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Abstract 

In this paper we examine the problem of determining the best time to sell an asset, where the stock price is 

modelled by a hybrid process. In this paper hybrid variable is a mathematical concept that is used to describe a 

situation in which randomness and fuzziness simultaneously appear in a system or phenomenon. Based on this 

concept, a hybrid stopping time problem is formulated and investigated. A verification theorem is derived and 

proved. We illustrate the application of the verification theorem through a practical example in mathematics of 

finance. A power function with exponent  𝛾, is used as the utility function in the example. This study is extending 

the model from Oksendal [12] by including the fuzzy component since market value of assets is usually 

described using vague human language. The theory of hybrid variables provides a more realistic description of 

the evolution of price processes of financial assets. 

Keywords: Randomness, fuzziness, Fuzzy variable, fuzzy process, hybrid variable, hybrid process, stopping 

time. 

 

1.INRODUCTION 

The study of optimal stopping theory has attracted the attention of many mathematicians in recent years. This is 

due to the necessity of a rigorous approach to optimal stopping problems, see for example [12], [13]. The 

complexities of the natural and man-made socio-economic systems make the events and processes we encounter 

indeterminate in various forms. In many cases mathematical models are expressed in terms of stochastic 

differential equations. For a more elaborate treatment of stochastic differential equations and their applications 

the reader is referred to [2], [12]. Randomness is a basic type of indeterminacy and probability theory is a branch 
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of mathematics for studying the behaviour of random phenomena. In Harrison [4], it turns out that randomness is 

appropriate for modelling indeterminacy provided substantial sample data is available. In several cases, we are 

required to make decisions about a system when sample data about its previous performance are not available. In 

such cases, it is not appropriate to use probability theory to handle the associated indeterminacy. Fuzziness is a 

good example of a form of indeterminacy that cannot be examined using probability theory. The notion of 

fuzziness was introduced by cybernetician Zadeh [15] as another form of indeterminacy that we encounter on a 

day-to- day basis. According to Purl and Ralescu [14] fuzziness describes events whose measurement is 

imperfect and vague. 

 

In many cases, fuzziness and randomness simultaneously appear in a system, for example [5]. In order to 

describe this phenomenon, a fuzzy random variable was introduced by Kwakernaak [6] as a random element 

taking fuzzy values. More generally, a hybrid variable was introduced by Liu [8] as a tool to describe the 

quantities with fuzziness and randomness.   

 

In stochastic analysis, the theory of optimal stopping is concerned with the problem of choosing a time to take 

given action based on sequentially observed random variables in order to maximise an expected payoff or to 

minimise an expected cost, see [2]. The work in [3], studied problems of this type in the area of statistics, where 

the action taken may be to test a hypothesis or to estimate a parameter and in the area of operations research, 

where the action maybe to replace a machine or reorder stock. In finance optimal stopping problems are 

encountered by investors who need to decide, for example, the best time to sell an asset, see for example [4]. In 

this paper we examine the optimal stopping problem when the underlying process to be stopped is driven by both 

fuzziness and randomness and the stopping time is a hybrid variable. 

The study of optimal stopping initiated in the 1970s. The reader is referred to [11] for more elaborate discussion 

of optimal stopping rules. Oksendal [12] studied the optimal stopping of stochastic process with applications in 

finance. All of the above researches concentrated on stochastic optimal stopping. No research has focused on 

hybrid optimal stopping. This paper seeks to address the gap. 

 

The following example illustrates the interaction effects of fuzziness and randomness. Consider a trader who 

wants to export to South Africa, when the value of rand is stronger. Given that South Africa operates within a 
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flexible exchange rate regime, the value of the rand, like any other stock, is determined by the market forces of 

supply and demand. The demand for a currency relative to the supply will influence its value in relation to 

another currency. It is common, for example, to hear traders stating that the value of South African rand is weak, 

strong or very strong compared to other currencies like United States of America dollar (USD). For example, if 

USD/rand is at R10.05, which means USD1=R10.05. In this case, it is not clear what value of the rand will be in 

the category of being strong or weak. For instance if the domestic interest rate increases and attract foreign 

capital and USD/rand increases to R12.02, will be this a strong or very strong value? What about if there is 

current account deficit and drops to R9.25 or R9.99? The challenge is to determine the demarcation between, for 

example weak, strong and very strong. For this reason according to [15], the terms weak, strong and very strong 

are vague and are considered as fuzzy terms. This shows that the market value of rand at time 𝑡 is a fuzzy 

variable. For a more extensive study of the notion of fuzziness the reader is referred to [10] and [15]. On the 

other hand, by consulting financial economics experts, it is possible to estimate the probability distribution of the 

variable “value of the rand” compared to the USD. Since economists can assign then probability of being weak, 

strong and very strong to the rand at time 𝑡, it follows that the value of rand at any given time 𝑡 has a random 

component in addition to fuzzy component. The theory of random variables and their application is relatively 

well developed and documented, see [1].       

      

From the above discussion, it is abundantly clear that the variable “value of rand” has both attributes of fuzziness 

and randomness. Such a variable is called a hybrid variable. In [7] the theory of hybrid variables is examined in 

greater technical details. 

 

In the above example, the trader is faced with the problem of deciding on the best time to export. This is a typical 

example of an optimal stopping problem. The problem has been presented and solved by several authors where 

the underlying process is stochastic, see [12]. However, as we have already observed, the value process of a rand 

normally possess both attributes of fuzziness and randomness.  

 

 This paper presents and examines, for the first time in the literature, the notion of hybrid stopping time. One 

major contribution of this paper is the definition and application of the notion of hybrid filtration. The paper 

states and proves variational inequalities for stochastic stopping problems. The Dynkin type formula will be used 
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to derive the characteristic operator. The optimal stopping theory is applied to solve the problem of determining 

the optimal time to sell a stock.  

 

The paper is organised as follows: In section 2, we review some notations and concepts, such as credibility 

measure, hybrid filtration, hybrid stopping, chance space and hybrid process. In section 3, we introduce the 

general hybrid stopping problem. A verification theorem for fuzzy stochastic optimal problems is proved in 

section 4. In section 5, an example is presented to illustrate the application of the main result of the paper. 

 

2. PRELIMINARIES 

In this section, we will introduce some essential definitions and properties about random variable, fuzzy variable, 

hybrid variable, hybrid filtration and hybrid stopping time. 

Definition 2.1. ([12]) A probability space is a triple (Ω, Ƒ, P) where  Ω is a sample space, is Ƒ a σ-algebra over 

Ω and P is probability measure. 

Definition 2.2. ([9]) A credibility space is a triple (θ, Ƥ, C) where θ is a non-empty set, Ƥ is the power set of θ 

and C is a credibility measure. 

Definition 2.3. ([9]) Suppose that  (Ω, Ƒ, P) is a probability space and (θ, Ƥ, C) is a credibility space. The 

product (Ω, Ƒ, P) × (θ, Ƥ, C) is called a chance space. 

The universal set Ω × θ is clearly the set of all ordered pairs of the form (𝜔, 𝜃), where 𝜔 ∈ Ω  and 𝜃 ∈ θ. 

Definition 2.4. Let {𝑀𝑡}𝑡≥0 be an increasing family of σ-algebras of subsets of , that is 𝑀𝑠 ⊂ 𝑀𝑡 if 𝑠 ≤ 𝑡 

and suppose 𝑁𝑡 = 𝑀𝑡 × θ where 𝑀𝑡 ⊂ Ƒ. Then we call {𝑁𝑡}𝑡≥0a hybrid filtration. 

Definition 2.5. A function 𝜏: Ω × θ → [0; ∞] is called a hybrid stopping time with respect to {𝑁𝑡}𝑡≥0  if 

{(𝜔 × 𝜃) ∶  𝜏(𝜔 × 𝜃) ≤ 𝑡} ∈ 𝑁𝑡for all t  0. 

Theorem 2.1. If 𝜏1 and 𝜏2 are hybrid optimal stopping times then min {𝜏1, 𝜏2} is hybrid stopping time. 

Definition 2.6. ([9]) Let T be an index set and let (θ, Ƥ, C) be a credibility space. A fuzzy process is a function 

from 𝑇 × (θ, Ƥ, C)to the set of real numbers. 

Definition 2.7. ([9]) A hybrid variable is a measurable function from a chance space (Ω, Ƒ, P) × (θ, Ƥ, C) to a set 

of real numbers. 

Definition 2.8. Let T be an index set and(Ω, Ƒ, P) × (θ, Ƥ, C) a chance space. A hybrid process{𝑋𝑡}𝑡≥0, is a 

measurable function from 𝑇 × (Ω, Ƒ, P) × (θ, Ƥ, C) to the set of real numbers: where 𝑋𝑡 ∶= 𝑋(𝑡, 𝜔, 𝜃) for every 
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(𝑡, 𝜔, 𝜃) ∈ [0, ∞). 

Definition 2.9. ([9]) Let 𝐵𝑡  be a Brownian motion, and let 𝐶𝑡 be a C process. Then  𝐷𝑡 = (𝐵𝑡 , 𝐶𝑡) is called a 

D process. 

Definition 2.10. ([9]) Let 𝑋𝑡 = (𝑌𝑡 , 𝑍𝑡) where 𝑌𝑡 and 𝑍𝑡 are scalar hybrid processes, and let 𝐷𝑡 = (𝐵𝑡 , 𝐶𝑡) be 

a standard process. For any partition of closed interval [a;  v] with 𝑎 = 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑘+1 = 𝑣, the mesh is 

written as  

 ∆= max1≤𝑖≤𝑘|𝑡𝑖+1 − 𝑡𝑖|. Then the hybrid integral of 𝑋𝑡 with respect 

to 𝐷𝑡  is 

∫ 𝑋𝑡

𝑏

𝑎

𝑑𝐷𝑡 = lim
∆→0

∑[𝑌𝑡𝑖
(𝐵𝑡𝑖+1

− 𝐵𝑡𝑖
)

𝑘

𝑖=1

+ 𝑍𝑡𝑖
(𝐶𝑡𝑖+1

− 𝐶𝑡𝑖
)].     (2.1) 

Remark 2.2. ([9]) The hybrid integral may also be written as follows, 

∫ 𝑋𝑡

𝑣

   𝑎

𝑑𝐷𝑡 = ∫(𝑌𝑡𝑑𝐵𝑡 + 𝑍𝑡𝑑𝐶𝑡).                                           (2.2) 

𝑣

𝑎

 

Definition 2.11. ([9]) Suppose{𝑋𝑡}𝑡≥0 is a hybrid process, 𝐵𝑡  is a standard Brownian motion and 𝐶𝑡 is a 

standard C process. Then 

𝑑𝑋𝑡 = 𝑓(𝑡, 𝑋𝑡)𝑑𝑡 + 𝑔(𝑡, 𝑋𝑡)𝑑𝐵𝑡 + ℎ(𝑡, 𝑋𝑡)𝑑𝐶𝑡,   𝑋(0) = 𝑋0  (2.3)  

is called a hybrid differential equation  

𝑓: [0, 𝑇] × ℝ → ℝ, 𝑔 ∶ [0, 𝑇] × ℝ → ℝ and ℎ: [0, 𝑇] × ℝ → ℝ.  

 

3. BACKGROUND AND PROBLEM FORMULATION 

In this section introduce the general hybrid optimal stopping problem. Consider a chance space (Ω, Ƒ, P)× (θ, 

Ƥ,C). Let 𝑋𝑡 be a hybrid process which evolves according to the following differential equation 

𝑑𝑋𝑡 = 𝜇(𝑡, 𝑋𝑡)𝑑𝑡 + 𝜎(𝑡, 𝑋𝑡)𝑑𝐵𝑡 + 𝜆(𝑡, 𝑋𝑡)𝑑𝐶𝑡 ; 𝑋𝑠 = 𝐵𝑠 + 𝐶𝑠 

where 𝐵𝑠 + 𝐶𝑠 = 𝑏 + 𝑐 , 𝑋𝑡 ∈ ℝ, 𝐵𝑡  is a 1-dimensional Brownian motion, 𝐶𝑡  is 1-dimensional standard Liu 

process such that 𝐵𝑠= b and 𝐶𝑠= c. Assume that µ:[s; T]× ℝ → ℝ, σ:[s; T]× ℝ → ℝ,  λ:[s; T]× ℝ → ℝ are 

given functions which satisfy the conditions for the existence and uniqueness of a solution for hybrid differential 

equations where 0  s <  𝑇 < . Suppose z is a reward function on  such that z(𝜉)  0 for all 𝜉 ∈ ℝ. 

Problem 1. The problem is to find the stopping time 𝜏∗ and value function Ф(s; b; c) where b and c the values 

of the stochastic and fuzzy components respectively of the price at time s, such that 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                         www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.4, 2018 

 

136 

Ф(s; b; c) = sup𝐸(𝑠,𝑏,𝑐)[∫ 𝑤(𝑠 + 𝑡, 𝑋𝑡)𝑑𝑡 + 𝑧(𝑠 + 𝜏, 𝑋𝜏)
𝜏

𝑠
] 

                = sup𝐸(𝑠,𝑏,𝑐) [∫ 𝑤(𝑠 + 𝑡, 𝑋𝑡)𝑑𝑡 + 𝑧(𝑠 + 𝜏∗, 𝑋𝜏∗)
𝜏∗

𝑠
] 

where w is profit rate" function. 

Definition 3.1. Let {𝑋𝑡}𝑡≥0 be a hybrid process. The characteristic operator 𝓐 =𝓐𝑋 of  {𝑋𝑡} is defined by 

𝒜ɸ(t, b, c = lim
𝑈↓𝑏+𝑐

𝐸(𝑏,𝑐)[ɸ(Xτ)] − ɸ(𝑏, 𝑐)

𝐸(𝑏,𝑐)[𝜏𝑈]
 

 

where the U's are open sets 𝑈𝑘 decreasing to the point b + c which is the price, in the sense that 𝑈𝑘+1 ⊂ 𝑈𝑘 

and ∩𝑘 𝑈𝑘 = {𝑏 + 𝑐}, and 𝜏𝑈=inf{𝑡 > 0; 𝑋𝑡 ∉ 𝑈} is the first exit time from U for   

Lemma 3.1. Let ɸ(t; b; c) ∈ 𝐶2([0, ∞) × ℝ2). The characteristic operator 𝓐  is given by  

𝒜ɸ(t, b, c) =
𝝏ɸ

𝜕𝑡
+ 𝜎(𝑏 + 𝑐)

𝜕ɸ

𝜕𝑏
+ λ(b + c)

∂ɸ

∂c
+

1

2
σ2(b + c)2

∂2ɸ

∂b2
. 

Proof 

Since the function ɸ is twice continuously differentiable, by using Taylor series expansion, the infinitesimal 

increment of 𝑋𝑡 = ɸ(t,𝐵𝑡,𝐶𝑡) has a second order approximation  

  𝑑𝑋𝑡 =  
𝝏ɸ

𝜕𝑡
(t, 𝐵𝑡,𝐶𝑡)𝑑𝑡 + µ(𝑏 + 𝑐)

𝜕ɸ

𝜕𝑏
(t, 𝐵𝑡,𝐶𝑡)𝑑𝐵𝑡 +  λ(b + c)

∂ɸ

∂c
(t, 𝐵𝑡,𝐶𝑡)dCt +

∂2ɸ

∂t2 (t, 𝐵𝑡,𝐶𝑡)dt +
1

2
σ2(b +

c)2 ∂2ɸ

∂b2 (t, 𝐵𝑡,𝐶𝑡)(𝑑𝐵𝑡)2 +
1

2
λ2(b + c)2 ∂2ɸ

∂c2 (t, 𝐵𝑡,𝐶𝑡)(𝑑𝐶𝑡)2 +
1

2
µ(b + c)

∂2ɸ

∂t ∂b
(t, 𝐵𝑡,𝐶𝑡)dt𝑑𝐵𝑡 + λ(b +

c)
∂2ɸ

∂t ∂c
(t, 𝐵𝑡,𝐶𝑡)dt𝑑𝐶𝑡 + λ(b + c)2 ∂2ɸ

∂b ∂c
(t, 𝐵𝑡,𝐶𝑡)𝑑𝐵𝑡dCt.  

Taking into cognisant that each of the terms (𝑑𝑡)2, (𝑑𝐶𝑡)2, dt𝑑𝐵𝑡, dt𝑑𝐶𝑡 and 𝑑𝐵𝑡dCtis equal to zero and 

replacing (𝑑𝐵𝑡)2 with 𝑑𝑡, the following chain rule is obtained 

∫ d𝑋𝑡 = ∫
𝜕ɸ

𝜕𝑡

𝑠

0

 𝑑𝑡 + ∫ µ(𝑏 + 𝑐)

𝑠

0

𝜕ɸ

𝜕𝑏
𝑑𝐵𝑡 +

𝑠

0

∫ λ(b + c)
∂ɸ

∂c
dCt + ∫

σ2

2
(b + c)2

∂2ɸ

∂b2
dt.

s

0

𝑠

0

 

 

This last equation yields 

𝑋𝑠 = 𝑋0 + ∫
𝜕ɸ

𝜕𝑡

𝑠

0

 𝑑𝑡 + ∫ µ(𝑏 + 𝑐)

𝑠

0

𝜕ɸ

𝜕𝑏
𝑑𝐵𝑡 + ∫ λ(b + c)

∂ɸ

∂c
dCt + ∫

σ2

2
(b + c)2

∂2ɸ

∂b2
dt.

s

0

𝑠

0

 

By Dynkin's formula 

𝐸(𝑏,𝑐)[ɸ(𝑋𝜏)] = ɸ(𝑡, 𝑏, 𝑐) + 𝐸(𝑏,𝑐) [∫
𝜕ɸ

𝜕𝑡
𝑑𝑠 + ∫ µ(𝑏 + 𝑐)

𝜕ɸ

𝜕𝑏
𝑑𝐵𝑠

𝜏

0

𝜏

0

] 
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+𝐸(𝑏,𝑐) [∫ λ(b + c)
∂ɸ

∂c
dCs +

1

2
σ2(b + c)2 ∫

∂2ɸ

∂b2
ds

τ

0

𝜏

0

] 

where Aɸ(𝑡, 𝑏, 𝑐) is the characteristic operator of 𝑋𝑡 

𝐸(𝑏,𝑐)[ɸ(𝑋𝜏)] − ɸ(𝑡, 𝑏, 𝑐) = ∫ 𝐸(𝑏,𝑐) [
𝜕ɸ

𝜕𝑡
+ Aɸ(𝑡, 𝑏, 𝑐)] 𝑑𝑠

𝜏

0

 

𝐸(𝑏,𝑐)[ɸ(𝑋𝜏)] − ɸ(𝑡, 𝑏, 𝑐) = 𝐸(𝑏,𝑐) ∫ 𝒜ɸ𝑑𝑠.

𝜏

0

 

Therefore,  

𝒜ɸ(𝑡, 𝑏, 𝑐) = lim
𝑈↓𝑏+𝑐

𝐸(𝑏,𝑐)[ɸ(𝑋𝜏)] − ɸ(𝑡, 𝑏, 𝑐)

𝐸𝑏[𝜏𝑈]
 

4. MAIN RESULTS 

In this section we are going to state and prove the Variational Inequalities. 

Theorem 4.1.Variational Inequalities 

a. Suppose we can find a function ɸ:S⊂ ℝ → ℝ such that 

i. ɸ∈ 𝐶1(𝑆) ∩ 𝐶(𝑆̅). 

ii. ɸ≥ 𝑧on S where z is the reward function and lim𝑡→𝜏�̅�
𝑧(𝑌𝜏𝑆

)𝜒{𝜏𝑆<∞} where      𝜏𝑆 = inf {𝑡 >

0; 𝑌𝑡 ∉ 𝑆} and 𝜒 is the characteristic function.                                                                                                                

iii. 𝒜ɸ + 𝑤 ≤ 0 on 𝑆/𝑀 where 𝑤 is profit rate function then ɸ(𝑦) = Ф(𝑦) for all  𝑦 ∈ 𝑆 where  

Ф(𝑦) is the value function and  𝑀 = {𝑥 ∈ 𝑆;  ɸ(𝑥) > 𝑧(𝑥)} is the continuation region such that 

𝑀 ⊂ 𝑆. 

b. Moreover, assume 

i. 𝒜ɸ + 𝑤 = 0 on  𝑀. 

ii. 𝜏𝑀 ≔ inf{𝑡 > 0, 𝑌(𝑡) ∉ 𝑀} < ∞𝑎. 𝑠. 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑦. Then 

ɸ(𝑦) = 𝑠𝑢𝑝𝜏∈𝒯𝐸𝑦 [∫ 𝑤(𝑌𝑡)𝑑𝑡 + 𝑧(𝑌𝑡)

𝜏

0

] 

and 

𝜏∗ = 𝜏𝑀 

is the optimal stopping time for this problem. 

Proof 

Since ɸ∈ 𝐶1(𝑆) ∩ 𝐶(𝑆̅) and ɸ ∈ 𝐶2(𝑆/𝜕𝑀) we can find the sequence of functions 
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ɸ𝑗 ∈ 𝐶2(𝑆) ∩ 𝐶(𝑆̅); 𝑗 = 1, 2, 3,   .  .  . 

such that  

1. ɸ𝑗 → ɸ uniformly on compact subsets of 𝑆̅ as 𝑗 → ∞ 

2. 𝒜ɸ𝑗 → 𝒜ɸ uniformly on compact subsets of 𝑆/𝜕𝑀 as 𝑗 → ∞ 

3. {𝒜ɸ𝑗}𝑗=1
∞  is locally bounded on S. 

Suppose {𝑆𝑅}𝑗=1
∞ =is a sequence of bounded open sets such that S=∪𝑅=1

∞ 𝑆𝑅, 𝑇𝑅 = min (𝑅, inf {𝑡 > 0; 𝑌𝑡 ∉ 𝑆𝑅}) 

and 𝜏 ≤ 𝜏𝑆 be stopping times. Then by the Dykin`s formula 

𝐸𝑦[ɸ𝑗(𝑌𝜏∧𝑇𝑅
)] = ɸ𝑗(𝑦) + 𝐸𝑦[𝒜ɸ𝑗(𝑌𝑡)𝑑𝑡] 

where 𝜏 ∧ 𝑇𝑅 = min{(𝜏, 𝑇𝑅)}. 

Hence by 1,2,3 and (iii) and the bounded a.e. convergence 

ɸ(𝑦) = lim
𝑗→∞

𝐸𝑦 [ ∫ −𝒜ɸ𝑗(𝑌𝑡)𝑑𝑡 + ɸ𝑗(𝑌𝜏∧𝑇𝑅
)

𝜏∧𝑇𝑅

0

] . 

 Therefore, by a (ii), a(iii) and b(i)  

ɸ(𝑦) ≥ 𝐸𝑦 [ ∫ 𝑤(𝑌𝑡)𝑑𝑡 + 𝑧(𝑌𝜏∧𝑇𝑅
)

𝜏∧𝑇𝑅

0

].                    (4.1) 

Hence by Fatou lemma, since also 𝐸𝑦[∫ 𝑤−(𝑌𝑡)𝑑𝑡
𝜏𝑠

0
] < ∞  and the family {𝑔−(𝑌𝜏); 𝜏 ≤ 𝜏𝑠} is uniformly 

integrable we get 

ɸ(𝑦) ≥ 𝐸𝑦 [∫ 𝑤(𝑌𝑡)𝑑𝑡 + 𝑧(𝑌𝜏)

𝜏

0

].  

Since 𝜏 ≤ 𝜏𝑆was arbitrary, conclude that 

ɸ(𝑦) ≥ Ф(𝑦) ∈ 𝑆                                                                (4.2) 

which proves (a). 

We proceed to prove (b): If 𝑦 ∈ 𝑀   then 

ɸ(𝑦) = 𝑧(𝑦) ≤ Ф(𝑦)                                                                      (4.3)    

so by (4.2)  we have ɸ(𝑦) ≥ Ф(𝑦) and  

�̂�  = �̂�(𝑦, 𝑤)                                                                                    (4.4) 

Is optimal for 𝑦 ∈ 𝑀. 

Next, suppose 𝑦 ∈ 𝑀. Let {𝑀𝑛}𝑛=1
∞  be an increasing sequence of open sets. By Dynkin’s formula we have for 

𝑦 ∈ 𝑀𝑛 
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ɸ(𝑦) = lim
𝑗→∞

ɸ𝑗(𝑦) = lim
𝑗→∞

𝐸𝑦 [ ∫ −𝒜ɸ𝑗(𝑌𝑡)𝑑𝑡 + ɸ𝑗(𝑌𝜏𝑛∧𝑇𝑅
)

𝜏𝑛∧𝑇𝑅

0

] 

                    = 𝐸𝑦 [ ∫ 𝑤(𝑌𝑡)𝑑𝑡 + ɸ(𝑌𝜏𝑛∧𝑇𝑅
)

𝜏𝑛∧𝑇𝑅

0

]. 

So by uniform integrability we get 

ɸ(𝑦)  = 𝐸𝑦 [∫ 𝑤(𝑌𝑡)𝑑𝑡 + 𝑧(𝑌𝜏𝑀
)

𝜏𝑀

0

] 

ɸ(𝑦) =    𝐽𝜏𝑀(𝑦) ≤ Ф(𝑦)(4.5) 

where 𝐽𝜏𝑀(𝑦) =   = 𝐸𝑦[∫ 𝑤(𝑌𝑡)𝑑𝑡 + 𝑧(𝑌𝜏𝑀
)

𝜏𝑀

0
].  Combining (4.2) and (4.5) we get 

 ɸ(𝑦) ≥ Ф(𝑦) ≥ 𝐽𝜏𝑀(𝑦) ≔ 𝜏𝑀                                               (4.6)         

is optimal when y ∈  M. From (4.4) and (4.6) we conclude that ɸ(𝑦) = Ф(𝑦)for all 𝑦 ∈  S. Moreover, the 

stopping time �̂� defined by �̂�(𝑦, 𝑤) = 𝜏𝑀for 𝑦 ∈ 𝑀   is optimal. Therefore, we conclude that 𝜏𝑀 is optimal. 

 

5. APPLICATION 

Consider a chance space ( Ω, Ƒ, P) × (θ, Ƥ, C). Suppose the price 𝑋𝑡, at time 𝑡, of a person's asset evolves 

according to a hybrid differential equation of the form 

𝑑𝑋𝑡 = 𝑟𝑋𝑡𝑑𝑡 + 𝛼𝑋𝑡𝑑𝐵𝑡 + 𝛽𝑋𝑡𝑑𝐶𝑡;   𝑋0 = 𝑥 = 𝑏 + 𝑐        (5.1)    

where 𝐵𝑡  is a 1-dimensional Brownian motion and 𝐶𝑡 is a 1-dimensional standard C process and 𝑟, 𝛼 and 𝛽 

are constants. Suppose that the sale of the asset is associated with a fixed cost  

𝑎 > 0. Then if the owner of the asset decides to sell it at time 𝑡 the discounted net of the sale is 𝑒−𝜌𝑡(𝐵𝑡+𝐶𝑡 −

𝑎) where 𝜌 > 0 is a given discounting factor.  

 

Problem 2. The problem is to find the optimal stopping time 𝜏∗ and the value function Ф(s;  b;  c) such that  

Ф(s;  b;  c) = max
τ

E(s,b,c) [e−ρτ(Bτ + Cτ − a)] 

           = 𝐸(𝑠,𝑏,𝑐)[𝑒−𝜌𝜏∗
(𝐵𝜏∗ + 𝐶𝜏∗−𝑎}]. 

Solution. To solve problem 2 we resort to the theory of optimal stopping developed in the previous sections. 

Specifically, we apply the Variational Inequalities that are stated and proved in section 5. 

The characteristic operator 𝒜 of the process 𝑌𝑡 = (𝑠 + 𝑡,  𝐵𝑡 , 𝐶𝑡) is given by 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                         www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.4, 2018 

 

140 

𝒜𝜑(𝑠, 𝑏, 𝑐) =
𝜕𝜑

𝜕𝑠
+ 𝑟(𝑏 + 𝑐)

𝜕𝜑

𝜕𝑏
+

α2

2
(b + c)2

∂2φ

∂b2
+ β(b + c)

∂φ

∂c
     (5.2) 

where 𝜑: [0, ∞) × ℝ2 → ℝ  is twice continuously differentiable function. Now, (𝑠, 𝑏, 𝑐) = 𝑒−𝜌𝑠(𝑏 + 𝑐 − 𝑎) 

where 𝑎 is a constant. Substituting for partial derivatives of 𝜑 into (5.2) and simplify we obtain 

𝒜𝜑(𝑠, 𝑏, 𝑐) = 𝑒−𝜌𝑠[(𝑏 + 𝑐)(−𝜌 + 𝛽 + 𝑟) + 𝜌𝑎]. 

If 𝒜𝜑(𝑠, 𝑏, 𝑐) > 0, then  

𝑒−𝜌𝑠[(𝑏 + 𝑐)(−𝜌 + 𝛽 + 𝑟) + 𝜌𝑎] > 0. 

Solving for𝑏 + 𝑐 we get 

𝑏 + 𝑐 =
𝜌𝑎

𝜌 − (𝛽 + 𝑟)
 . 

If 𝑟 + 𝛽 > 𝜌  then the value function is equal to . If 𝑟 + 𝛽 = 𝜌  then the value function turns out to 

be (𝑏 + 𝑐)𝑒−𝜌𝑠. When 𝑟 + 𝛽 ≥ 𝜌 there is no stopping time, a sequence of better stopping time tends to  

instead of converging. 

The optimal strategy should be: sell when the underlying reaches the threshold 𝑘∗,  with 𝑘∗ depending only on 

the parameters of the problem, i.e. 𝑟, 𝜌, 𝛼, 𝛽 and 𝑎. The selling regions are divided into two: continuation region 

later region where 𝑏 + 𝑐 < 𝑘∗ and sell now region where 𝑏 + 𝑐 > 𝑘∗. In sell now region clearly Ф(𝑠, 𝑏, 𝑐) =

𝑏 + 𝑐 − 𝑎 and in the sell later region it satisfies the P.D.E. 

𝜕Ф

𝜕𝑠
+ 𝑟(𝑏 + 𝑐)

𝜕Ф

𝜕𝑏
+

1

2
α2(b + c)2

∂2Ф

∂b2
+ β(b + c)

∂Ф

∂c
= 0   (5.3) 

  

with the boundary condition Ф(𝑠, 𝑏, 𝑐) = 𝑏 + 𝑐 − 𝑎 at 𝑏 + 𝑐 > 𝑘∗. Moreover we have the global inequalities 

Ф(𝑠, 𝑏, 𝑐) ≥ 𝑏 + 𝑐 − 𝑎 and 

𝜕Ф

𝜕𝑠
+ 𝑟(𝑏 + 𝑐)

𝜕Ф

𝜕𝑏
+

α2

2
(b + c)2

∂2Ф

∂b2
+ β(b + c)

∂Ф

∂c
≤ 0.     (5.4) 

To identify the optimal threshold 𝑘∗ we consider any candidate threshold 𝑘. The associated value function Ф𝑘 

solves 

𝜕Ф𝑘

𝜕𝑠
+ 𝑟(𝑏 + 𝑐)

𝜕Ф𝑘

𝜕𝑏
+

α2

2
(b + c)2

∂2Ф𝑘

∂b2
+ β(b + c)

∂Ф𝑘

∂c
≤ 0.                                                                      (5.5) 

for𝑏 + 𝑐 < 𝑘 with the boundary condition Ф𝑘(𝑠, 𝑏, 𝑐) = 𝑏 + 𝑐 − 𝑎 at 𝑏 + 𝑐 = 𝑘. This can be solved explicitly. 

If we try the general solution of (5.5) of the form 

(𝑠, 𝑏, 𝑐) = 𝑒−𝜌𝑠𝜗(𝑏, 𝑐).                                                           (5.6)     

Now considering (5.6) we have  
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𝜕Ф𝑘(𝑠,𝑏,𝑐)

𝜕𝑠
= −𝜌𝑒−𝜌𝑠𝜗(𝑏, 𝑐),

𝜕Ф𝑘(𝑠,𝑏,𝑐)

𝜕𝑏
= 𝑒−𝜌𝑠𝜗𝑏(𝑏, 𝑐), 

𝜕Ф𝑘(𝑠,𝑏,𝑐)

𝜕𝑏2 = 𝑒−𝜌𝑠𝜗𝑏𝑏(𝑏, 𝑐),
𝜕Ф𝑘(𝑠,𝑏,𝑐)

𝜕𝑐
= 𝑒−𝜌𝑠𝜗𝑐(𝑏, 𝑐). 

Substituting partial derivatives of Ф𝑘 into (5.5) and simplifying we get 

𝜌𝜗(𝑏, 𝑐) + 𝑟(𝑏 + 𝑐)𝜗𝑏(𝑏, 𝑐) +
1

2
𝛼2(𝑏 + 𝑐)2𝜗𝑏𝑏(𝑏, 𝑐) + 𝛽(𝑏 + 𝑐)𝜗𝑐(𝑏, 𝑐) = 0                                   (5,7)    

Let the solution of (5.7) be of the form 

   (𝑏, 𝑐) = 𝐴(𝑏 + 𝑐)𝛾𝑖                                                              (5.8) 

where 𝐴 is a constant. So 

 𝜗𝑏 = 𝛾𝑖𝐴(𝑏 + 𝑐)𝛾𝑖−1,  𝜗𝑏𝑏 = 𝛾𝑖(𝛾𝑖 − 1)𝐴(𝑏 + 𝑐)𝛾𝑖−2𝑎𝑛𝑑   𝜗𝑐 = 𝛾𝑖𝐴(𝑏 + 𝑐)𝛾𝑖−1.  

Substituting 𝜗𝑏 ,  𝜗𝑏𝑏and  𝜗𝑐 into (5,7) and simplifying we get 

−𝜌𝐴(𝑏 + 𝑐)𝛾𝑖 + 𝑟(𝑏 + 𝑐)𝛾𝑖𝐴(𝑏 + 𝑐)𝛾𝑖−1 +  
1

2
𝛼2(𝑏 + 𝑐)2𝛾𝑖(𝛾𝑖 − 1)𝐴(𝑏 + 𝑐)𝛾𝑖−2 + (𝑏 + 𝑐)𝛽𝐴(𝑏 + 𝑐)𝛾𝑖−1 = 0. 

Dividing throughout by 𝐴(𝑏 + 𝑐)𝛾𝑖−1 we obtain 

−𝜌 + 𝑟𝛾𝑖 +
1

2
𝛼2𝛾𝑖(𝛾𝑖 − 1) + 𝛽𝛾𝑖 = 0. 

This last equation can be written as: 

−2𝜌 + (2𝛽 + 2𝑟 − 𝛼2)𝛾𝑖 + 𝛼2𝛾𝑖
2 = 0. 

Solving using quadratic formula and simplify we get the solutions 

𝛾1 =
−(2𝑟 − 𝛼2 + 2𝛽) + √(2𝑟 − 𝛼2 + 2𝛽)2 + 8𝜌𝛼2

2𝛼2
 

and 

𝛾2 =
−(2𝑟 − 𝛼2 + 2𝛽) − √(2𝑟 − 𝛼2 + 2𝛽)2 + 8𝜌𝛼2

2𝛼2
. 

 

Therefore, 

𝜗(𝑏, 𝑐) = 𝐴1𝑏𝛾1 + 𝐴2𝑏𝛾2;     𝛾2 < 0 < 𝛾1                                                         (5.9)  

where𝐴1 and 𝐴2 are constants. 

To determine Ф𝑘 we must specify 𝐴1and 𝐴2. Since 𝑢𝑘 should be bounded 

as𝑏 → 0 and 𝑐 → 0 we have 𝐴2 → 0 and the boundary condition 𝑢𝑘 = 𝑘 − 𝑎 

atb +  c =  k gives 

𝑘 − 𝑎 = 𝐴1(𝑏 + 𝑐)𝛾1 . 

Solving this last equation for 𝐴1 we get 

           𝑘−𝛾𝑖(𝑘 − 𝑎) = 𝐴1                                                      (5.10)      
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Substituting (5.8) into (5.6) the expected payoff using sales threshold 𝑘 is 

Ф𝑘(𝑠, 𝑏, 𝑐) = 𝑒−𝜌𝑠𝑘−𝛾1(𝑘 − 𝑎)(𝑏 + 𝑐)𝛾1 .     

Distributing (
𝑏+𝑐

𝑘
)

𝛾1 
and simplify yields 

Ф𝑘(𝑠, 𝑏, 𝑐) = (𝑘1−𝛾1(𝑏 + 𝑐)𝛾1 − 𝑎(𝑏 + 𝑐)𝛾1𝑘−𝛾1)𝑒−𝜌𝑠 .   (5.11)   

Differentiating Ф(𝑠, 𝑏, 𝑐) with respect to k we get 

𝑑Ф𝑘

𝑑𝑘
= 𝑒−𝜌𝑠(1 − 𝛾1)(𝑏 + 𝑐)𝛾1𝑘−𝛾1 − 𝑒−𝜌𝑠𝑎(𝑏 + 𝑐)𝛾1(−𝛾1)𝑘−𝛾1−1. 

Substituting 𝑘 for 𝑏 + 𝑐 and simplifying we obtain 

𝑑Ф𝑘

𝑑𝑘
= 𝑒−𝜌𝑠(1 − 𝛾1) + 𝑒−𝜌𝑠𝛾1𝑎𝑘−1. 

When k is optimal 
𝑑Ф𝑘

𝑑𝑘
= 0. This yields k given by 

𝑘 =
𝛾1𝛼

𝛾1 − 1
.                                                 

Therefore, 

                                            𝑘∗ =
𝛾1𝛼

𝛾1 − 1
.                      (5.12)        

One should sell the asset the best time the price reaches the value (𝑏 + 𝑐)𝑚𝑎𝑥 =
𝛾1

𝛾1−1
. 

 The expected discounted profit obtained from this strategy is calculated as follows. We first substitute 

(5.12)into (5.11) and we obtain 

Ф𝑘 = 𝑒−𝜌𝑠 (
(𝑏 + 𝑐)(𝛾1 − 1)

𝛾1𝛼
)

𝛾1

(
𝛾1𝑎 − 𝛾1𝑎 + 𝑎

𝛾1 − 1
). 

Distributing the power 𝛾1 simplify we get  

Ф𝑘(𝑠, 𝑏, 𝑐) = 𝑒−𝜌𝑠 (
𝛾1 − 1

𝛼
)

𝛾1−1

(
𝑏 + 𝑐

𝛾1

)
𝛾1

 

The conclusion is therefore that one should sell the asset the first time the price reaches the value (𝑏 + 𝑐)𝑚𝑎𝑥 =

𝛾1

𝛾1−1
. The expected discounted profit obtained from this strategy is 

Ф𝑘∗(𝑠, 𝑏, 𝑐) = 𝑒−𝜌𝑠 (
𝛾1 − 1

𝛼
)

𝛾1−1

(
𝑏 + 𝑐

𝛾1

)
𝛾1

. 

Theorem 5.1. The optimal stopping policy is to sell the asset when the price reaches a certain threshold 

𝑘∗ =
𝛾1𝛼

𝛾1−1
 or immediately if the present price is greater than 𝑘∗ the value achieved by this policy is 

Ф𝑘∗(𝑠, 𝑏, 𝑐) = { 𝑒−𝜌𝑠 (
𝛾1 − 1

𝛼
)

𝛾1−1

(
𝑏 + 𝑐

𝛾1

)
𝛾1

;  𝑏 + 𝑐 < 𝑘∗

  𝑏 + 𝑐 − 𝑎                                   ;   𝑏 + 𝑐 > 𝑘∗
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6. CONCLUSION AND RECOMMENDATION 

Based on the concept of hybrid process, we studied a hybrid optimal stopping problem: optimising the expected 

value of an objective function subject to hybrid differential equation. The verification theorem for optimal 

stopping was then derived. We also formulated and solved optimal stopping problem for hybrid process. As a line 

for further research the problem of hybrid optimal stopping with jumps can be studied. A hybrid process with 

jumps is more realistic description of phenomena such as stock price process. The price process of stock may 

experience jumps due to sudden shift in policy by central bank, war or other natural disasters like floods and 

drought. For further enquiry problems of optimal stopping rules for hybrid processes can studied in future.   
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