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Abstract 

This thesis presents a deterministic compartmental model, developed and analyzed to 

investigate the dynamics of lymphatic filariasis disease, through mosquito-borne infection. 

The model is in eight compartments: five for the human population and three for the mosquito 

population based on the microfilariae and antibody levels. The existence of the invariant 

region where the model is epidemiologically feasible and the positivity of the solution were 

established. The existence of Disease-free equilibrium (DFE) and the Endemic equilibrium 

(EE) were determined. Stability analysis of the disease-free equilibrium was investigated via 

the threshold parameter (reproduction number Ro) obtained using the next generation matrix 

technique. The model was found to be locally asymptotically stable when the basic 

reproduction number is less than unity for both special and non special case. It was also 

revealed that the disease is endemic when Ro > 1. It was proved through Lyapunov method 

that the DFE and EE are globally asymptotically stable. Simulation analysis was also carried 

out and it was shown that even when all lymphatic filariasis cases displaying elephantiasis 

symptoms are put on treatment it will not be able to eradicate the disease. This result suggests 

that effective control of lymphatic filariasis may lie in treatment for those displaying 

symptoms. It was also shown that if on the long run as the biting rate of the Mosquitoes 

increases, the infected population increases. Then as biting rate decreases, then the chronic 

infected individuals are completely eradicated from the population while the highly infected 

humans are reduced.  The simulation also showed the impact of the effectiveness of treatment 

on the chronic infected humans, where we see that the population reduces rigorously until we 

get to a period of 70 days and then begins to increase again. This shows that the treatment 

strategies are not effective or perfect. Hence there are chances of fail in treatment. 

Furthermore our analysis shows that on a long run the trend continues indefinitely.  

Key words:  Genital Elephantiasis, Mathematical Modeling, Lymphatic filariasis, Endemic 

Equilibrium (EE) 

1. Introduction 

Lymphatic filariasis is a vector-borne disease which is prevalent in the tropical and sub-

tropical regions of the world Michael et al. (1996).  The overwhelming presence of this 

disease in these regions can be attributed to poor hygienic environmental human activities that 

make the vector-mosquito to thrive. Over 120 million people have been infected with this 

disabling disease and about one-third of this number exhibit the clinical manifestation, 

Ottesen (1994). 
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Unlike many vector-borne diseases, lymphatic filariasis is not life threatening WHO Report, 

(1995).  Infected mosquitoes transmit the L3 (infective stage) state larvae to the susceptible 

human host.  These larvae travel to the lymphatic glands where they mature into adulthood 

and reproduce WHO Report, (1995). An average of 80,000 microfilariae a day is reproduced 

after mating, Manguina, et al. (2009). 

The microfilariae (MF) or L1 stage larvae are released into the blood stream where a 

susceptible mosquito picks it during a bite, Addiss and Dreyer, (2000).  People with weak 

immune responses to lymphatic filariasis parasite (notably wuchereria bancropti; about 90%), 

they develop filarial fever, subsequently hydrocele, lymphedema and elephantiasis, if not 

treated early Addiss and Dreyer, (2000).   

The diseases manifestation is said to be catalyzed by the co-habitation of the parasite with a 

bacteria called Wolbachia, McNulty, et al. (2012). 

With more than 1.3 billion people at risk of the infection (Michael et al 1996) and the dismal 

underlying socio economic consequence of the diseases Addiss and Dreyer (2000) and WHO 

Report, (1995), it became imperative for the world community to work together towards the 

elimination of lymphatic filariasis WHO Report (1995).  Elephantiasis which is caused by 

obstruction of the lymphatic system, which results in the accumulation of fluid called 

LYMPH in the affected areas. 

The lymphatic system helps to protect the body against infection and diseases.  It functions as 

part of the immune system, consisting of a network of tubular channels (lymph vessels) that 

drain a thin watery fluid known as lymph from different area of the body into the blood 

stream.  Obstruction of these vessels results in the massive swelling and gross enlargement 

characteristic of elephantiasis. 

In areas where filariasis is endemic, the most common cause of the elephantiasis is a parasitic 

disease known as lymphatic filariasis.  It primarily affects the legs and genitals, resulting in 

baggy, thickened and ulcerated skin, along with fever and chills.  This condition can be very 

painful and uncomfortable, and it reduces the sufferer’s ability to live a normal life.  A serious 

complication can be the obstruction on blood vessels, which limit blood supply and cause the 

skin to become infected. 

Plaisier et al. (1998) considered a model based on transmission of L3 stage larvae from 

mosquito to the human host.  Factors such as immunity of individuals, vector control and drug 

treatment for the patients were incorporated in their model.  However, simulations were only 

carried out using modeling framework (LYMFASIM) to evaluate some control programs 

which need analytical justification. 

Subramanian et al. (2004) also used LYMFASIM micro simulation model to investigate the 

effect of immunity, considering three variations, on the intensity of infection in Pondicherry, 

India after interruption of transmission through vector control.  This last study was aimed at 

inquiring the impact of immunity on infection in controlling vectors activities. These models 
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predicted large reductions in the prevalence of microfilariae following 3 and 6 years after the 

integrated vector control management in Pondicherry, India.   

Mathematical model for lymphatic filariasis transmission and control challenges and prospect 

was also considered by Swaminabhan, et al (2008).They highlight factors related to the 

efficacy of the drugs of choice, their mode of action, and the possibility that drug resistance 

may develop; the role of vector-parasite combinations; the magnitude of transmission 

thresholds; host-parasite interactions and their effects on the dynamics of infection and 

immunity; parasite biology, and progression to lymphatic filariasis associated disease. The 

two mathematical models developed offer potential decision making tools for transmission 

and control of lymphatic filariasis  

Das and Subramanian (2002) considered modeling the epidemiology, transmission and control 

of lymphatic filariasis. Mathematical models have proven valuable in gaining quantitative 

insights into the population dynamics of the parasites, and may be used to make credible 

predictions of the likely outcomes of various control strategies. The article provides an 

overview of the development of the relevant mathematical/statistical models and of their 

application in studies of the epidemiology, transmission and control of lymphatic filariasis. 

Chan, et al. (2008) formulated a dynamical model of infection and disease in lymphatic 

filariasis. An epidemiological model for the spread of lymphatic filariasis, a mosquito-borne 

infection, was developed and analyzed. The epidemic thresholds known as the reproduction 

number and equilibria for the model are determined and stabilities analyzed. And the 

LYMFASIM simulation program for modeling lymphatic filariasis and its controls were 

considered by Plaisier, et al. (1998). With LYMFASIM, a variety of hypotheses can be tested 

about the life history of the parasite Wuchereria bancrofti, its transmission from man to man 

through mosquitoes, the role of the immune system in regulating parasite numbers, the 

development of disease symptoms, and the effects of control measures (drug treatment or 

mosquito control). 

McGill, el al (2015) also formulated a mathematical model for the transmission dynamics and 

control of lymphatic filariasis. In their model they considered six compartments, four for the 

human population and two for the mosquito population. They considered the rate at which a 

susceptible human get infected when there is an interaction between infected mosquitoes. 

They also considered the control of elephantiasis.   

The pathogenesis of lymphatic filariasis has been a matter of debate for many decades. In 

their paper, Dreyer et al (2000) proposed a dynamical model of bancroftian filariasis, 

integrating clinical, parasitological, surgical, therapeutic, ultrasonographic and 

histopathological data. This model has profound implications for filariasis control programs 

and the management of the individual patient. This study describes the relationship between 

transmission intensity and infection and disease due to Wuchereria bancrofti in an endemic 

area of Papua New Guinea. The prevalence of microfilaremia in the entire study population 

was 66%. Of 1892 persons examined, 6.2% and 12.3% had lymphedema of the legs and 

hydroceles, respectively. The prevalence of microfilaremia and clinical morbidity were lowest 
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in persons less than 20 years old and increased progressively with age. Annual transmission 

potential and annual infective biting were monitored in five villages where Anopheles 

punctulatus and Anopheles koliensis are the only vectors of W. bancrofti. Both measures of 

the entomologic inoculation rate were positively associated with the village-specific 

microfilarial rate, mean intensity of microfilaremia, and prevalence of leg edema. These data 

indicate that transmission intensity is a major determinant of patent infection and morbidity 

rates in bancroftian filariasis. The lack of a quantitative framework that describes the dynamic 

relationships between infection and morbidity has constrained efforts aimed at the community-level 

control of lymphatic filariasis.  

In their paper, Chan et al (1998) described the development and validation of EPIFIL, a 

dynamic model of filariasis infection intensity and chronic diseases. Infection dynamics were 

modeled using the well established immigration-death formulation, incorporating the 

acquisition of immunity to infective larvae over time. The dynamics of disease (lymphodema 

and hydrocele) were modeled as a catalytic function of a variety of factors, including worm 

load and the impact of immunopathological responses. The model was parameterized using 

age-stratified data collected from a Bancroftian filariasis endemic area in Pondicherry in 

southern India. The fitted parameters suggest that a relatively simple model including only 

acquired immunity to infection and irreversible progression to disease can satisfactorily 

explain the observed infection and disease patterns. Disease progression is assumed to be a 

consequence of worm induced damage and to occur at a high rate for hydrocele and a low rate 

for lymphodema. This suggests that immunopathology involvement may not be a necessary 

component of observed age-disease profiles. These findings support a central role for worm 

burden in the initiation and progression of chronic filarial disease. 

Alison and Robert (2010) surveyed the current state of a group of parasitic and microbial 

diseases called the Neglected Tropical Diseases (NTDs). These diseases currently infect a 

billion people, primarily in socioeconomically depressed areas of the world, are a leading 

cause of worldwide disability, and are responsible for approximately 534,000 deaths per year. 

They focused on several subcategories: protozoans, helminthes and bacterial diseases. They 

identify the populations most at risk from these diseases, and outlined symptoms and other 

disease burdens. They also examined the progress being made in controlling NTDs, including 

the current state of drug development. They further examined mathematical modeling of 

NTDs. While mathematical modeling is not bound by many of the strictures of access, data 

collection and infrastructure funding, they nevertheless demonstrated that few NTDs have 

received much attention from mathematical models, and that some have received no attention 

at all. They concluded that simple mathematical models could contribute significantly to the 

understanding of these diseases and the efforts required controlling them, at very little cost. 

Finally they concluded that investment in prevention, treatment and awareness of NTDs is 

urgently warranted. 

Ottesen et al (1997) reported that Lymphatic filariasis infected 120 million people in 73 

countries worldwide and continues to be a worsening problem, especially in Africa and the 
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Indian subcontinent. Elephantiasis, lymphoedema, and genital pathology afflicted 44 million 

men, women and children; another 76 million have parasites in their blood and hidden internal 

damage to their lymphatic and renal systems. In the past, tools and strategies for the control of 

the condition were inadequate, but over the last 10 years dramatic research advances have led 

to new understanding about the severity and impact of the disease, new diagnostic and 

monitoring tools, and, most importantly, new treatment tools and control strategies. The new 

strategy aims both at transmission control through community-wide (mass) treatment 

programmes and at disease control through individual patient management. Annual single-

dose co-administration of two drugs (ivermectin + diethylcarbamazine (DEC) or albendazole) 

reduces blood microfilariae by 99% for a full year; even a single dose of one drug (ivermectin 

or DEC) administered annually can result in 90% reductions; field studies confirm that such 

reduction of microfilarial loads and prevalence can interrupt transmission. New approaches to 

disease control, based on preventing bacterial super-infection, can now halt or even reverse 

the lymphoedema and elephantiasis sequelae of filarial infection. Recognizing these 

remarkable technical advances, the successes of recent control programmes, and the biological 

factors favouring elimination of this infection, the Fiftieth World Health Assembly recently 

called on WHO and its Member States to establish as a priority the global elimination of 

lymphatic filariasis as a public health problem. 

Srividya et al (1991) in their study examined the relationship between the dynamics of 

Wuchereria bancrofti infection and the development of chronic lymphatic disease. Data sets 

from Pondicherry, South India, and Calcutta were used to estimate the age-specific proportion 

of the endemic population which has converted from microfilaria positive to 

amicrofilaraemia, and was assumed to be at risk of disease. For men, but not women, the age-

prevalence profile of the estimated population ‘at risk’ was shown to correspond closely to the 

observed age-prevalence of chronic lymphatic disease in the same community. For both sexes, 

and independent of age, approximately 11% of the population at risk eventually developed 

lymphoedema. They concluded that these observations suggest that filariasis endemic 

populations consist of those individuals who remain amicrofilaraemic and asymptomatic, and 

those who progress through the sequence: uninfected, microfilaraemic, amicrofilaraemic, to 

develop irreversible obstructive lymphatic pathology. 

 Das and Subramanian (2002) in their work reported that Wuchereria bancrofti transmitted by 

Culex quinquefasciatus accounts for >90% of the global burden of lymphatic filariasis (LF). 

Recent advances in diagnostic and control tools and a better epidemiological understanding of 

the disease have led to hope that LF is eradicable. The World Health Organization has helped 

a number of member countries to launch nation-wide programmes of mass treatment with 

antifilarial drugs such as diethylcarbamazine, albendazole and ivermectin, for the elimination 

of this disease. In order to make rational decisions about control strategies, reliable predictions 

of the long-term impact of such treatment, and of alternative interventions, need to be made, 

and these can only be based on a sound, quantitative understanding of the population biology 

of the parasites. Mathematical models have proven valuable in gaining quantitative insights 

into the population dynamics of the parasites, and may be used to make credible predictions of 
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the likely outcomes of various control strategies. This article provides an overview of the 

development of the relevant mathematical/statistical models and of their application in studies 

of the epidemiology, transmission and control of lymphatic filariasis.  

Michael et al. (2008) reported that the ultimate goal of the global programme against 

lymphatic filariasis is eradication through irrevocable cessation of transmission using 4 to 6 

years of annual single dose mass drug administration. The costs of eradication, managerial 

impediments to executing national control programmes, and scientific uncertainty about 

transmission endpoints, are challenges to the success of this effort, especially in areas of high 

endemicity where financial resources are limited. We used a combined analysis of empirical 

community data describing the association between infection and chronic disease prevalence, 

mathematical modeling, and economic analyses to identify and evaluate the feasibility of 

setting an infection target level at which the chronic pathology attributable to lymphatic 

filariasis - lymphoedema of the extremities and hydroceles - becomes negligible in the face of 

continuing transmission as a first stage option in achieving the elimination of this parasitic 

disease. The results show that microfilaria prevalence below a threshold of 3.55% at a blood 

sampling volume of 1 ml could constitute readily achievable and sustainable targets to control 

lymphatic filarial disease. They also showed that as a result of the high marginal cost of 

curing the last few individuals to achieve elimination, maximal benefits can occur at this 

threshold. Indeed, a key finding from our coupled economic and epidemiological analysis is 

that when initial uncertainty regarding eradication occurs and prospects for resolving this 

uncertainty over time exist, it is economically beneficial to adopt a flexible, sequential, 

eradication strategy based on controlling chronic disease initially. 

Bitran et al (2009) in their paper analyzed the rationale for, and costs associated with, the 

control and elimination of neglected tropical diseases (NTDs) in Latin America and the 

Caribbean.  They also estimated the magnitude of potential health gains. The results suggest 

that lymphatic filiariasis, onchocerciasis, and trachoma can be feasibly and affordably 

eliminated by 2020, at a total cost of US$128 million. Control of other NTDs could produce 

important reductions in prevalence and incidence, along with other social and economic 

benefits.  They finally concluded that in particular, controlling soil-transmitted helminths 

(roundworm and hookworm, for example) would produce total costs of $41 million between 

now and 2020.  

Supriatna, et al. (2009) in their paper discussed a mathematical model for the transmission of 

Lymphatic Filariasis disease in Jati Sampurna, West Java Indonesia. Their model assumes 

that acute infected humans are infectious and treatment is given to a certain number of acute 

infected humans found from screening process. The treated acute individuals are assumed to 

remain susceptible to the disease. The model was analyzed and it was able to found a 

condition for the existence and stability of the endemic equilibrium. A well known rule of 

thumb in epidemiological model, that is, the endemic equilibrium exists and stable if the basic 

reproduction number is greater than one, was shown. Moreover, it was also shown that if the 

level of screening n is sufficiently large, current medical treatment strategy will be able to 
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reduce the long-term level of incidences. However, in practice it was not realistic and cannot 

eliminate the disease, in terms of reducing the basic reproduction number. The reproduction 

number could be reduced by giving additional treatments, such as reducing the biting rate and 

mosquito's density. This suggests that there should be a combination of treatment to eliminate 

the disease. 

Other useful works that were reviewed in this work were the works of Michael, et al. (2006), 

Michael, et al. (2004), Gersoyitz and Hammer (2003) and Chan, et al. (1998). 

Here, in our this work, we develop and analyze a mathematical model that captures the 

transmission dynamics of lymphatic filariasis using differential equations to explore if 

treatment for those symptoms alone will be able to keep the infection under control. We also 

considered eight compartments, five for the human populations and three for the mosquito 

population. We also considered the rate at which susceptible humans and susceptible 

mosquitoes become infected. We considered only the natural death rate of humans and 

mosquitoes. 

2. Model Formulation 

2.1 Symbols and Parameters 

HS  - Susceptible humans 

HE  - Exposed humans 

Hh
I  - High concentration of microfilaria with antibody in humans 

HcI  - Chronic, very high concentration of microfilaria and antibody, symptoms showing at 

scrotum of humans 

HT  - Treatment as a result of successful operation at scrotum in humans 

mS  - Susceptible mosquitoes 

mE  - Expose mosquitoes 

mI  - Infected mosquitoes 

H  - Recruitment rate of susceptible humans through birth and migration 

m  -  Recruitment rate of susceptible mosquitoes through breeding 

b  - Biting rate of the vector mosquitoes 

H  - Rate that a Human becomes infectious after interacting with infected mosquitoes 

m  - Rate that a vector mosquitoes becomes infectious after feeding from infected human 

H  - Natural death rate of humans 

m  - Natural death rate of mosquitoes 
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H  - Rate of progression of humans from the exposed state to infectious state 

m  - Rate of progression of mosquitoes from the exposed state to infectious state 

H  - Rate of progression of human from infectious state to chronic states. 

H  - Rate at which chronic infected humans undergo treatment 

  - Rate at which high infected humans undergo treatment 

1p  - Fraction of individuals in the chronic infected human population whose treatment were 

successful 

2p   - Fraction of individuals in the highly infected population whose treatment were 

successful 

2.2 Assumptions of the Model 

1. It is assumed that because infected individuals HE  have a low level of microfilaria 

they are un-dictated by diagnostic tests before treatment. 

2. Both the highly infected and the chronic infected individuals can transmit the disease. 

3. The infection cannot result to the death of the infected population. 

4. Individuals can only be treated through operation at the scrotum. 

5. Failure in treatment in both cases of highly and chronic infectiousness takes an 

individual back to the exposed. 

6. Fractions of individuals whose treatment fail is the same for the highly infected and 

chronically infected 

7. Treated individuals acquire permanent immunity against re-infection 

2.3       Model Flow Chart 
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2.4 The Model Formulation 

Using this flow diagram, the assumptions, symbols and parameters stated above, we now 

formulate the required model as follows: 
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The model consists of human and mosquito interacting populations.  The human population is 

sub-divided based on the level of microfilariae, in the human hosts that include susceptible 

 HS no parasites, low infected individual  HE , with low level of microfilariae less than 

(20mf/ml), highly infected individual  HhI , with high level of MF, chronically infected 

individuals  HcI  which is characterized by higher MF and treated individuals ( HT ). The 

mosquito population is divided into susceptible  mS , Exposed  mE  and infected mosquito, 

 mI . Hence, 

       H H H Hh Hc HN t S t E t I I T t      

       Im m m mN t S t E t t    

Recruitment into the human population is assumed to be a constant rate of H  which include 

birth and migration.  Natural mortality is the only way individuals can die at an assumed rate 

of H  which is proportional to class sizes (Hooper et al 2009) and (WHO Report, 1995).  

When an infectious mosquito takes a bite at a susceptible host, there exist some probability L3 

stage infective larvae, can be transmitted to the individual (Michael, 1999), where the 

infection rate is m  which results on movement of susceptible  HS  individuals to Exposed 

 HE t  and the rate is defined by     

 1H H m
m

h

b S I

N


    
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where   represents the factor at the bed–net effect reduce the transmission rate.  If 1   

means bed-nets are used by all individuals, implying  0m   and 0   means bed-nets were 

not used.  H  is the rate of parasite transmission to human, b  is the average bites per 

mosquito per day.  Infected people in the Exposed class HE  can leave because of diseases 

progression at the rate 𝛼𝐻 to high infectious class HhI  or by natural mortality rate H .  Highly 

infected individuals can progress to chronic infectious class HcI at a constant rate H .  

Treatment of HhI  and HcI  infected humans occurs at a rate of   and H  that reduces the 

intensity level of microfilariae (MF).  It’s assumed that because infected individuals HE  have 

low level of microfilariae they are undetected by diagnostic, tests before treatment. 

The rate of recruitment in mosquito population is m  and the mortality at the rate m .  The 

susceptible mosquito engorges microfilariare MF (L1 stage) when it bites infected individuals.  

HhI  and HcI   and therefore, becomes infected at a rate h   defined by    

 m m Hh Hc

h

m

b S I I

N





   

Where m   
 the rate of parasite transmission to mosquito 

Patients in chronic class whose infection status had reached an advanced stage will start 

showing clinical manifestation of hydrocoele, lyphoedema and elephantiasis, Hooper, et al 

(2009).  According to Krishnamoorlly et al (2004), there is a higher rate of the death of a 

mosquito that engorges microfilariae beyond its saturation level. 

3. Model Analysis 

In this paper, we analyze the elephantiasis model, we first prove that the set of solution is 

confined in a feasible region, and then show that all the solutions are positive. We investigate 

the existence and stability of the equilibrium point. Further we computed the basic 

reproduction number. We also proved global stability of the disease free equilibrium (DFE) 

and endemic equilibrium (EE) using the lyapunov function. Finally we considered the 

numerical solution of the model using simulation. 

3.1 Basic Properties of the Model 

3.1.1 Invariant Property 

Theorem 3.1: The closed set  

 

  8, , , , , , , : 0; 0H H Hh Hc H m m m H H Hh Hc H m m mD S E I I T S E I S E I I T S E I           

              is positively- invariant and attracting with respect to the model of (2.1). 

Proof: 

Considering the human population we have, 

                                                       (3.1) 

Differentiating (4.1) we obtain 

H H H HHCHh
N S E I I T    
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                                            (3.2) 

 

Substituting (2.1) into (3.2) gives us 

HHH

HHHhHcHHcHHHhHHhHH

HHHHHHhHcH
H

mHH
HH

H

mHH
H

H

N

TIpIpIII

EEIpIp
N

ISb
S

N

ISb

dt

dN

















21

21

)()(

)()1()1(

 

  

H
H H H

H
H H H

dN
N

dt

dN
N

dt





  

  
 

 

 

 

Taking limit as t  

H
H

H

N



                                                                                                         (3.3) 

Here we study the model for human population from the epidemiological concept in the 

feasible region. 

𝐷𝐻 = ℝ{(𝑆𝐻, 𝐸𝐻 , 𝐼𝐻ℎ, 𝐼𝐻𝐶 , 𝑇𝐻) ∈ ℝ+
5 : ≤

ΛH

𝜇𝐻
} 

Considering the mosquito population we have, 

                                                                                                         (3.4)     

Differentiating (3.4) we have 

 

mmmm IESN 

 H H

H H

H

t t
H H

t tH
H

H

tH
H

H

d
N e e

dt

N e e k

N ke

 

 








 


 


 

Hh HCH H H H
dI dIdN dS dE dT

dt dt dt dt dt dt
    
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                                                                                           (3.5)   

 

Substituting (2.1) into (3.5) we obtain

( ) ( )m m m Hh Hc m m Hh Hc

m m m m m m m m m m m

m m

dN b S I I b S I I
S E E E I

dt N N

 
    

 
         

 

 

 

 

 m mt t

m H

m m

m

m
m m m

m
m m m

t tm
m

m

tm
m

m

d
N e e

dt

dN
N

dt

dN
N

dt

N e e k

N ke

 

 












 

  

  


 


 

 

Taking limit as t  

m
m

m

N



                                                                                                            (3.6) 

Also we study the model for mosquito population from the epidemiological concept in the 

feasible region 

𝐷𝑚 = {(𝑆𝑚, 𝐸𝑚, 𝐼𝑚) ∈ ℝ+
3 : 𝑁𝑚 ≤

Λm

𝜇𝑚
} 

Generally, 𝐷 = 𝐷𝐻 × 𝐷𝑚 ℝ+
5 × ℝ+

3
 
this means that both the human population at a given 

time )(tNH  and the mosquito population Nm(t) are confined in the feasible regions DH and Dm 

respectively. 

That is all the solutions for both human and mosquito are within this region. 

Then the total population (t) N ( ) ( )mHN t N t  is confined within the feasible region given 

by 

( )m

m m m m m m m m m m m m m m m

dN
S E I S E I N

dt
                

m m m mdN dS dE dI

dt dt dt dt
   
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𝐷 = {(𝑆𝐻, 𝐸𝐻, 𝐼𝐻ℎ, 𝐼𝐻𝐶 , 𝑇𝐻,𝑆𝑚, 𝐸𝑚, 𝐼𝑚) ∈ ℝ+
8 : 𝑁𝐻 ≤

ΛH

𝜇𝐻
, 𝑁𝑚 ≤

Λm

𝜇𝑚
} 

So we are studying our model in the feasible region∈ ℝ+
8 .∎ 

3.2 POSITIVITY OF SOLUTION 

Theorem 3.2: The solutions of the elephantiasis model with positive initial values in the 

feasible region D remains positive at all time t > 0. 

Proof:  We will adopt the ideas of Chiyaka et. al. (2008) and Lashari et al. (2012) to prove the 

positivity of solution of our model 

From the first equation of the model it is obvious that ( ) 0HS t > for all 0t  ; otherwise let 

there exist 
*

0t  such that
*

( ) 0HS t = , *( ) 0HS t  and , , , , , , , 0m m mH H HHCHh
S E I I I S E I   

For 
*

0 t t< <
 

*

* *
* *

( )

( ) ( )
( ) ( )

0

H

H

H H
H H H

H

H

S

S t

b S t I t
t S t

N






   

  

 

Which is a contradiction of the assumption that 
*

( ) 0HS t   

Hence ( ) 0HS t >  

In the second equation 

Let there exist a { }*
sup 0: , , , , , , , I 0m m mH H HHCHh

t t S E I I T S E= > >  

Then we have 

        
1 21 1H HH t H tH H H

H H HC Hh

H

b S Id
E e p I p I e

dt N

   
 

  
     
                    (3.7)

 

Integral   (4.7)   from 0 to t* 




defEetE
t

HH
H

tH
H

H 





*

0

)(*)
(

)()0(*)(  




defEetE
t

HH
H

tH
H

H 





*

0

)(*)
(

)()0(*)(  

)8.3()()0(*)(
*

0

)(*)
(*)

(




defeeEtE
t

HHtH
H

tH
H

HH 

















  

                    

Hence ( ) 0HE t >

 

Again for 
Hh

I  

We assume that there exist a 
*

0t >  such that 
*

( ) 0
Hh

I t = and ( ) 0
Hh

I t =  
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( )t ( )tH H H H
H HHh

I e E e         
  

 
                                                      (3.9)

 

Integrating (3.9) from 0 to t* 

 

 
deEIetI

t
HH

HHHh
tHH

Hh 



*

0

)(*)(* )()0()(  

0

)10.3()()0()(
*

0

)(*)(*)(*











 



Hh

t
HH

HH
tHHtHH

HhHh

I

deEeeItI  

 

 

For HCI we have that 

   H H H Ht t

HHC Hh

d
I e I e

dt

   


  
 
 


                                                               (3.11)

 

Integrating (3.11) from 0 to t* we have 




deIIetI HH
Hh

t

HHc
t

HH
Hc

)(
*

0

*)(
)0()( 

  

)12.3()0()(
)(

*

0

*)(*)(*)(



deIeeIetI HH

Hh

t

H
t

HHt
HH

Hc
t

HH
Hc











  

Hence ( ) 0HcI t >  

We also prove for HT  

1 2
H

H Hc H HHh

dT
p I p I T

dt
    

                                                                      (3.13) 

    1 2
H Ht t

H H Hc Hh

d
T e p I p I e

dt
   

                                                               (3.14)
 

Integrating (3.14) from 0 to *t  

  degTetT H
t

H
tH

H
)(

*

0

*)( )()0()(   

)15.3()()0()( )(
*

0

*)(*)(   degeeTtT H
t

tHtH
HH 







 

                                                                                        

 

To prove the positivity of mS , it follows the same approach as we used in the case of HS  

From the sixth equation of the model (3.1), it is obvious that ( ) 0mS t > for all 0t  ; otherwise 

let there exist 
*

0t > such that 
*

( ) 0mS t =  
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*( ) 0mS t ¢ and , ,I ,I , ,S , ,I 0m m mH H HHCHh
S E T E >  

For 
*

0 t t< <
 

*

* *

*

   
(t )

 
( )

( ) ( )

( ) 0

m

m

m m HcHh
m m m

m

m

S

S

b S I I
t S t

N

t







 

 

 

Which is a contradiction of the assumption that 
*

(t ) 0mS ¢  

Hence ( ) 0mS t >  

For the next 

 
( )m m Hcm Hh

m m m
m

b S I IdE
E

dt N


 


  

                                                                   (3.16)

 

Let there exist a  *
sup 0: , ,I ,I , ,S , ,I 0m m mH H Hc HHh

t t S E T E    

Then we have 

    ( )m m m mm m HcHh
m

m

b S I Id
E e e

dt N

     
  
 




                                                           (3.17)

 

Integrate (3.17) from 0 to t* 

   

   

     

*

*

*

*

*

* *

*
0

*
0

*
0

( ) (0) ( )

( ) (0) ( )

( ) (0) ( )

m m m m

m m m m

m m m m m m

t
t

m m

t
t

m

t
t t

m

E t e E f e d

E t e E f e d

E t E e e f e d

    

    

      

 

 

 

 

 

    

 

 

 






                                            (3.18)

 

Hence ( ) 0mE t >
 

m
m m m m

dI
E I

dt
  

                                                                                                        (3.19)
 

 mt
m m m

d
I e E

dt
 

                                                                                                         (3.20)
 

Integrating (3.20) from 0 to t* 
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*

*
*

*

*
*

0

0

(t ) (0) ( )

(t ) (0) ( )

m m

m m

t
t

m m

t
t

m m

I e I g e d

I e I g e d

  

  

 

 

 

 





 

*

* *
*

0

(t ) (0) ( )

(t) 0

m m m

t
t t

m m

m

I I e e g e d

I

      

 



                                                                   (3.21)

 

This completes the proof that for all t > 0 the solution of the system (2.1) is non-negative. ∎ 

 

3.3 Existence of Equilibrium Points for Non-Special Case  

The points at which the differential equations of the system (2.1) are equal to zero are referred 

to as equilibrium points or steady-state solutions. 

0
dt

dI

dt

dE

dt

dS

dt

dT

dt

dI

dt

dI

dt

dE

dt

dS mmmHHcHhHH  

This implies that  

)22.3(

0

0)(
)(

0
)(

0

0)(

0)(

0)()1()1(

0

21

21

















































mmmm

mmm
m

HhHcmm

mm
m

HhHcmm
m

HHHhHcH

HcHHHhH

HhHHHH

HHHHhHcH
H

mHH

HH
H

mHH
H

IE

E
N

IISb

S
N

IISb

TIpIp

II

IE

EIpIp
N

ISb

S
N

ISb





















 

Solving (3.22) we have    
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 

)23.3(

)(

)(

)(

)(

)(

)(

)1()1(

)(

*
*

*

**
*

**
*

*
2

*
1*

*
*

*
*

*

*
2

**
1

***
*

**

*
*
































































m

mm
m

mmm

HhHcmm
m

HhHcm

mm
m

H

HhHcH
H

HH

HhH
Hc

HH

HH
Hh

HHH

HhHHcHHmHH
H

HHmH

HH
H

E
I

N

IISb
E

IIb

N
S

IpIp
T

I
I

E
I

N

IpNIpNISb
E

NIb

N
S





























 

Therefore it is important to note that there is no trivial equilibrium points as long as the 

recruitment term H  and m  are not zero. This implies that 

   0,0,0,0,0,0,0,0,,,,,,, ******** mmmHHCHhHH IESTIIES  and the population will not be extinct. 

3.4 Stability of the Disease – Free Equilibrium point 

At the disease free equilibrium point all the disease compartments are set to be zero, that is, 

0 mmHcHhH IEIIE  

Hence our model reduces to, 

H

H
HHHH SS





 0  

m

m
mH SandT




 0  

Therefore the disease-free equilibrium (DFE) of our model is given by  

  






 
 0,0,,0,0,0,0,,,,,,,, 000000000

m

m

H

H
mmmHHcHhHH IESTIIES




 

3.5 Basic Reproduction number for the model (2.1) 

 The basic reproduction number  𝑅0  is defined as the average number of secondary infection 

that can occur when one infected individual is introduced into an entirely susceptible human 

population. 

The local stability of 
0  will now be explored using the next generation matrix operator as 

developed by Vanden Driessche and Watmough (2002) 
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Let   , , , ,
T

m mH HcHh
x E I I E I  

Then we can re-write our model for the disease components as  

   
dX

f X v X
dt

 
       

                                                                                 (3.24) 

Where  f X  is defined as the rate of appearance of new infections into the disease 

compartment and we have it as; 

                              




























0

)(
0
0

)(

m

HhHcmm

H

mHH

N

IISb

N

ISb

Xf




 

 

And  v X is defined as the rate of transfer of individual in and out of the disease 

compartment, and we have it as; 

And 

     

 

 

 

2 11 1

v(X)

H H H H HcHh

H H H HHh

H H Hc H Hh

m m m

m m m m
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Then F  which is the Jacobian of f(X) evaluated at the DFE 0 becomes 
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where,   ))((1)()1( 21 HHHHHHHHHH pp    

  )(1)1( 210 HHHH ppa    

 HHHpa   )1( 11  

HHHpa )1( 12   

  )(()1)( 23 HHHHHHH pa    
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where N
HR (Reproductive number of Humans for non-special case) tells about the number of 

humans that one infectious mosquito infects during its period of infectiousness in an entirely 

susceptible human population and N
mR  (the reproductive number of mosquitoes for non-special 

case) gives us the information about the average number of mosquitoes that one infectious 

individual can infect during his/her period of infections in an entirely susceptible mosquito 

population.

 

3.6 Basic Reproduction number for the Special Case 

Differential Equation for special case where we assumed there is no treatment that is 

121  pp  
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Where      HHHHHH kkk   321 ,,  and  mmk  4  

Hence, the equilibrium point for the special case is  
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The threshold quantity 0R , is called the reproductive number of the disease elephantiasis. It 

represent the expected average number of new infections produced directly or indirectly by a 

single infective when introduced into a completely susceptible population. When the basic 

reproductive number 10 R , on average each infected individual infects fewer the one 

individual, and the disease dies out, if 10 R , on average each infected individual, infect more 

than one other individual, so we would expect the disease to spread. 

To obtain 0R  for our special case we now explored using the next generation matrix operator 

as developed by van den Driessche and Watmough (2002). 
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Let  , , , ,H Hh Hc m mX E I I E I  , that is, the set of the entire disease compartment. 

Our model can be written as  

   
dX

f X v X
dt

 
                                                                                                   

(3.27)
 

Where  f X  is the rate of appearance of new infection into the disease compartments 

It is defined by  
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F is the Jacobian of  f X  with respect to the disease compartments evaluated at the point 0
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  X is the rate of transfer of individual in and out of the disease compartment, it is defined 

by      X X
X      

Where  X
 

 is the rate of transfer of disease out of the disease compartments 
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And  X
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 is the rate of transfer of disease into the disease compartment by other means. 
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V  is the jacobian of  X  with respect to the disease compartment at the point 0 . 
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where casespecialthefornumberproductiveR Re0   

casespecialtheforhumansofnumberproductiveRH Re  

casespecialtheformosquitoesofnumberproductiveRm Re  

HR = describes the number of humans that one infectious mosquito infects over its expected 

infection period in a completely susceptible human population, and mR  is the number of 

mosquitoes infected by one infectious human during the period of infectiousness in a 

completely susceptible mosquitoes population. 

Using the basic reproduction number  0R obtained for the model (4.31) 

Theorem 3.3: The disease-free state, 0  is locally asymptotically stable if 10 R
 

and 

unstable if 10 R  for both special and non special cases 

Proof: 
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mmmmHHHHHHHH and   87654321 )(,,),(),(),(,

 

Since all the real parts of the seven eigen-values are negative, the DFE is locally 
asymptotically stable. 

.
 

3.7 Global Asymptotic Stability for Disease-Free Equilibrium 

Theorem 3.4: if 0 1R   then the disease-free equilibrium of the model (3.25) is globally 

asymptotically stable. 

Proof: To establish the global stability of the disease-free equilibrium 0 , we construct the following 
linear Lyapunov function (L). 

3.8              We consider the Linear Lyapunov Function below 

mmHCHhH ICECICICECL 54321 
                                               (3.28) 

Where the constants are,
 

 
 

m

HHmm

kkkk

kb
C





4321

3

1


  

 

m

Hmm

kkkk

kb
C





4321

3

2


  

m

mm

kk

b
C





43

3   

m

m

k

R
C





4

0

4   

m

R
C


0

5 

 

Putting the values of 4321 ,,, CCCC
 and 5C

into (3.28) we have 

   
m

m

m

m

m

HC

m

mm

Hh

m

Hmm

H

m

HHmm I
R

E
k

R
I

kk

b
I

kkkk

kb
E

kkkk

kb
L















 0

4

0

434321

3

4321

3 







 
(3.29)

 

Differentiating equation (4.35) and substituting the steady state values 

, , ,
H Hh HC m m

andE I I E I
    
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   
 

 
 

 

3 3

1 2

1 2 3 4 2 3 4

0 0
3 4

3 4 4

m m H H m m HH H m
H H H Hh

m H m

m m Hh HCm m m
H Hh HC m m m m m

m m H m

b k b kb S I
L k E E k I

k k k k N k k k

b S I Ib R R
I k I k E E I

k k k N

      


 

  
  

  

  
    

 

 
      

 

&

     

 

 

3

2

3 3 3

1 2 3 4 2 3 4 2 3 4 3 4

0 0 0
0

3 4 4 4

2

3

1

(k )m H m H H H m m m H H H m m H H H m m H Hh

m H m m m

m m m Hh HCm m H Hh m m HC m m m m
m

m m m H m m

m H m H H H m

b k S I b k E b k E b I
L

k k k k N k k k k k k k k

R b S I Ib I b I R E R E
R I

k k k k N

b k S I

k

               

   

       

    

    

   
   


     




&

 0

0

2 3 4 4 3 4 4 4 3 4

m m m Hh HCm m Hh m m H Hh m m Hc m m H Hh
m

m H m m m m H m

R b S I Ib I b I b I b I
R I

k k k N k k k k k N k k

          

     


     

 

Re-arranging we obtain; 

 2

3

0

1 2 3 4 4 3 4 3 4 4

0 0

4 4

m H m H H H m m m Hh m m H Hh m m H Hh m m HC
m

m H m m m m

m m m Hh m m m HC

m m m m

b k S I b I b I b I b I
R I

k k k k N k k k k k k

R b S I R b S I

k N k N

              

    

   

 


    

 

 

Collecting like terms 

      HC

m

mm

Hh

m

mm

m IR
k

b
IR

k

b
IRR 11 0

4

0

4

0

2

0 







 

      0 0 0 0

4 4

1 1 1m m m m

m Hh HC

m m

b b
R R I R I R I

k k
L

   

 



       

      0 0 0 01 1 1m m Hh m HCR R I R R I R R IL


       

oL   for 10 R , and for 0L &  , if and only if 0m Hh HCI I I    by Lasalle’s invariance 

principle, 0  is globally asymptotically stable, ∎ 

3.9 Global Stability of Endemic Equilibrium Point. 

Theorem 3.5: The endemic equilibrium of the model (3.25) is globally asymptotically stable 

whenever 1
1

0

21


 pp

R  

Proof: Let the endemic equilibrium of the model (3.25) be denoted by  

 **************** ,,,,,,, mmmHHCHhHH IESTIIESM   

and Let 10 R so that M  exists. 

Consider the following nonlinear Lyapunov function. 
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)30.3(lnlnlnln

lnlnln

**
****

5**
****

**
****

4**
****

3

**
****

2**
****

**
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1
















































































































































































m

m
mmm

m

m
mmm

m

m
mmm

Hc

Hc
HcHcHc

Hh

Hh
HhHhHh

H

H
HHH

H

H
HHH

I

I
IIIC

E

E
EEE

S

S
SSSC

I

I
IIIC

I

I
IIIC

E

E
EEE

S

S
SSSCM

 

Differentiating the nonlinear lyapounov function  

** ** ** **** **

1 2 3 4

**

5

Hh HC m mH H

H H H H Hh Hh HC HC m m m m

H H Hh HC m m

m

m m

m

I I S ES E
M C S S E E C I I C I I C S S E E

S E I I S E

I
C I I

I

      
                 

       

 
  

 

& & & && & & & & & & & &

& &

** ** ** **** **

1 2 3 4

**

5

1 1 1 1 1 1

1

Hh HC m mH H
H H Hh HC m m

H H Hh HC m m

m

m

m

I I S ES E
M C S E C I C I C S E

S E I I S E

I
C I

I

                 
                            

                         

  
   

   

& && & & & &

&

(3.31)

 

Substituting model (3.25) into (3.31) 

 

 
 

 
 










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














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
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
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
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
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











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m
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H
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S
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


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
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43
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3

2
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1
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At steady state.   

  **
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3
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2
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1
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1
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H

H
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
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










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Substituting the values of steady state into (3.38)

 

(3.32) 
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   
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       

      
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 
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 
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   

 
 
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4 51 1

Hh HC m m Hh HC
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b S I IE I
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 
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       

              

(3.33) 
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3
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Substituting the values of the lyapunov constants C’s into equation (3.33) 

 

 
   
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Collecting those terms with dot stars in the effected classes and substituting the values of k’s 

inside the bracket we have 
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From (3.34) and (3.35), we observe that BA , then, 0
dt

dM
M (which means that Mwill 

be negative definite). 0
dt
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Thus the largest compact invariant set,  








 0:,,,,,,, 1

****************

dt

dM
IESTIIES mmmHHcHhHH

is 

just the endemic equilibrium point * . Then by Lassalle invariant principle, if BA  , then *

will be globally asymptotically stable in 1 , ∎ 

 

3.10 Numerical simulation 

For numerical results, we consider the following values for the parameters involved in the model. 

VARIABLES & 

PARAMETERS 

VALUE UNIT SOURCE 

SH 30 ---- Assumed 

EH 25 ----- Assumed 

IHh 15 ----- Assumed 

IHc 10 ----- Assumed 

TH 0 ----- Assumed 

Sm 20 ----- Assumed 

Em 15 ----- Assumed 

Im 10 ----- Assumed 

H  24 Per day Ridouan etaal (2013) 

m  4000 Per day Ridouan etaal (2013) 

H  3.576 Per day Ridouan etaal (2013) 

m  0.091 Per day Labadin etaal (2009) 

H  0.0045 Per year Ridouan etaal (2013) 

m  0.055 Per day Ridouan etaal (2013) 

H  0.00048 Per day Ridouan etaal (2013) 

m  0.067 Per day Ridouan etaal (2013) 

H  0.000287 Per year Ridouan etaal (2013) 

H  0.00196 Per day Olaniyi and 

Obabiyi(2013) 

  0.00196 Per day Olaniyi and 

Obabiyi(2013) 

1p  0.005 Per day Assumed 

2p  0.036 Per day Assumed 

B 0.12 Per day Olaniyi and 

Obabiyi(2013) 

 

For high accuracy of results, we used MATLAB 15 to carry out our simulations. 
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                                   Fig.3.1: A plot of the eight compartments when 0 1R  . 

 

          

 

                           Fig.3.2: A plot of the eight compartments when 0 1R   
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Fig. 3.3: Plot of the infected class ( mHcHh IandII , ) against time when 0.002H   

 

Fig. 3.4: Plot of the infected class ( mHcHh IandII , ) against time when 30H   
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Fig. 3.5: Shows the trend of the chronic infected humans when we vary 
H  

 

Fig.3.6: Plot of HcI  against time when we vary the value of 
1p . 
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Fig. 3.7: Plot of HhI  against time when we vary the value of
2p . 

                                             

 

Fig. 3.8: Plot of HcI at different biting rate (b)   
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Fig. 3.9: Plot of HhI at different biting rate (b)                   

                                                         

 

Fig. 3.10: Plot of HcI  against time with different of   
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Fig. 3.11: Plot of IHh against time with different values of   

                                                     

Fig. 3.12: Plot of HT against time varying rate of treatment of HcI  
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Fig.3.13: Plot of Im against time for different values of 
m  

 

3.11 Interpretation and Discussion of the Simulation Graphs 

Fig 3.1shows the simulation of all the classes against time for R0 = 0.3130<1.We observe that 

the infection is completely eradicated from the population in the long run. 

For Fig. 3.2, at 12655.60 R  the graph shows that the simulation of the population in the 

long run and we observe that all the human population “ HN ” is reduced. But the vector 

mosquito population remains in the population. This means that genital elephantiasis will not 

be eradicated form the population, that is, in future the menace of the infection will still be a 

treat to the population.  

Fig. 3.3, Shows that for
H or all 0.002, we have both the infective classes of humans and 

that of mosquito to remain in the population. 

In Figure 3.4 we see that an increase in the value of the
H precise at 

H   30 we have that the 

three classes where reduced with the HCI  completely out of the population in the long run.  

Figure 3.5, our simulation reveals that if by any means
H  approaches zero, the number of 

individual grows continuously as t . Also increasing the value of
H  have a great effect in 

reducing the chronic infected individual 
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Figure 3.6 shows the impact of the effectiveness of treatment on the HCI  humans, where we 

see that the population reduces rigorously until we get to a period of 70 days and them begins 

to increase again. This shows that the treatment strategies are not effective. Hence there are 

chances of fail in treatment. Furthermore our analysis shows that in a long run the trend stops. 

In Figure 3.7 we see that HhI  grows exponentially and we see that varying the parameter 1p  

have little or no impact on the population. Just as we have in Figure 3.6. Our analysis show 

that in the long run, the trend stopped at 500t . 

In Figures 3.8 and 3.9 if in the long run as the biting rate increases, the infected population 

increases. Then as biting rate decreases, then the HCI  individuals are completely eradicated 

from the population while the HhI  infected individuals are reduced. 

In Figure 3.10 and Figure 3.11 we observed that both the HhI  and HCI  infected individuals are 

reduced as omega ( , the treatment rate) increases though HcI reduces more. Therefore, 

treatment should be more focused on the HCI  infected individuals.  

In Figure 3.12, we investigate the effect of increase in treatment rate on the treatment class, 

and that shows that treatment population decreases until it approaches to 80t and then 

increases throughout the long run. This is to say that, within the first 80 days those whose 

treatment where successful were very minimal irrespective of the actions of the health 

personnel. As the rate of treatment increases, more people recover from the infection and 80 

days is the minimum time needed for full recovery. 

Figure 3.13, we observe that varying the value
m . As the recruitment rate of mosquitoes 

decreases the number of infected mosquitoes reduces. This means that if the entire infected 

mosquitoes can be eradicated from the environment the rate at which the infection is 

transmitted will be reduced.  

Our research also shows that varying
m  reduce the susceptible mosquitoes in the population. 

This is to say that if effort is made to ensure that the rate at which mosquitoes breeds in the 

environment is control at the early stage we stand a chance to have a population free of 

elephantiasis. 

 

4. Summary, Conclusion and Recommendations 

4.1  Summary 

In this thesis work, we have formulated and analyzed a compartmental model for the 

Elephantiasis (Lymphatic Filariasis) transmission in human and mosquito populations using a 

deterministic model. The human population was divided into five compartment: 

Susceptible(SH), Exposed(EH), Highly Infected(IHh), Chronic Infected(IHC), and 

Treatment(TH) class, while the mosquito population was divided into three compartment: 

Susceptible(Sm), Exposed(Em), and Infected(Im). We established a region where the model is 

epidemiologically feasible and mathematically well-posed, which is called the invariant 

property. We also showed the existence of a disease-free equilibrium (DFE) and endemic 

equilibrium (EE) points. We went further to establish the local and global stability of the DFE 

and EE using the Lyapunov method. We finally carried out a simulation study of the model.  
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4.2 Conclusion   

The reproduction number is computed for both special cases and non-special cases. It is also 

analyzed for when it is less than unity and for when it is greater than unity. The analysis 

suggests that treatment of elephantiasis cases has some impact on reducing the spread of the 

lymphatic filariasis infections. 

However, sensitivity analysis tend to give a better picture about the relationship between the 

reproduction number and the treatment factors, as it shows that the treatment factor reduces 

the reproduction number but not to the level necessary for the disease elimination. This result 

suggests that effective lymphatic filariasis control requires strategies beyond elephantiasis 

treatment only. 

 From the simulation analysis of all the classes against time for R0 = 0.3130<1 we observe that 

the infection is completely eradicated from the population in the long run. 

For 12655.60 R  the graph shows that the simulation of the population in the long run and 

we observe that all the human population “ HN ” is reduced. But the vector mosquito 

population remains in the population. This means that genital elephantiasis will not be 

eradicated form the population that is in future the menace of the infection will still be a treat 

to the population.  

The graph also shows that for
H   0.002, we have both the infective classes of humans and 

that of mosquito to remain in the population. We also see that an increase in the value of the 

H precise at 
H   30 we have that the three classes where reduced with the HCI  completely 

out of the population in the long run.  

 Our simulation also reveals that if by any means 
H  approaches zero, the number of 

individual grows continuously as t . Also, it shows that increasing the value of 
H   have a 

great effect in reducing the chronic infected individuals. It further shows that the impact of the 

effectiveness of treatment on the HCI  humans, where we see that the population reduces 

rigorously until we get to a period of 70 days and them begins to increase again. This shows 

that the treatment strategies are not effective. Hence there are chances of fail in treatment. 

Furthermore our analysis shows that in a long run the trend stops. 

 We also see that HhI  grows exponentially and we see that varying the parameter 1p  have 

little or no impact on the population. Our analysis show that in the long run, the trend stopped 

at 500t . 

We also found out that in the long run as the biting rate increases, the infected population 

increases. Then as biting rate decreases, then the HCI  individuals are completely eradicated 

from the population while the HhI  infected individuals are reduced. 

We observed that both the HhI and HCI  infected individuals are reduced as omega ( , the 

treatment rate) increases though HcI reduces more. Therefore, treatment should be more 

focused on the HCI  infected individuals.  

We investigated the effect of increase in treatment rate on the treatment class, and that shows 

that treatment population decreases until it approaches to 80t and then increases throughout 

the long run. This is to say that, within the first 80 days those whose treatment where 
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successful were very minimal irrespective of the actions of the health personnel. As the rate of 

treatment increases, more people recover from the infection and 80 days is the minimum time 

needed for full recovery. 

4.3 Recommendations 

Based on the above, humans need to boost their antibodies production to be able to subdue the 

invasion of parasites in the bloodstream. Eating right food and living a healthy lifestyle can 

help boost the level of antibodies in humans. It is also important to note that reducing human-

mosquito contact rate plays a big role in inhibiting the prevalence of elephantiasis. 

The use of insecticide-treated bed net, closing of doors and windows against mosquitoes. 

Clearing of stagnant water and drainages, are all regarded as vector control measures. 

However, efforts should be intensified in developing elephantiasis vaccine as this would 

facilitate the stimulation of the immune system in producing antibodies against elephantiasis. 

Treatment should be more focus on the Chronic Infected (IHC) individual than the Highly 

Infected (IHh) individual as we can see in our simulation of Figure 4.10. 
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