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Abstract: In order to model price variations in market, finance engineers may employ the 

concept of Levy distribution. The slow fall off of  the Levy  distribution model is a good 

match after price changes. In this paper, a new weighted model is introduced which would be 

obtained by assigning weights to Levy distribution. This work provides an insight to some 

basic distributional properties of this distributions such as Moments, moment generating 

function, Skewness, kurtosis, Shannon’s entropy etc. Maximum likelihood estimation and 

method of moments are employed to estimate the model parameters. For the purpose of 

illustration the proposed model would be applied to the real data set. 

Keywords: Levy distribution, weighted distribution, Maximum likelihood estimation and 

Shannon’s entropy. 

 

1. Introduction 

 Levy distribution   is a continuous probability distribution. In spectroscopy, Levy distribution 

with frequency as a non-negative and dependent variable is also known as Van-der Waals 

profile. It is a special case of the inverse gamma distribution. 

 

The density function (pdf) of the Levy distribution is given by  

𝑓(𝑥, 𝑎, 𝑐) = √
𝑐

2𝜋
  

𝑒
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where  𝑎  is the location parameter and c is the scale parameter. 

Its mean and variance are given by  

𝜇1
′ = 𝜇2 = ∞         (2) 

By putting = 0 , the pdf of one parametric Levy distribution  is obtained which is given as  
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2. Weighted Levy distribution 

Weighted distribution theory gives an integrated method to study with model design and data 

interpretation problems. Weighted distributions arise commonly in studies connected to 

reliability, survival analysis, analysis of family data, biomedicine, ecology and several other 

areas, see Stene (1981) and Oluyede and George (2002). Several authors would have been 

presented important consequences on weighted distributions, Rao (1965) had presented a 

unified model of weighted distribution and known several sampling situations that can show 

by weighted distributions. These situations occur when the recorded observations cannot be 

considered as a random sample from the original distributions. This imply in some cases it is 

not likely to work with a random sample from population. Zelen (1974) presented weighted 

distribution to represent what is called as a length-biased sampling. Patil and Ord (1976) 

studied a size biased sampling and related invariant weighted distributions. Gupta and 

Tripathi (1996) studied the weighted version of the bivariate logarithmic series distribution, 

which has applications in many fields such as: ecology, social and behavioural sciences. 

Ahmed et al. (2016) discussed length biased weighted Lomax distribution with its 

applications. 

To existent the idea of a weighted distribution, suppose that X is a nonnegative random 

variable with its probability density function (pdf) 𝑓(𝑥), then the p.d.f. of the weight random 

variable 𝑋𝑤 is known by 

𝑓𝑤(𝑥) =
𝑤(𝑥)𝑓(𝑥)

𝐸(𝑤(𝑥)) 
                 𝑥 ≥ 0                         (4) 

where 𝑤(𝑥) be a non-negative weight function. 

Depending upon the choice of the weight function 𝑤(𝑥), we have different weighted models. 

            The one parametric weighted Levy distribution is obtained by taking the weights 𝑥Ɵ, 

to the one parametric levy distribution. 

 In this paper, the one parametric weighted Levy distribution is proposed with pdf 

            𝑓(𝑥, Ɵ, 𝑐) =
𝑥𝜃−3/2(

𝑐

2
)

1
2

−𝜃
𝑒
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                   (5)                                                              

where Ɵ  and c are scale parameter and  ∫ 𝑓(𝑥, Ɵ, 𝑐)𝑑𝑥 = 1
∞

0
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3. Statistical Properties 

  In this section we shall discuss structural properties of one parametric weighted Levy 

distribution, especially mode, moments, coefficient of variation, moment generating function, 

skewness, and kurtosis.  

3.1 Moments 

 Suppose X denote the random variable of one parametric weighted Levy distribution with 

parameters Ɵ and c, then   

    𝐸(𝑋𝑟) = 𝜇𝑟
′ = ∫ 𝑥𝑟∞

0
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                = 
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                                                                    (6)                                                                                                                                   

Substituting   r = 1,2,3,4 we get first four moments 

Mean = 𝜇1= 
′ −𝑐

2𝜃+1
                                                 

                  𝜇2= 
′ 𝑐2

(2𝜃+1)(2𝜃+3)
                                          

                𝜇3= 
′ −𝑐3

(2𝜃+1)(2𝜃+3)(2𝜃+5)
                               

Variance  = 𝜇2 = 𝜇2
′ − (𝜇1

′ )2 =
−2𝑐2

(2𝜃+1)2(2𝜃+3)
                                         

Standard Deviation 𝝈 =
𝒊𝒄√𝟐

(2𝜃+1)√(2𝜃+3)
                                                        

Coefficient of Variation  𝐶. 𝑉 =
−𝑖

√(𝜃+3/2)
                                                   

3.2 Moment generating function 

In this sub section we derived the moment generating function of one parametric weighted 

Levy distribution. From the definition of moment generating function we have 

 𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) =  ∫ 𝑒𝑡𝑥∞
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                          =∑
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𝑗!
 𝜇𝑗

′∞
𝑗=0  

          ⟹ 𝑀𝑋(𝑡) = ∑
(𝑡)𝑗
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(𝑐/2)𝑗Γ(−𝑗−𝜃+1/2)

Γ(−𝜃+1/2)

∞
𝑗=0                                                 (7) 

3.3 Skewness and Kurtosis 

Coefficient of skewness one parametric weighted Levy distribution is given by 

         𝑺𝒌 =
𝟐

𝒄𝟑
 (

(𝟐𝜽+𝟏)𝟑

𝟐𝜽+𝟓
)                                                                          (8)                                                                

Kurtosis of one parametric weighted Levy distribution is given by  

          𝐾𝑅 =
−𝑐2(8𝜃3+16𝜃2−152𝜃−382)

(2𝜃+1)(2𝜃+5)(2𝜃+7)
                                                                  (9) 

3.4 Mode 

In order to discuss monotonicity of  one parametric WLD, we take the logarithm of its pdf as    

follows: 

log(𝑓(𝑥, Ɵ, 𝑐)) =  (𝜃 − 3/2) log 𝑥 +  (
1

2
− 𝜃)  𝑙𝑜𝑔  𝑐/2 −

𝑐

2𝑥
− 𝑙𝑜𝑔Γ(−𝜃 + 𝑐/2) 

Differentiating the above equation with respect to x and equating to zero, we obtain 

           𝑥 =  
𝑐

3−2𝜃
                                                                                                          (10) 

 

4. Estimation of parameter 

In this section, we derive the estimates of parameters of weighted Levy distribution by 

various methods of estimation viz method of moments and maximum likelihood estimation.  

4.1 Methods of Moments 

Replacing sample moment with population moments, we get 

            
1

𝑛
∑ 𝑥𝑖

𝑛
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′          

          ⟹   �̅� =  
−𝑐
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        ⟹ 𝑐 = −𝑥 ̅(2𝜃 + 1)                                                                    (11) 

and       
1

𝑛
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′    

         ⟹     
1

𝑛
∑ 𝑥𝑖

2𝑛
𝑖=1 − �̅�2 = 𝜇2 

𝜃  =
3/𝑛 ∑ 𝑥𝑖

2−�̅�2𝑛
𝑖=1

2(�̅�2−∑ 𝑥𝑖
2𝑛

𝑖=1 )
                                                                                     (12) 

Substituting the value of 𝜃 in (10) we get estimate of c which is given by,  
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       ⟹ �̂� =
(

3
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4.2 Method of Maximum Likelihood Estimator 

The method Maximum likelihood estimation is the most popular technique used for 

estimating the parameters of one parametric Levy distribution. Let 𝑥1, 𝑥2, 𝑥3, . . . . . . . 𝑥𝑖 be a 

random sample from the one parametric Weighted Levy distribution, then the corresponding 

log likelihood function is given by, 

𝑙(𝜃) = 𝑙𝑜𝑔 𝐿(𝑋, 𝜃, 𝑐) = ∑ 𝑙𝑜𝑔𝑓(𝑥𝑖, 𝜃, 𝑐)

𝑛−1

𝑖=0

 

                                =∑ 𝑙𝑜𝑔𝑛−1
𝑖=0 (

𝑥𝜃−3/2(
𝑐

2
)

1
2

−𝜃
𝑒

−𝑐
2𝑥⁄

Γ(−𝜃+1/2) 
 ) 

 

𝑙𝑜𝑔 𝐿(𝑋, 𝜃, 𝑐) = (
1

2
− 𝜃) 𝑙𝑜𝑔(𝑐/2)𝑛 + (𝜃 − 3/2) ∑ 𝑙𝑜𝑔𝑛−1

𝑖=0 (𝑥𝑖) + 𝑐/2 ∑
1

𝑥𝑖
−𝑛−1

𝑖=0

                                   𝑛𝑙𝑜𝑔Γ(−𝜃 + 1/2)                                                                                               

                                                                                                                    (14) 

Now differentiating above with  respect to the parameters, we obtain the normal equations 

−𝑛𝑙𝑜𝑔
𝑐

2
+  ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛−1
𝑖=0 + 𝑛 

Γ′(−𝜃+1/2)

Γ(−𝜃+1/2)
  = 0 

⟹  𝜑(𝜃) = 𝑙𝑜𝑔
𝑐

2
− 1/𝑛 ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛−1
𝑖=0                                                                        (15)             

 where  𝜑(𝜃) =
Γ′(−𝜃+1/2)

Γ(−𝜃+1/2)
 

  and                         𝑐 =
(1−2𝜃)

1/𝑛 ∑ 𝑙𝑜𝑔𝑥𝑖
𝑛−1
𝑖=0  

                                                                     (16) 

 Solving equations (15) and (16), we get the MLE’s of parameters as given below 

                𝜃 = 𝑙𝑜𝑔
𝑐

2
− 1/𝑛 ∑ 𝑙𝑜𝑔𝑥𝑖

𝑛−1
𝑖=0                                                                     (17)    

and          �̂� =
(1−2�̂�)

1/𝑛 ∑ 𝑙𝑜𝑔𝑥𝑛
𝑛−1
𝑖=0  

                                                                                      (18) 

 

5. Shannon’s Entropy 

 The Shannon entropy equation provides a way to estimate the average minimum 

number of bits needed to encode a string of symbols, based on the frequency of the symbols. 

Shannon entropy provides a lower bound for the compression that can be achieved by the data 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.6, 2018 

 

6 

 

representation (coding) compression step. Shannon entropy makes no statement about the 

compression efficiency that can be achieved by predictive compression. Algorithmic 

complexity (Kolmogorov complexity) theory deals with this area. Given an infinite data set 

(something that only mathematicians possess), the data set can be examined for randomness. 

If the data set is not random, then there is some program that will generate or approximate it 

and the data set can, in theory, be compressed. 

Shannon Entropy is H(x) for one parametric WLD   is given by the formula 

                 𝐻(𝑥) = 𝐸[−𝑙𝑜𝑔𝑓(𝑥, Ɵ, 𝑐)] 

                = ∫ −𝑙𝑜𝑔𝑓(𝑥, Ɵ, 𝑐)
∞

0
𝑓(𝑥, Ɵ, 𝑐)𝑑𝑥 

                          =− ∫ (𝜃 −
3

2
) 𝑙𝑜𝑔𝑥 𝑓(𝑥, Ɵ, 𝑐)

∞

0
𝑑𝑥 + (

1

2
− 𝜃) log

𝑐

2
  ∫ 𝑓(𝑥, Ɵ, 𝑐)

∞

0
𝑑𝑥 − 

                                          
𝑐

2
 ∫ 𝑥 𝑓(𝑥, Ɵ, 𝑐)

∞

0
𝑑𝑥 − log Γ(−𝜃 + 1/2) ∫ 𝑓(𝑥, Ɵ, 𝑐)

∞

0
𝑑𝑥   

Therefore we get,  

                    𝐻(𝑥) =  − (𝜃 −
3

2
)  𝐸[𝑙𝑜𝑔𝑥] −  (

1

2
− 𝜃) log

𝑐

2
 +  

𝑐2

2(2𝜃+1)
+ log Γ(−𝜃 + 1/2)      (19) 
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