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Abstract:    

The aim of this paper is to develop an improved approximation method for the calculation of numerical solution 

of initial value problems ooo yxy )(  in Ordinary differential equations. In this study, we extend in the 

intent of Euler, to propose a newly second order Euler method. The proposed method applied on some IVP and 

compared with the Improving the Modified Euler Method and other existing methods and it explains that the 

results of proposed  method are logical, accurate and convergent of order two. In this study a linear and non-

linear 0)( xf  exactly stable expressed one step numerical integration algorithm is developed for solving 

non-linear and linear initial value problems (IVPs) in Ordinary differential equations. The accuracy and stability 

properties of the method are inquired and expressed to yield at least second order and A-stable. Through the 

simple improvement we established and able to find very much improve performance by improved Modified 

Euler method. The results acquired by the numerical experiments indicate the effectiveness of the proposed 

method in solving problems.  

Keywords: ODEs, initial value problems, stability, accuracy, convergent, Numerical Values, Euler method, 

modified and Improved. 

 

Introduction: 

 In Mathematics, one of the most significant methods are used in differential equations for solving modeling 

problems of physical and engineering sciences. Recently, these have been developed in Medicine, Biology, 

Anthropology, Economics and Business and many more [1]. A general form of the nth order ordinary differential 

equation is described as: 
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Also unfortunately, many could not be solved exactly. A nonlinear ODE is one which has either non-linearity in 

its dependent variables or contains product of dependent vra Nevertheless, these types of problems, which we 

face when we are using the analytical techniques. To resolve such issues that arise due to different kind of errors, 

we use numerical methods, precisely numerical integration with initial value problems but spread of error in such 

numerical schemes can somehow be controlled [2]. It used forward Euler method to make it Improved Modified 

Euler method of order two. IME method also gives better results as compared to the Euler method and Modified 

Euler method [3]. The result of this work was reducing the size of iterations. It may be noted that this method is 
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very power and efficient as to find analytical and numerical solutions of ordinary differential equations (ODEs) 

[4]. The new method implemented on the some standard (IVPs). The comparison between Modified Euler 

method and other existing Euler method has been discussed. In this study, a newly improvement that had 

contributed to a third (3
rd

) order proposed.  It was concluded that the Modified Euler method is better, efficient 

and accurate.[5]. In this study show Euler method and fourth order Range-kutta method (RK-Four) for solving 

initial value problems (IVPs) in ordinary differential equations. We compare numerical solutions with the exact 

solution to verify the accuracy. So many numerical problems are given to show the reliability [7]. In this study, a 

new numerical technique is proposed. This study shows the numerical comparison between Adomian 

decomposition  method and Runge - Kutta method. The numerical results are most accurate by imple-menting 

this new method [8]. This method results to be of second order and stable. Numerical experiments are also 

discussed. In this algorithm, the author has presented at low cost used by the method as it is shown in the table 

via CPU values [9]. It was shown that the modified improved modified Euler method is of order two. Better 

performance has been achieved [10]. Even then there be a big count of ordinary differential equations whose 

solution could not be found in closed form so we have to use numerical methods to find approximately solutions 

of an ODE with the dictated initial condition. Many mathematicians had analyzed differential equations and 

added to the areas including Newton, Leibniz, the Bernoulli family and Euler. 



Methodology and Problem Statement: 

Euler method: The Euler method is the most uncomplicated, not only of completely one-step methods, but also 

of completely methods for the estimate solution of initial value problems. 
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Therefore, the above method expressed as follows: 
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 And the Trapezoidal rule as: 
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 By putting  the forward Euler step for the missing y-values to find the Modified Euler (ME) method. 
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 This method can be written as: 
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 The Improved Euler method (IEM): 
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 Above equation can be written as: 

           

),(),(,

)(
2

121

211

hkyhxfandkyxfkwhere

kk
h

yy

nnnn

nn





             (1.8) 

  

 Improved Modified Euler method: 

 In this work, the author Improved the Modified Euler method by putting the forward Euler method, instead of 

yn in the inner-function for the rating of the Modified Euler method[3]. This improvement conduct to a new 

method called IME method. It is given as: 
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That is, yn in ME method (1.5) was replaced ),(, 11 nxn yxfkwherehky  . Nevertheless, it 

had been showed that the performance of IME method is very poor as compared to Modified Euler method. 

Therefore, thus the new improvement of the Euler method is proposed, which is also known as MIME method 

[10]. This was achieved by using ),(2 nnn yxfhy   to replace yn in IME method (1.9) to develop, 
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Known as Modified Improved Modified Euler method. We extend the Euler method by substituting 

),(,4 11 nnn yxfkwherekhy   instead by yn in Improved Modified Euler method (1.9), to 

propose the following equation:  
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 Called proposed method, Modified improved Explicit Euler method. This method is very much better 

performance for the numerical solutions of Ordinary differential equations with initial value problems (IVPs) 

stable, convergent and accurate this method is also called second order. 

 

STABILITY FUNCTION: 

Stability polynomial function analysis of one step method is generally accomplished applying the linear model 

problem 

xxyxyyy oo  ,)(,' 0
                                                    (1.12) 

Where   is complex. And y(x) can be written as: 
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Suppose that hz      then, the universal form of the stability polynomial function of new proposed 

method is: 
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The stability polynomial function of the newly method presents that it is a second order proposed method.      

 

Results and Discussions: 

In this work, the absolute errors of numerical values of y(x) are computed for the initial value problems in the 

examples which are presented in table1-3. These calculations were accomplished applying varying step-size of 

h=0.2, 0.0785 and 0.2 respectively. By applying the proposed method on problems, we get the solutions of IVPs. 

    These are all the following three problems 
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The following graphs and tables explain the results and absolute error of numerical problems. 
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1.

     

Table no.1 Numerical Results of problem No 1. 

 

 

Graphical Representation of Numerical Values of Example No 1. 

 

 

 

1 2 3 4 5 6 7 8 9 10

MIME 1.244 1.58657 2.04959 2.65979 3.44987 4.45974 5.7382 7.34488 9.35265 11.8505

IME 1.248 1.59635 2.06753 2.68906 3.49461 4.52541 5.8319 7.47584 9.53283 12.0954

New 1.243 1.5839 2.04435 2.65075 3.43536 4.43758 5.70548 7.29779 9.2862 11.7583

Exact 1 1.24281 1.58365 2.04424 2.65108 3.43656 4.44023 5.7104 7.30606 9.29929
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Figure1. Graphical Representation of Absolute Error of Problem No 1.  

Table No.2 Numerical Results of Problem No 2. 

No. Iteration         Exact New IME MIME Error new Error IME Error MIME 

1 0 1.081702059 1.082064862 1.081822993 1.081702059 1.082064862 1.081822993 

2 0.0984914 1.170079748 1.170865994 1.170341799 1.071579748 1.072365994 1.071841799 

3 0.19891237 1.265679422 1.266960011 1.266106177 1.066779422 1.068060011 1.067206177 

4 0.30334668 1.369092306 1.370950146 1.369711338 1.065792306 1.067650146 1.066411338 

5 0.41421356 1.480958203 1.483490262 1.481801749 1.066758203 1.069290262 1.067601749 

6 0.53451114 1.601969525 1.605289225 1.603075277 1.067469525 1.070789225 1.068575277 

7 0.66817864 1.732875646 1.737115678 1.734287678 1.064675646 1.068915678 1.066087678 

8 0.82067879 1.874487631 1.879803252 1.876257492 1.053787631 1.059103252 1.055557492 

9 1 2.027683372 2.034256265 2.029871353 1.027683372 1.034256265 1.029871353 

10 1.21850353 2.19341314 2.201455947 2.19608977 0.97491314 0.982955947 0.97758977 
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Figure2. Graphical Representation of Absolute Error of Problem 2. 

Table No.3 Numerical Results of Problem No 3. 

No. Iteration Exact New IME MIME Error New Error IME   Error MIME 

1 1 1.221 1.224 1.222 0.221 0.224 0.222 

2 1.105170918 1.490841 1.498176 1.493284 0.385670082 0.393005082 0.388113082 

3 1.221402758 1.820316861 1.833767424 1.824793048 0.598914103 0.612364666 0.60339029 

4 1.349858808 2.222606887 2.244531327 2.229897105 0.87274808 0.894672519 0.880038297 

5 1.491824698 2.713803009 2.747306344 2.724934262 1.221978312 1.255481647 1.233109564 

6 1.648721271 3.313553474 3.362702965 3.329869668 1.664832204 1.713981695 1.681148397 

7 1.8221188 4.045848792 4.11594843 4.069100734 2.223729992 2.293829629 2.246981934 

8 2.013752707 4.939981375 5.037920878 4.972441097 2.926228668 3.02416817 2.95868839 

9 2.225540928 6.031717259 6.166415154 6.076323021 3.806176331 3.940874226 3.850782092 

10 2.459603111 7.364726774 7.547692149 7.425266732 4.905123663 5.088089038 4.96566362 
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                Figure3. Graphical Representation of Absolute Error of Problem No 3. 

 

Conclusion: 

In this study, the method has formed at improving as compared to Modified Euler method. The comparison 

between the proposed method and other existing Euler methods. Modified Improved Explicit Euler method owns 

wider area of absolute stability. We have also gone on to prove that proposed method is also of order two. The 

absence of requirement of hardware and software stained the level from our numerical results.  
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