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Abstract 

In this paper we show that if two operators A and B are quasi-invertible then AB and BA are also quasi-similar. 

We also show that if two operators S and T are isometric ST is consistent in invertibility under further 

hypothesis.  
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INTRODUCTION 

Let H be a complex Hilbert space and B(H) denote the Banach algebra of all bounded linear operators on H. The 

term operator is meant to imply boundedness and linearity. An operator X ∈ B(H) is said to be a quasiaffinity if X 

is both one-to-one and has a dense range. Then two operators A and B are said to be similar if there exists an 

invertible operator S such that AS = SB, while A and B are said to be quasisimilar if there exists quasiaffinities X 

and Y such that AX = XB and BY = Y A. 

For an operator B ∈ B(H), we say that B is consistent in invertibility (CI) if for each A∈ B(H), AB and BA are 

invertible or non-invertible together. We show that if two operators A and B are quasi-invertible then AB and BA 

are quasisimilar. We also show that if two operators S and T are isometric ST is consistent in invertibility 

under further hypothesis.  

THEOREM 1 

Let A, B ∈ B(H) be quasi-invertible operators then AB and BA are quasisimilar operators. 

Proof 

Consider the equations 
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(BA)B = B (AB) and (AB)A = A (BA) 

Let H = BA and K = AB. Then we have that: HB = BK and KA = AH. 

Thus H and K are quasi-similar. Hence AB and BA are quasi-similar operators. 

 

Corollary 1 

Let A, B ∈ B(H) be quasi-invertible operators then  (AB) =  (BA) under any of the following conditions. 

i. AB and BA are hyponormal 

ii. AB is dominant and (BA)* is M-hyponormal  

iii. AB and BA are p – hyponormal with U and V unitary in the polar decomposition AB = U|AB| and BA = 

V|BA| 

Thus, we also have ( ) ( )e eAB BA   

Corollary 2 

If A is a quasi-invertible operator, then we have that 
* *( ) ( )e eAA A A   

Proof 

First note that if A is quasi-invertible, then A* is also quasi-invertible. Hence by theorem 1 above, we have that 

AA* and A*A are quasi-similar. But AA*  0 and A*A  0. Hence by corollary 1, we have 

* *( ) ( )e eAA A A  . 

 

An operator B ∈ B(H) is a CI operator if for each A ∈ B(H), AB and BA are invertible or non-invertible together. 

Thus B is a CI operator if and only if ( ) ( )AB BA  . It has been shown by Halmos P.R. that if B is 

invertible then for any A ∈ B(H) we have 
1
( )BA BAB B


 . Thus AB and BA are similar operators and hence 

( ) ( )AB BA  . 

Corollary 3 

Let B ∈ B(H) be quasi-invertible, then B is a CI operator. 
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Proof 

By corollary 2, we have that 
* *( ) ( )B B BB  . Hence B is a CI operator. 

Corollary 4 

Let B ∈ B(H) be such that ( )0 W B , i.e. 0 does not belong to the numerical range of B, then B is a CI operator. 

Proof 

First note that if ( )0 W B then both B and B* are quasi-invertible. Hence by corollary 3 above both B and B* 

are CI operators. 

THEOREM 2 

If B is an M – hyponormal operator satisfying the operator equation BX = XB* where X is a quasi-invertible 

operator, then B is a CI operator. 

Proof 

Since B is M – hyponormal, BX = XB* implies B*X = XB.  

Using the operator equation above, we have that: 

  B*BX = B*XB* = XBB*  

And  BB*X = BXB = XB*B 

Hence BB* and B*B are quasi-similar. Thus 
* *( ) ( )B B BB  and B is a CI operator. 

Corollary 5 

If an M – hyponormal operator B is quasisimilar to its adjoint, then B is a CI operator.   

THEOREM 3 

Let S and T are isometric operators. Then the operator ST is a CI operator if and only if both S and T are unitary. 

Proof 

Both S and T are isometric implies that ST is also an isometry. Hence 

(ST)*ST = I 

T*S*ST = I 
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T*(S*S)T = I 

But S and T are unitary, hence S*S = I =SS* and T*T = I = TT* thus 

T*(S*S)T = S*S and T*(SS*)T = S*S 

Since S is unitary. 

Hence SS* is similar to S*S and therefore
* *( ) ( )S S SS  . Similarly, 

* *( ) ( )T T TT  . From which it 

follows that both S and T are CI operators. Also S* and T* are CI operators. 

Corollary 6 

If A and B are normal operators and AB* = B*A, then A+iB is a CI operator. 

Proof 

AB* = B*A implies (AB*)* = (B*A)* i.e. BA* = A*B 

It is sufficient to show that A+iB is also normal 

(A+iB)*  =  A* - iB*  

(A+iB)*( A+iB)  =  (A* - iB*)( A+iB)  

    =  A*A + iA*B - iB*A + B*B 

    = A*A + i(A*B - B*A) + A*B 

Also  

  (A+iB)( A+iB)*  =  ( A+iB) (A* - iB*)  

    =  A*A – iAB* + iBA* + BB* 

    = A*A + i(BA* - AB*) + BB* 

    = A*A + i(A*B - B*A) + A*B by normality of both A and B. 

Hence (A+iB)( A+iB)* = (A+iB)*( A+iB). Thus (A+iB) is a CI operator.  

THEOREM 4 

Let A, B, X ∈ B(H) satisfy the operator equation AXB = X, where X is a quasi-invertible operator. Further, let A 

and B be quasi-normal operators, then A and B* are CI operators. 
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Proof 

Since A is quasi-normal, we have [A*A, A] = 0 i.e. A*AA – AA*A = 0 

By AXB = X it follows that 

  AA*AXB   =   AA*X 

  A*AAXB  =  AA*X 

  A*AX  =  A*AX 

Thus A*AX – A*AX = 0 implies (A*A – A*A)X = 0. Therefore, A*A – A*A = 0 since the operator X has dense 

range. Hence A is a CI operator. 

Further, if B is quasi-normal, then [BB*, B] = 0 and therefore BB*B = BBB*. By the hypothesis that AXB = X, it 

follows that: 

  AXBB*B   =  XB*B 

  AXBBB*   =   XB*B 

  XBB*   =   XB*B 

Thus X(BB* - B*B) = 0. Hence BB* = B*B since X has dense range. Therefore, B* is a CI operator. 
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