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Abstract 

Two known methods of coding data for analyses in the presence of multicollinearity and evaluation of model 

performance viz: Dummy coding and Effect coding which are alternatives to each other were considered. Efforts 

were made to improve on their performances by modifying them as modified Dummy coding and modified 

Effect coding respectively and their performances of the now coding methods compared in this paper. The results 

show that all coding methods significantly reduced the effect of multicollinearity. The effect coding was found to 

be the best coding method in remedying multicollinearity while closely followed by the dummy coding. 

However, the proposed modified dummy coding gave the best R-squared values as well as F-values while still 

reducing the effect of multicollinearity to a great extent and closely followed by modified effect coding. The 

dummy and effect coding methods proved very efficient in remedying multicollinearity as their observed 

variance inflation factor (VIF) were all close to unity. 
Keywords: Dummy coding, effect coding, multicollinearity, variance inflation factor. 

1. Introduction  

Coding methods refer to ways in which membership in a group can be represented in mutually exclusive and 

exhaustive manner. In general, any categorical variable with k categories can be represented by creating (k-1) 

dummy variables that take on numerical values. This process involves assigning one numerical value, which is 

called a code, to all subjects of a particular group and different numerical value to all those of the other groups, 

this is because data need to be represented quantitatively for the purpose of analyses and since categorical 

variables lack this property (Keppel &Zedeck, 1989). 

 

Grotenhuis, et al (2017) posits that there are many coding methods available and popular is ‘dummy coding’ in 

which the estimates represent deviations from a preselected reference category. A way to avoid choosing a 

reference category is effect coding, where the resulting estimates are deviations from a grand (unweighted) 

mean. An alternative for effect coding was given by Sweeney and Ulveling in 1972, which provides estimates 

representing deviations from the sample mean and is especially useful when the data are unbalanced (i.e., 

categories holding different numbers of observation). 

Several statistical coding methods are abound in literature. Generally, any categorical variable can be represented 

numerically by coding group or category membership as 0's and 1's. Any variable coded in this manner is a 

dummy coded vector. When only one dummy coded vector is used in a regression equation, the overall 

regression results indicate whether there is a relationship between the dummy vector and the criterion variable Y. 

When dummy variables are used in regression, the interpretation of the regression coefficients is as follows: the 

intercept, β0, represents the mean of Y for those coded 0 on the dummy vector, and β1 represents the mean 

difference between the group coded 1 and the mean of all those coded 0 on the vector X. 

 

According to O’Grady and Medoff (1988), dummy coding yields the same sum of squares as other coding 

techniques but only under some specific circumstances. These are 

(a) if the analysis does not involve any interaction terms  

(b) if the analysis of orthogonal design in which tests of significance is tested with a method where the variance 

is associated with a given predictor and adjusted for the effects in some specific subset of the other prediction 

variables in the equation, and 

(c) analysis of non-orthogonal designs in which the variance is associated in the same way as in (b).  
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Effect coding was developed out of the desire to test all category means against one overall mean value (Hardy 

1993). By doing so one avoids preselecting a reference category as in dummy coding. Effect coding is well-

suited whenever the data are balanced, i.e., when the numbers per category of a nominal or ordinal variable are 

(roughly) equal. Effect coding is very similar to dummy coding and is created with the same process as in 

dummy coding with the exception that the last group will be assigned −1 for all contrasts, so only k−1 contrasts 

will be used. 

 

Sundström (2010) discussed coding schemes and coding techniques, noting that one useful aspect with coding 

schemes is that qualitative data can be changed into quantitative data to make mathematical calculations 

possible. Another issue is that large amounts of data that normally would take a lot of time to calculate can be 

transformed into 1’s and 0’s to make the calculations more effective. To be able to create a coding scheme it is 

important to have a clear vision of what questions are to be answered. If the researcher does not have a clear 

vision of what he wants to investigate it might be difficult to choose the coding technique that is best suited in 

that specific case. If the researcher does not have a clear vision of the problem the result might also be difficult to 

interpret.  

 

The purpose of the research conducted by Karim (2013) was to determine whether the use of different data 

coding give different results in the estimation of consumer choice model. The results of the analysis indicate that 

both dummy and effect coding produce similar results in terms of the model goodness of fit and coefficient of 

price. However, the estimated coefficients are different. The estimation model that used dummy coding seems to 

produce better results based on the total number of significant coefficients. Hence calculation using dummy 

coding was more reliable. Based on the results, the use of dummy coding is preferred in the case where the 

estimation model does not include intercept. The finding suggests that the interpretation of estimates using 

different coding should be done with caution as it gives different results which can leads to different policy 

implications. 

 

Starkweather (2010) addressed the importance of choosing a reference category in dummy coding. The control 

group represents a lack of treatment and therefore is easily identifiable as the reference category. The reference 

category should have some clear distinction; however, much research is done without a control group. In those 

instances, identification of the reference category is generally arbitrary, but Garson (2006) offers some 

guidelines for choosing the reference category. First, using categories such as miscellaneous or other is not 

recommended because of the lack of specificity in those types of categorizations. Second, the reference category 

should not be a category with few cases, for obvious reasons related to sample size and error. Thirdly, some 

researchers choose to use a middle category, because they believe it represents the best choice for comparison 

rather than comparisons against the extremes. 

 

Starkweather (2010) demonstrated four strategies for coding a categorical predictor variable for inclusion in 

linear regression. Each offers specific utility for researchers implementing quasi-experimental designs and true 

experimental designs. The study noted that each of these strategies resulted in identical values for model 

summary statistics, and argued that this would not be the case if multiple predictor variables were included in the 

model. Each of these strategies is compatible with multiple predictors, either continuous or categorical, which 

highlights the importance of understanding the differences associated with each strategy. The interpretation of 

regression coefficients differs across each strategy. The study also gave a cautionary note about the use of 

categorical variables in regression. Given the preceding comment about the predicted values being the same 

across strategies, it should be clear that regression works best with continuous rather than categorical variables. 

However, if multiple predictors are included in the model, the use of categorical predictors becomes more 

precise. Because, instead of predicting the mean of each category (which was represented here due to only 

having one predictor), the predicted values resulting from the model will be based on all the variables included in 

the model. 

 

Alkharusi (2012) described how categorical independent variables can be incorporated into regression by virtue 

of two coding methods: dummy and effect coding. The paper discussed the uses, interpretations, and underlying 

assumptions of each method. Their findings reveal that the overall results of the regression are unaffected by the 

methods used for coding the categorical independent variables. The analysis tests whether group membership is 

related to the dependent variables. Both methods yield identical R
2
 and F values. However, the interpretations of 

the intercept and regression coefficients depend on what coding method has been applied and whether the groups 

have equal sample sizes. 
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2. Methodology 

The data used in this study are data on Federal Government Recurrent Expenditure and the Gross Domestic 

Product of Nigeria. Recurrent expenditure refers to expenditure, which does not result in the creation or 

acquisition of fixed assets. It consists mainly of expenditure on wages, salaries and supplements, purchases of 

goods and services and consumption of fixed capital while the Gross Domestic Product (GDP) is the monetary 

value of goods and services produced in an economy during a period of time irrespective of the nationality of the 

people who produced the goods and services. It is calculated without making deductions for depreciation. The 

recurrent expenditure comprises of Administrative expenses, Social and Community expenses, expenses on 

Economic Services and transfers. 

 
Table 1. Recurrent Expenditure of Federal Government of Nigeria and GDP 

 

Year Administration (X1) Social and Community Services (X2) Economic Services (X3) 

Transfers 

(X4) GDP(Y) 

1981 0.91 0.29 0.18 3.46 144.83 

1982 1.04 0.33 0.20 3.93 154.98 

1983 0.90 0.29 0.17 3.39 163.00 

1984 1.10 0.35 0.21 4.16 170.38 

1985 1.43 0.46 0.27 5.41 192.27 

1986 1.45 0.47 0.28 5.50 202.44 

1987 3.84 0.30 0.69 10.81 249.44 

1988 5.78 2.11 1.22 10.30 320.33 

1989 6.27 4.23 1.42 14.07 419.20 

1990 6.54 3.40 1.61 24.67 499.68 

1991 6.95 2.68 1.30 27.31 596.04 

1992 8.68 1.34 3.08 39.93 909.80 

1993 30.57 14.66 7.75 83.75 1,259.07 

1994 20.54 10.09 3.91 55.44 1,762.81 

1995 28.76 13.82 5.92 79.13 2,895.20 

1996 46.55 15.99 4.75 57.20 3,779.13 

1997 56.18 22.06 6.20 74.12 4,111.64 

1998 50.68 21.44 11.57 94.40 4,588.99 

1999 183.64 71.37 87.08 107.58 5,307.36 

2000 144.53 84.79 28.59 203.69 6,897.48 

2001 180.80 79.63 53.01 265.86 8,134.14 

2002 266.51 152.19 52.95 225.15 11,332.25 

2003 307.97 102.61 96.07 477.65 13,301.56 

2004 306.77 134.39 58.78 610.70 17,321.30 

2005 434.67 151.65 64.31 670.60 22,269.98 

2006 522.20 194.17 79.69 594.05 28,662.47 

2007 626.36 256.67 179.07 527.17 32,995.38 

2008 731.02 332.93 313.75 739.66 39,157.88 

2009 714.42 354.19 423.61 635.75 44,285.56 

2010 1,117.44 550.90 562.75 878.34 54,612.26 

2011 1,262.40 785.44 310.50 956.18 62,980.40 
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2012 1,159.40 790.06 230.10 1,145.60 71,713.94 

2013 1,111.82 844.07 291.23 967.83 80,092.56 

2014 992.84 774.77 266.40 1,392.93 89,043.62 

2015 1,228.99 807.62 275.36 1,520.01 94,144.96 
NBS Annual Bulletin

 

2.1 Testing for Multicollinearity 

The presence of multicollinearity was tested using the Variance Inflation factor (VIF) technique. Wonsuk et al 

(2014) defined variance inflation factor as a measure of how much the variance of the estimated regression 

coefficient bi is "inflated" by the existence of correlation among the predictor variables in the model. According 

to the author, a VIF of unity means that there is no correlation among the ith predictor variable and the remaining 

k-1 predictor variables, hence the variance of bi is not inflated at all. The general rule is that VIFs exceeding 10 

are signs of serious multicollinearity requiring correction. The VIF will be used to test the presence of 

multicollinearity in the data and also used to measure the effect of the various coding techniques on 

multicollinearity. 

The variance inflation factor for a specific variable iX   is given by: 

 

                                                 
2

1
            1,...,

1
i

i

VIF i k
R

 


                                             (1)                                                                      

Where
2R   is the  (coefficient of determination) value obtained by regressing the ith predictor on the remaining 

predictors. 

 

2.2 Dummy Coding 

The dummy coding method is given as: 

( 1)( )
1,  if 

0,  otherwise

it i td

it

X X
X


 


     (2) 

 

Where; 

itX  is the ith variable at time t  

 i 1,2,3,4;  t = 1981, 1982, ..., 2015  

and 
( )d

itX   is the dummy code (ie 0 or 1) for the ith variable at ;  i 1,2,3,4;  t = 1981, 1982, ..., 2015t   
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Table: 2 Result of Dummy Coding 

Year X1 X2 X3 X4 

1981 0 0 0 0 

1982 1 1 1 1 

1983 0 0 0 0 

1984 1 1 1 1 

1985 1 1 1 1 

1986 1 1 1 1 

1987 1 0 1 1 

1988 1 1 1 0 

1989 1 1 1 1 

1990 1 0 1 1 

1991 1 0 0 1 

1992 0 0 1 1 

1993 1 1 1 1 

1994 0 0 0 0 

1995 1 1 1 1 

1996 1 1 0 0 

1997 1 1 1 1 

1998 0 0 1 1 

1999 1 1 1 1 

2000 0 1 0 1 

2001 1 0 1 1 

2002 1 1 0 0 

2003 1 0 1 1 

2004 0 1 0 1 

2005 1 1 1 1 

2006 1 1 1 0 

2007 1 1 1 0 

2008 1 1 1 1 

2009 0 1 1 1 

2010 1 1 1 1 

2011 1 1 1 1 

2012 0 1 0 1 

2013 0 1 1 0 

2014 0 0 0 1 

2015 1 1 1 1 

 
2.3 Effect coding  

 The effect coding method is given as: 

 

( 1)( )
1,  if 

1,  otherwise

it i te

it

X X
X


 


     (3) 

Where 

itX  is as defined in (2) 

( )e

itX is the effect coded variable of the ith variable at time t. 
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Table3. Result of Effect Coding of the Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year (X1)  (X2)   (X3)  (X4) 

1981 0.00 0.00 0.00 0.00 

1982 1.00 1.00 1.00 1.00 

1983 -1.00 1.00 -1.00 -1.00 

1984 1.00 1.00 1.00 1.00 

1985 1.00 1.00 1.00 1.00 

1986 1.00 1.00 1.00 1.00 

1987 1.00 -1.00 1.00 1.00 

1988 1.00 1.00 1.00 -1.00 

1989 1.00 1.00 1.00 1.00 

1990 1.00 -1.00 1.00 1.00 

1991 1.00 -1.00 -1.00 1.00 

1992 1.00 -1.00 1.00 1.00 

1993 1.00 1.00 1.00 1.00 

1994 -1.00 -1.00 -1.00 -1.00 

1995 1.00 1.00 1.00 1.00 

1996 1.00 1.00 -1.00 -1.00 

1997 1.00 1.00 1.00 1.00 

1998 -1.00 -1.00 1.00 1.00 

1999 1.00 1.00 1.00 1.00 

2000 -1.00 1.00 -1.00 1.00 

2001 1.00 -1.00 1.00 1.00 

2002 1.00 1.00 -1.00 -1.00 

2003 1.00 -1.00 1.00 1.00 

2004 -1.00 1.00 -1.00 1.00 

2005 1.00 1.00 1.00 1.00 

2006 1.00 1.00 1.00 -1.00 

2007 1.00 1.00 1.00 -1.00 

2008 1.00 1.00 1.00 1.00 

2009 -1.00 1.00 1.00 -1.00 

2010 1.00 1.00 1.00 1.00 

2011 1.00 1.00 1.00 1.00 

2012 -1.00 1.00 -1.00 1.00 

2013 -1.00 1.00 1.00 -1.00 

2014 -1.00 -1.00 -1.00 1.00 

2015 1.00 1.00 1.00 1.00 
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2.4 Modified-dummy coding  

The modified-dummy coding is a modified dummy coding method that incorporates the dummy coding 

technique as deviations of variables from the mean values. In this we code 1 if the observed value is greater than 

the mean of the variable and “0” otherwise. 

The modified-dummy coding method is given as: 

 

      
( ) 1,  if 

0,  otherwise

md it t

it

X X
X

 
 


                                                  (4)                                                

 

Where; 

itX  is the ith variable at time ;  i 1,2,3,4;  t = 1981, 1982, ..., 2015t   

and 
( )md

itX   is the modified-dummy coded variable of the ith variable at time t. 

 
tX  is the mean of tX    

 

 

 
2.5 Modified-effect coding  

The modified-effect coding is a modified effect coding method that incorporates the effect coding technique as 

deviations of variables from the mean value. In this we code 1 if the observed value is greater than the mean of 

the variable and “-1” otherwise. 

The modified-effect coding method is given as: 
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                                                  (5) 

Where  
( )me

itX is the modified-effect coded variable of the ith variable at time t. 

iX is the mean of iX . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.4, 2018 

 

163 

 

Table 4. Modified Dummy Coding of the Data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

Year X1 X2 X3 X4 

1981 0 0 0 0 

1982 0 0 0 0 

1983 0 0 0 0 

1984 0 0 0 0 

1985 0 0 0 0 

1986 0 0 0 0 

1987 0 0 0 0 

1988 0 0 0 0 

1989 0 0 0 0 

1990 0 0 0 0 

1991 0 0 0 0 

1992 0 0 0 0 

1993 0 0 0 0 

1994 0 0 0 0 

1995 0 0 0 0 

1996 0 0 0 0 

1997 0 0 0 0 

1998 0 0 0 0 

1999 0 0 0 0 

2000 0 0 0 0 

2001 0 0 0 0 

2002 0 0 0 0 

2003 0 0 0 0 

2004 0 0 0 0 

2005 1 0 0 0 

2006 1 1 0 0 

2007 1 1 1 0 

2008 1 1 1 0 

2009 1 1 1 1 

2010 1 1 1 1 

2011 1 1 1 0 

2012 1 1 1 0 

2013 1 1 1 0 

2014 1 1 1 0 

2015 1 1 1 0 
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Table 5. Modified - Effect Coding of the Data   

Year X1 X2 X3 X4 

1981 -1 -1 -1 -1 

1982 -1 -1 -1 -1 

1983 -1 -1 -1 -1 

1984 -1 -1 -1 -1 

1985 -1 -1 -1 -1 

1986 -1 -1 -1 -1 

1987 -1 -1 -1 -1 

1988 -1 -1 -1 -1 

1989 -1 -1 -1 -1 

1990 -1 -1 -1 -1 

1991 -1 -1 -1 -1 

1992 -1 -1 -1 -1 

1993 -1 -1 -1 -1 

1994 -1 -1 -1 -1 

1995 -1 -1 -1 -1 

1996 -1 -1 -1 -1 

1997 -1 -1 -1 -1 

1998 -1 -1 -1 -1 

1999 -1 -1 -1 -1 

2000 -1 -1 -1 -1 

2001 -1 -1 -1 -1 

2002 -1 -1 -1 -1 

2003 -1 -1 -1 1 

2004 -1 -1 -1 1 

2005 1 -1 -1 1 

2006 1 1 -1 1 

2007 1 1 1 1 

2008 1 1 1 1 

2009 1 1 1 1 

2010 1 1 1 1 

2011 1 1 1 1 

2012 1 1 1 1 

2013 1 1 1 1 

2014 1 1 1 1 

2015 1 1 1 1 

 

2.6 Coefficient of Determination (R
2
) 

The coefficient of determination (denoted by R
2
) is a key output of regression analysis. It is interpreted as the 

proportion of the variance in the dependent variable that is predictable from the independent variables. With 

linear regression, the coefficient of determination is also equal to the square of the correlation between X and Y 

scores.  R
2
 value of zero “0” means that the dependent variable cannot be predicted from the independent 
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variable. On the other hand, an R
2
 of 1 means the dependent variable can be predicted without error from the 

independent variable. The value of R
2
 ranges between 0 and 1 inclusive. The formula for computing the 

coefficient of determination for a linear regression model with one independent variable is given as: 

 

2 2explained variation
0 1

total variation

SSR
R R

SST
   

    (6) 

 

 
2.7 Percentage Change in VIF 

The VIF Change is a measure of percentage change in the VIF of coded variables as against the VIF of the actual 

variables. The percentage change is computed as the VIF of the actual variable less VIF of Coded variable 

divided by the VIF of the actual data multiplied by 100. That is: 

 

(  ) (  )
100

 

Actual VIF Coded VIF
VIF X

Actual VIF



     (7) 

 

 

 

3. Results of Analyses 

 

3.1 Effects of the coding methods on multicollinearity. 
Table 6. Coding Methods and Resulting Multicollinearity 

 VIF values and Percentage Change in VIF for each Xi  

Coding Methods X1 (𝑉𝐼𝐹∆) X2 (𝑉𝐼𝐹∆ ) X3 (𝑉𝐼𝐹∆) X4 (𝑉𝐼𝐹∆ ) Mean VIF 

(𝒎𝒆𝒂𝒏 𝑉𝐼𝐹∆) 

Actual 52.913 22.66 6.787 12.489 23.71 

Dummy 1.472  (-97.22) 1.144 (-95) 1.553 (-77.12) 1.147 (-90.82) 1.329 (-94.40) 

Effect 1.475  (-97.21) 1.077 (-95.28) 1.475 (-78.27) 1.157 (-90.74) 1.296 (-94.53) 

Modified effect 7.85  (-85.15) 14.29 (-36.9) 7.641 (+12.5) 1.21 (-90.3) 7.75(-67.31) 

Modified dummy 11.314 (-78.62) 14.286 (-36.9) 7.429 (+9.46) 4.46 (-64.3) 9.37(-60.48) 

BEST Dummy Effect Effect Dummy Effect  

 

From Table 6, the results   reveal that both the dummy and effect coding methods have approximately the same 

effect on multicollinearity. The dummy and effect coding reduced VIF (multicollinearity) by at least 77% and as 

high as 97%. 

The modified-effect and modified-dummy reduced VIF (multicollinearity) by a reasonable proportion but not 

compared to the dummy and effect coding methods. The modified-dummy reduced VIF (multicollinearity) by at 

least 36.9% up to about 78.%. Similarly, the modified-effect also reduced multicollinearity by at least 36.9% up 
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to about 90.3%. There are however instances (in X3) when the modified-dummy coding and modified- effect 

coding increased VIF value by about 9 and 12% respectively. 

A comparison of the mean VIF results and mean VIF change shows that the effect coding method gave the best 

result on remedying multicolinearity as it reduced VIF of the actual data by an average of 94.53%. This was 

closely followed by the dummy coding method which reduced VIF by an average of 94.40%. The proposed 

modified dummy and modified effect coding methods also reduced the effect of multicolinearity by average of 

60.5% for modified dummy and 67.3% for modified effect coding respectively.  

The effect coding was found to be the best coding method among the competing methods studied. 

 

3.2 Effects of the methods on model statistics 

Five multiple regression analysis using the design matrix obtained from the raw data as well as those obtained 

from the four coding methods each were determined. The model statistics indicating level of model significance 

(F-value) and extent of model fit (R
 
- square) as well as the p-values of F were inspected (see table 7 below).       

 
Table7: Model Statistics 

 

DATA FORM R-SQUARE F-VALUE P-VALUE (of F) 

Actual Data 0.989 692.184 0.00 

Dummy Coding 0.154 1.369 0.268 

Effect Coding 0.150 1.323 0.284 

Modified-Dummy 0.859 45.567 0.00 

Modified- Effect 0.852 43.181 0.00 

 
A comparison of the coefficients of determination (R - Square) for the various models show that among the four 

coding methods, the modified dummy gave the highest R
 
- Square value of 0.859 followed by the modified effect 

with R
 
- Square value of 0.852 respectively. These high R-Square values show that the model fits, using the 

modified dummy coding and the use of the modified effect coding, engendered better fits to the data than the 

dummy and the effect coded models. 

 On the other hand, the F-values of the regression models involving the various coding methods were compared. 

The results show that the modified-dummy coding method gave the highest F-statistics of 45.567 with a p-value 

of 0.00 followed by modified-effect with F-value of 43.181 and p-value of 0.00. The effect coding gave the least 

F-value of 1.323 and p-value of 0.284 followed by dummy coding with F-value of 1.369 and p-value of 0.268.  

These results go to corroborate the significantly larger R
2
 values for both the modified dummy coding and the 

modified effect coding methods. These large F-values indicate that a large proportion of the regression 

relationship between the GDP and the recurrent expenditure was extracted by these modified coding methods.  

 

4   DISCUSSION OF FINDINGS 

The results of the analysis have been presented in the previous sections. On the effect of coding methods on 

multicollinearity, the effect coding techniques was adjudged to be the best followed by the dummy coding. Also 

on the effect of coding on model statistics, the two proposed coding methods gave the highest R
2
 values, highest 

F-statistics values and least p-values, these are attributes of a good model fit.  

A comparison of the results of the proposed coding methods against the existing ones (Dummy and effect 

coding) may suggest that the proposed methods may not have fully reduced the effect of multicollinearity. In 

this, the highly inflated variances, even though reduced, have not been reduced significantly. This is the reason 

for having high R
2

  values as well as high F-statistics values together with the significant p-values. Again the high 

rate of reduction in the VIF of the variables by the dummy coding and effect coding methods suggest that the 

effect of multicollinearity may have been fully removed thus resulting in the reduced model statistics that were 

originally inflated by the presence of multicollinearity.  

In the case for expenditure on economic services, X3, where the proposed methods (modified effect coding and 

modified dummy coding) slightly increased the VIFs instead of reducing it. This suggest that there is a limit to 

which the proposed methods can reduce the effect of multicollinearity and start increasing again. It may also be 

related to the nature and distribution of the transformed data. 
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