2: Partial Correlation Matrix of Dataset 3 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

1 0.888                    

2 0.326 0.902                   

3 0.042 0.128 0.927                  

4 0.044 0.058 0.176 0.926                 

5 0.096 0.007 0.088 0.202 0.908                

6 0.106 0.090 -0.062 0.029 0.275 0.911               

7 -0.004 0.009 0.194 0.058 -0.088 0.060 0.929              

8 0.039 0.076 -0.062 -0.053 0.096 0.098 0.180 0.906             

9 0.011 -0.005 0.082 -0.065 0.098 0.143 0.107 0.077 0.942            

10 0.012 0.098 -0.010 -0.041 0.078 -0.008 0.048 0.137 0.085 0.946           

11 -0.099 0.041 0.012 0.087 -0.008 0.049 0.105 -0.072 0.050 0.084 0.938          

12 0.095 0.017 0.077 -0.007 -0.017 -0.005 0.078 0.063 -0.033 0.078 0.119 0.937         

13 0.038 -0.019 0.059 0.036 0.071 0.093 -0.030 0.064 0.144 -0.029 0.141 0.228 0.924        

14 -0.051 0.016 0.105 0.031 0.135 -0.127 0.023 -0.004 0.129 -0.037 0.035 0.114 0.088 0.937       

15 0.059 -0.044 0.011 0.072 0.085 0.035 -0.005 0.031 0.007 0.100 0.051 -0.024 0.162 0.074 0.948      

16 0.015 -0.034 -0.026 0.091 -0.090 0.013 0.029 0.002 -0.013 0.044 0.179 -0.020 0.109 0.044 0.136 0.924     

17 0.052 0.088 0.008 0.017 0.003 -0.016 0.037 0.027 0.101 0.013 0.039 0.033 -0.081 0.133 0.141 0.056 0.938    

18 0.046 -0.011 0.042 -0.066 0.071 0.058 0.105 -0.044 -0.005 0.028 0.063 0.033 -0.026 0.094 0.054 0.214 0.198 0.932   

19 -0.094 0.082 0.039 0.095 -0.050 0.030 0.088 0.122 0.018 0.019 -0.010 0.056 -0.060 0.045 0.124 0.120 0.014 0.019 0.894  

20 0.075 0.011 -0.058 0.026 0.051 0.002 -0.030 -0.093 -0.012 0.066 0.021 -0.000 0.033 0.087 -0.031 0.068 -0.017 0.085 0.314 0.868 

http://www.iiste.org/

