www.iiste.org

On Quasi-invertibility and Quasi-similarity of Operators in Hilbert Space.

Kikete D.W.*, Luketero S.W., and Waihenya S.K

School of Mathematics, University of Nairobi, P.O. Box 30197, 00100 NAIROBI, KENYA.

* E-mail of the corresponding author: kiketedn@gmail.com

Abstract

In this paper we show that if two operators A and B are quasi-invertible then AB and BA are also quasi-similar. We also show that if two operators S and T are isometric ST is consistent in invertibility under further hypothesis.

AMS subject classification: 47B47, 47A30, 47B20

Keywords and phrases: Quasi-similarity, quasi-affinity and consistent in invertibility.

INTRODUCTION

Let *H* be a complex Hilbert space and B(H) denote the Banach algebra of all bounded linear operators on *H*. The term operator is meant to imply boundedness and linearity. An operator $X \in B(H)$ is said to be a quasiaffinity if *X* is both one-to-one and has a dense range. Then two operators *A* and *B* are said to be similar if there exists an invertible operator *S* such that AS = SB, while *A* and *B* are said to be quasisimilar if there exists quasiaffinities *X* and *Y* such that AX = XB and BY = YA.

For an operator $B \in B(H)$, we say that *B* is consistent in invertibility (CI) if for each $A \in B(H)$, *AB* and *BA* are invertible or non-invertible together. We show that if two operators *A* and *B* are quasi-invertible then *AB* and *BA* are quasisimilar. We also show that if two operators *S* and *T* are isometric *ST* is consistent in invertibility under further hypothesis.

THEOREM 1

Let A, $B \in B(H)$ be quasi-invertible operators then AB and BA are quasisimilar operators.

Proof

Consider the equations

(BA)B = B (AB) and (AB)A = A (BA)

Let H = BA and K = AB. Then we have that: HB = BK and KA = AH.

Thus *H* and *K* are quasi-similar. Hence *AB* and *BA* are quasi-similar operators.

Corollary 1

Let A, $B \in B(H)$ be quasi-invertible operators then $\sigma(AB) = \sigma(BA)$ under any of the following conditions.

- i. AB and BA are hyponormal
- ii. AB is dominant and (BA)* is M-hyponormal
- iii. *AB* and *BA* are p hyponormal with *U* and *V* unitary in the polar decomposition AB = U/AB/ and BA = V/BA/

Thus, we also have $\sigma_e(AB) = \sigma_e(BA)$

Corollary 2

If *A* is a quasi-invertible operator, then we have that $\sigma_e(AA^*) = \sigma_e(A^*A)$

Proof

First note that if A is quasi-invertible, then A^* is also quasi-invertible. Hence by theorem 1 above, we have that AA^* and A^*A are quasi-similar. But $AA^* \ge 0$ and $A^*A \ge 0$. Hence by corollary 1, we have $\sigma_e(AA^*) = \sigma_e(A^*A)$.

An operator $B \in B(H)$ is a *CI* operator if for each $A \in B(H)$, *AB* and *BA* are invertible or non-invertible together. Thus *B* is a *CI* operator if and only if $\sigma(AB) = \sigma(BA)$. It has been shown by Halmos P.R. that if *B* is invertible then for any $A \in B(H)$ we have $AB = B^{-1}(BA)B$. Thus *AB* and *BA* are similar operators and hence $\sigma(AB) = \sigma(BA)$.

Corollary 3

Let $B \in B(H)$ be quasi-invertible, then B is a CI operator.

Proof

By corollary 2, we have that $\sigma(B^*B) = \sigma(BB^*)$. Hence *B* is a *CI* operator.

Corollary 4

Let $B \in B(H)$ be such that $0 \notin W(B)$, i.e. 0 does not belong to the numerical range of B, then B is a CI operator.

Proof

First note that if $0 \notin W(B)$ then both B and B* are quasi-invertible. Hence by corollary 3 above both B and B*

are CI operators.

THEOREM 2

If *B* is an M – hyponormal operator satisfying the operator equation $BX = XB^*$ where X is a quasi-invertible operator, then *B* is a *CI* operator.

Proof

Since *B* is M – hyponormal, $BX = XB^*$ implies $B^*X = XB$.

Using the operator equation above, we have that:

$$B*BX = B*XB* = XBB*$$

And BB*X = BXB = XB*B

Hence BB^* and B^*B are quasi-similar. Thus $\sigma(B^*B) = \sigma(BB^*)$ and B is a CI operator.

Corollary 5

If an M – hyponormal operator B is quasisimilar to its adjoint, then B is a CI operator.

THEOREM 3

Let *S* and *T* are isometric operators. Then the operator *ST* is a *CI* operator if and only if both *S* and *T* are unitary.

Proof

Both S and T are isometric implies that ST is also an isometry. Hence

(ST)*ST = IT*S*ST = I $T^*(S^*S)T = I$

But *S* and *T* are unitary, hence $S^*S = I = SS^*$ and $T^*T = I = TT^*$ thus

 $T^{*}(S^{*}S)T = S^{*}S$ and $T^{*}(SS^{*})T = S^{*}S$

Since S is unitary.

Hence *SS*^{*} is similar to *S***S* and therefore $\sigma(S^*S) = \sigma(SS^*)$. Similarly, $\sigma(T^*T) = \sigma(TT^*)$. From which it

follows that both *S* and T are *CI* operators. Also *S** and *T** are *CI* operators.

Corollary 6

If *A* and *B* are normal operators and $AB^* = B^*A$, then A+iB is a *CI* operator.

Proof

 $AB^* = B^*A$ implies $(AB^*)^* = (B^*A)^*$ i.e. $BA^* = A^*B$

It is sufficient to show that A+iB is also normal

$$(A+iB)^* = A^* - iB^*$$

 $(A+iB)^*(A+iB) = (A^* - iB^*)(A+iB)$
 $= A^*A + iA^*B - iB^*A + B^*B$
 $= A^*A + i(A^*B - B^*A) + A^*B$

Also

$$(A+iB)(A+iB)^* = (A+iB) (A^* - iB^*)$$

$$= A^*A - iAB^* + iBA^* + BB^*$$

$$= A^*A + i(BA^* - AB^*) + BB^*$$

$$= A^*A + i(A^*B - B^*A) + A^*B \quad \text{by normality of both } A \text{ and } B.$$

Hence $(A+iB)(A+iB)^* = (A+iB)^*(A+iB)$. Thus (A+iB) is a CI operator.

THEOREM 4

Let *A*, *B*, $X \in B(H)$ satisfy the operator equation AXB = X, where *X* is a quasi-invertible operator. Further, let *A* and *B* be quasi-normal operators, then *A* and *B** are *CI* operators.

Proof

Since *A* is quasi-normal, we have $[A^*A, A] = 0$ i.e. $A^*AA - AA^*A = 0$

By AXB = X it follows that

AA*AXB	=	AA*X
A*AAXB	=	AA*X
A*AX	=	A*AX

Thus $A^*AX - A^*AX = 0$ implies $(A^*A - A^*A)X = 0$. Therefore, $A^*A - A^*A = 0$ since the operator X has dense

range. Hence A is a CI operator.

Further, if *B* is quasi-normal, then $[BB^*, B] = 0$ and therefore $BB^*B = BBB^*$. By the hypothesis that AXB = X, it follows that:

AXBB*B	=	XB*B
AXBBB*	=	XB*B
XBB*	=	XB*B

Thus $X(BB^* - B^*B) = 0$. Hence $BB^* = B^*B$ since X has dense range. Therefore, B^* is a CI operator.

REFERENCES

- Duggal B.P., Quasisimilar p-hyponormal operators, Integral Equations Oper. Th. Vol.26(1996), 338-346
- 2. Duggal B.P., A generalized commutativity theorem, Zeits. Ana. Vol.10(1991), 265-274
- Gong W. and Han D., Spectrum of the product of operators and compact pertubation, Proc.Amer. Math. Soc. Vol.20 No.3 (1994), 755-760
- Williams J.P., Equality of essential spectra of quasisimilar quasinormal operators, J. Operator Theory Vol.3 (1980), 57-69
- 5. Williams J.P., Quasisimilar and hyponormal operators, J. Operator Theory Vol.5 (1981), 127-13