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Abstract

In this note we employ the Salagean differential operator to the familiar Hadamard product (or convolution) in order
to introduce and investigate two new subclasses of analytic functions. The results presented include coefficient
estimates and extreme properties for functions belonging to these subclasses.
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1. Introduction

Let A denote the class of functions of the form
(o)

f(z) = Z+Zakzk (1)

k=2
which are analytic in the open unit disc U = {z € C : |z| < 1} and let S be the subclass of A, consisting of
analytic and univalent functions f(Z) in the open unit disk U. We denote by $*(a) and K (a) (0 < a < 1),
the class of starlike functions of order & and the class of convex functions of order &, respectively.

Let D™ be the Salagean differential operator (see [1]) D™: A — A,n € N, defined as:

D°f(z) = f(2)
D'f(z) = Df(2) = zf'(2)
D"f(z) = D(D" ' f(2))
We note that;
D"f(z) = z+ Xy, k" ayz® (ne N, =Nu{0})
Definition 1 (Hadamard Product or Convolution)

Given two functions f,g € A where f(z) is given by (0.0.1) and g(z) is defined by
[0e]

9@ =z+ z by z* 2)
k=2

The Hadamard product (or convolution)  f * g is defined by (as usual) by

[o0]
FeD@ =2+ ) ahzt=(g«NG.  z€U
k=2
Definition 2 (Subordination Principle)
Let f (z) and g(z) be analytic in the unit disk U then f (2) is subordinate to g(z) in U, and write

f(2)<9(2) (zeU)

if there exists a Schwarz function w(Zz) , analytic in U with w(0) =0 and |w(z)| < 1 such that

f@ =g(w@) (z € 1),
In particular, it the function g is univalent in U, the above subordination is equivalent to

f(0) = g(0) and f(U) < g(U).

See also Duren [2].
Let ®(2) = z + Yoy Ak z® and W (2) = z + X5, upz®
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analyticin U = {z € C : |z| < 1} with A4 = 0, 4y = 0and A} = .
We note that
(f + 0)(2) = 2+ 52 kM a2 and (f + W)(2) = 2+ 52y Kt 2"

By using the Binomial expansion on (3) we have the following: (3)
Y@ = (F+ 0@ = 2+ ) au(BAB)zH
k=2
and 4

16 = (F+9P@ =24 ) au(Bu Bz
k=2

Where 2, (8), 1, () and a, (B) are coefficients A, u, and a, respectively depending on g (for all k € N and g €
N). We give the following definitions:
Definition 3. A function f(z) € A is said to be in the class E,,,(y,n; 4, B, a, B) if and only if

D™y (z) _ 1+Az
>0 <(1-a 5, +a (5)

where < denotes subordination, (f * ¥)#(z) # 0, A and B are arbitrary fixed numbers -1 < B <A <1,-1<B<
0,a(0<a<1),B,meN,ne€N,(m>n),y(z) andn(z) are as defined in (4). It is to see that when § = 1 we
obtain the class E,, ,(®, ¥; 4, B, @) introduced by Eker and Seker [3].

In other words, f(2z) € E,, (v, 1; A, B, a, ) if and only if there exists an analytic function w(z) satisfying
w(0) =0 and |w(z)| < 1 for z € U such that

D™My(z) _ 1+Aw(2)
pny(z) 1-a) 1+Bw(z) ta ©
The condition (6) is equivalent to
Dy
D'n() <1, zeU
D™ ’
(A4-B)(1-a)-B (D”r]]/((zz)) - 1)

Let 7 denote the subclass of A whose elements can be expressed in the form

f(2) =Z_Zak2k' a; = 0.
k=2
We shall denote by E"m_n(y, n; A, B, a, B), the subclass of functions in E,, ,(y,; A, B, a, ) that have their non-zero
coefficients from second onwards, all negative. Thus, we can write
E,.vmABap)=E,,y,mABap)NT
It is easy to check that various subclasses of T referred to above can be represented as Em'n(CD, Y; A, B, a) for
suitable choices of @, V. For example,

1. Ey, (ﬁ,i;l,—mg) = 8"(a) and E,, (%,ﬁ;l,—l,a,l) = K (a) which were studied by Silverman
([4D),

2. Egp (ﬁ,z;l,—l,a,l) = P*(a) which was studied by Bhoosnurmath et al. and Gupta et al. ([5,6]),

Eqp (M L —i1-1g, 1) = R(a) which was studied by Silverman and Silvia ([7])

(1_2)37201 '(1_2)27201 ’
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2. Coefficient Inequalities
Theorem 1:
If f(z) € A satisfies

o

Y a-m (g -+ G4 5= D" - G+ 8- D', () (9)
k=2
+(A-B)A-a)(k+p- 1)"#k(ﬁ)] la,(B) <(A-B)(1 - a)p"

Sfor some  4(B) = 0,1, (B) = 0,4,(B) = u,(B),a(0<a<1), bmeNandn €N, .then f(z)€
Emnn(v.m; A B, a,B).

Proof. Let condition (9) hold. Then we have;
|D™y (2) — D:U(Z)l —1(4-B)(1Q - a)D"n(z) — B(D"y(2) —OoDnU(Z)N

= ‘Bmzﬁ D G+ B = D (BB = (ﬁnzﬁ + ) e+p- 1)nak(ﬁ>uk(ﬁ)zk+ﬁ-1>
k=2 k=2

(4-B)1-a) (ﬁ”zﬁ + Z(k +h - 1)”ak(ﬁ)uk(ﬁ)zk+ﬁ—1>
k=2

—B (ﬁsz

+ Z(k + B — D™a (B (B)z P~ — (ﬁnzﬁ + Z(k +B - 1)nak(ﬁ)ﬂk(ﬁ)2k+ﬁ_1>>’
k=2 k=2

<

ZP(B™ — ™) + Z[(k +B = D" (B) = (k+ B — D" (B)lar (B)z*+F
k=2

(A-B)(A-a)p"z + (A-B)(1-a) Z(k + B = D (B (B)z+F
k=2

- B (Zﬁ(ﬁm -B"+ Z[(k +B-D"4(B) = (k+ B - 1)”#k(ﬁ)]ak(ﬁ)zk+5'1>
k=2

[oe]

< |zIf(B™ - ™) + Z[(k +B = D" 4(B) = (k + B = D" (BN BNz]**F~ — (A= BY(1 — a)B"z|*
k=2
+(A-B)(1- a)i(k + B = D" (Blax (B)|z|*+F~* — |B (IZIB(ﬁm -B"
k=2
+ i[(k +B=D"N(B) = (k+ B — 1)nﬂk(ﬁ)]|ak(ﬁ)||Z|k+'8_1>
k=2
< l(l -B) <(ﬁm -B")+ i[(k +B-D"4(B) - (k+ B - 1)"#k(ﬁ)]>
k=2

+(A-B)(1- a)Z(k +B - 1)’%(@‘ lax(B)| = (A= B)(1 = a)B"
k=2
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< Z[(l —B)(B™ = B + (k + B = D™ A(B) — (k + B — D" (B))
k=2
+A-B) (1 -a)k+ B - D"w(B)]larB)] - (A= B)(1-a)p" <0

This completes the proof of Theorem 1.
In the following theorem it is shown that the condition (9) is also necessary for functions f(z) of the form (8).

Theorem 2: Let f(z) €T (as defined above). f(z) € Enn,(v,m;A,B,a,B) if and only if

o

Z (1= B) (B~ 5+ (ke + B = 1)"2,(8) — (ke + B~ 1", (B)) o)
+(A-B)(A-a)k+p- 1)”Mk(ﬁ)] a.(B) <(A-B)(1 - a)p"

for some 2,(B) = 0,u,(B) =2 0,1,(B) =, (B),a(0 <a<1), B,meNandn €N,

Proof. SinceE,,,(y,m; 4, B, a,B) C E,..(v,n; A, B, a, ), we only need to prove the “only if” part of theorem. For

function f(z) € T, we can write:

D™y(z) 1
D"n(2) _
(A-B)(1-a)-B (gnr};((zz)) - 1)

_ D™y (z) - D"(2)
(4= B)(1 - ®D™() - BO™ () - D'n(2)
(B™ = B + Eieal e+ B = D™ 4 (B) — (k + B — D" (B)]ar (B) 2"

| |
T A-BA -0~ (A-B)A - ) T,k + B — D a(B)me(B)z51 + BI(B™ = B) + T7,[(k + B = DA (B) — (k + B — D (Bar (B)z51]|
<1

Since Re(z) < |z| forall z € U,

(B™ = B™) + Zial(k + B — D™ 4 (B) — (k + B — D" we(B)]ar (B)z"* }

ke A-B)(A-a)p"—(A-B)1 - ) L,k + B — Dra(Bu(B)z** + B[(B™ — B) + TiLo[(k + B — D™ (B) — (k + B — D (B)]ax (B)z41]
<1

If we choose z real and letting z—-1" s we have;
Y a-m (g -+ e+ 8- DB - e+ 6 - D', ®)
k=2

+(A-B)(A-a)k+p- 1)”ﬂk(ﬁ)] a.(B) <(4-B)(1 - a)p"
This completes the proof of theorem 2.
To prove our next result, we shall need the following theorem.

Corollary A: Let f (z) € T (as defined above) and f (z) € Ep (v, m; A, B, a, B) then,

a (ﬁ) < (4-B)(1-a)B"
T o) (74 (k1)1 (B)~ (4 -1) "1y (B) ) + (4= B) (1—) e+ =1) " ()

for some 1,(B) = 0, yk(ﬁ) >0,14,(08) = yk(ﬁ),o{(O <a<1), g,meN,ne€N,.

(11)

Proof. Since f(z) € E,,, ,(y,m; A, B, a, B) , then condition (3.2.3) gives

(4-B)(1-a)p"
a <
(Al (1—3)(ﬁm—l)’"+(k+ﬁ—1)mflk(/)’)—(k+b’—1)”uk(l)’))+(A—B)(1—a)(k+ﬂ—1)"uk(ﬁ)
This completes the proof.
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3 Extreme Points of the Class Em,n (v, m;A,B,a,B)

Theorem 3: Let fi(2) =z and
filz) =7~ “-50-ak et

A= BB — fm + (k+  — D2 (B) — (k+ B — D'ue(B)) + (A BYA— )k +  — D" ()
for some 2,(B) = 0,1,(B) = 0,4, (B) = u,(B),a(0 <a<1),meN,n€Nyandp € N,k =23, ...
Then f(z) € Epn(v,m;A,B,a,B) if and only if it can be expressed in the form

HOEDIIAG
k=1
where §;, = 0 and ;-1 0y = 1.
Proof. Suppose that
&) =) 8fi@)
=1

=Z_§: 8i(A=B)(1 ~ a)p" ,
Ly (L=B)(Bm = B+ (e + B = D™ M(B) — Gk + B — D"ux(B) + (4= BY(A — )k + B — 1)"ux(B)

k+B-1

Then from Theorem 2, we have

DTA=BE™ =+ R+ = D" 2B) = (k + = D" (B) + (4 = BYA = @)k +  — D" (B)]
- . 5.(A— BY(1 — )"
(= BY(B™ = " + (k+ = DA (B) = (e + f = D" (B)) + (A= BY(A = a) (ke + B = 1" (B)

= (A-B)(1-a)f" ) 8
—U- B - a)p"(1=8) < (A—B)(1—a)p"

Then, f(2) € E,,,(y,n; 4, B, a, B) by Theorem 2.
Conversely, suppose that £ (2) € E,, ,(v,1m; 4, B, a, B).

Since
(A-B)1—-a)p"
ap(B) <
(1 =B)Y(B™ =B+ (k + B — D™ (B) — (k + B — D" (B)) + (A = BY(A — ) (k + B — )" (B)
,(BENLk=23,.)
We may set
5 = [(A=-B)(B™ =™+ (k+ B — D™ (B) — (k+ B — D"we(B)) + (A— B)(1 — ) (k + B — D™ (B)]lax (B
o (A-B)(1—a)p"
,(BENLk=23.)
and
61 = 1 - Z 6’(
k=2
Then,

HORFEDRIAG
k=2

This completes the proof of the theorem.

106



Mathematical Theory and Modeling WWWw.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) L ai
Vol.3, No.1,2013 ST

Corollary B: The extreme points ofE'm'n(y, n; A, B, a, B)are the functions fi (z) = zand
_ (A-B)(1 - a)p" K4p-1
fi2) =z~ Z*+F
(A =B)(B™ =B+ (k+ f = D™A(B) = (k + B = D"ue(B)) + (A = BY(1 — ) (k + B — D" (B)
for some 1,(B) = 0, yk(ﬁ) >0,14,08) = yk(ﬁ),o{(O <a<1), ,meNNREN, k=23,..
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