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Abstract

This thesis presents a deterministic compartmental model, developed and analyzed to
investigate the dynamics of lymphatic filariasis disease, through mosquito-borne infection.
The model is in eight compartments: five for the human population and three for the mosquito
population based on the microfilariae and antibody levels. The existence of the invariant
region where the model is epidemiologically feasible and the positivity of the solution were
established. The existence of Disease-free equilibrium (DFE) and the Endemic equilibrium
(EE) were determined. Stability analysis of the disease-free equilibrium was investigated via
the threshold parameter (reproduction number R,) obtained using the next generation matrix
technique. The model was found to be locally asymptotically stable when the basic
reproduction number is less than unity for both special and non special case. It was also
revealed that the disease is endemic when R, > 1. It was proved through Lyapunov method
that the DFE and EE are globally asymptotically stable. Simulation analysis was also carried
out and it was shown that even when all lymphatic filariasis cases displaying elephantiasis
symptoms are put on treatment it will not be able to eradicate the disease. This result suggests
that effective control of lymphatic filariasis may lie in treatment for those displaying
symptoms. It was also shown that if on the long run as the biting rate of the Mosquitoes
increases, the infected population increases. Then as biting rate decreases, then the chronic
infected individuals are completely eradicated from the population while the highly infected
humans are reduced. The simulation also showed the impact of the effectiveness of treatment
on the chronic infected humans, where we see that the population reduces rigorously until we
get to a period of 70 days and then begins to increase again. This shows that the treatment
strategies are not effective or perfect. Hence there are chances of fail in treatment.
Furthermore our analysis shows that on a long run the trend continues indefinitely.

Key words: Genital Elephantiasis, Mathematical Modeling, Lymphatic filariasis, Endemic
Equilibrium (EE)

1. Introduction

Lymphatic filariasis is a vector-borne disease which is prevalent in the tropical and sub-
tropical regions of the world Michael et al. (1996). The overwhelming presence of this
disease in these regions can be attributed to poor hygienic environmental human activities that
make the vector-mosquito to thrive. Over 120 million people have been infected with this
disabling disease and about one-third of this number exhibit the clinical manifestation,
Ottesen (1994).
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Unlike many vector-borne diseases, lymphatic filariasis is not life threatening WHO Report,
(1995). Infected mosquitoes transmit the L3 (infective stage) state larvae to the susceptible
human host. These larvae travel to the lymphatic glands where they mature into adulthood
and reproduce WHO Report, (1995). An average of 80,000 microfilariae a day is reproduced
after mating, Manguina, et al. (2009).

The microfilariae (MF) or L1 stage larvae are released into the blood stream where a
susceptible mosquito picks it during a bite, Addiss and Dreyer, (2000). People with weak
immune responses to lymphatic filariasis parasite (notably wuchereria bancropti; about 90%),
they develop filarial fever, subsequently hydrocele, lymphedema and elephantiasis, if not
treated early Addiss and Dreyer, (2000).

The diseases manifestation is said to be catalyzed by the co-habitation of the parasite with a
bacteria called Wolbachia, McNulty, et al. (2012).

With more than 1.3 billion people at risk of the infection (Michael et al 1996) and the dismal
underlying socio economic consequence of the diseases Addiss and Dreyer (2000) and WHO
Report, (1995), it became imperative for the world community to work together towards the
elimination of lymphatic filariasis WHO Report (1995). Elephantiasis which is caused by
obstruction of the lymphatic system, which results in the accumulation of fluid called
LYMPH in the affected areas.

The lymphatic system helps to protect the body against infection and diseases. It functions as
part of the immune system, consisting of a network of tubular channels (lymph vessels) that
drain a thin watery fluid known as lymph from different area of the body into the blood
stream. Obstruction of these vessels results in the massive swelling and gross enlargement
characteristic of elephantiasis.

In areas where filariasis is endemic, the most common cause of the elephantiasis is a parasitic
disease known as lymphatic filariasis. It primarily affects the legs and genitals, resulting in
baggy, thickened and ulcerated skin, along with fever and chills. This condition can be very
painful and uncomfortable, and it reduces the sufferer’s ability to live a normal life. A serious
complication can be the obstruction on blood vessels, which limit blood supply and cause the
skin to become infected.

Plaisier et al. (1998) considered a model based on transmission of L3 stage larvae from
mosquito to the human host. Factors such as immunity of individuals, vector control and drug
treatment for the patients were incorporated in their model. However, simulations were only
carried out using modeling framework (LYMFASIM) to evaluate some control programs
which need analytical justification.

Subramanian et al. (2004) also used LYMFASIM micro simulation model to investigate the
effect of immunity, considering three variations, on the intensity of infection in Pondicherry,
India after interruption of transmission through vector control. This last study was aimed at
inquiring the impact of immunity on infection in controlling vectors activities. These models
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predicted large reductions in the prevalence of microfilariae following 3 and 6 years after the
integrated vector control management in Pondicherry, India.

Mathematical model for lymphatic filariasis transmission and control challenges and prospect
was also considered by Swaminabhan, et al (2008).They highlight factors related to the
efficacy of the drugs of choice, their mode of action, and the possibility that drug resistance
may develop; the role of vector-parasite combinations; the magnitude of transmission
thresholds; host-parasite interactions and their effects on the dynamics of infection and
immunity; parasite biology, and progression to lymphatic filariasis associated disease. The
two mathematical models developed offer potential decision making tools for transmission
and control of lymphatic filariasis

Das and Subramanian (2002) considered modeling the epidemiology, transmission and control
of lymphatic filariasis. Mathematical models have proven valuable in gaining quantitative
insights into the population dynamics of the parasites, and may be used to make credible
predictions of the likely outcomes of various control strategies. The article provides an
overview of the development of the relevant mathematical/statistical models and of their
application in studies of the epidemiology, transmission and control of lymphatic filariasis.

Chan, et al. (2008) formulated a dynamical model of infection and disease in lymphatic
filariasis. An epidemiological model for the spread of lymphatic filariasis, a mosquito-borne
infection, was developed and analyzed. The epidemic thresholds known as the reproduction
number and equilibria for the model are determined and stabilities analyzed. And the
LYMFASIM simulation program for modeling lymphatic filariasis and its controls were
considered by Plaisier, et al. (1998). With LYMFASIM, a variety of hypotheses can be tested
about the life history of the parasite Wuchereria bancrofti, its transmission from man to man
through mosquitoes, the role of the immune system in regulating parasite numbers, the
development of disease symptoms, and the effects of control measures (drug treatment or
mosquito control).

McGill, el al (2015) also formulated a mathematical model for the transmission dynamics and
control of lymphatic filariasis. In their model they considered six compartments, four for the
human population and two for the mosquito population. They considered the rate at which a
susceptible human get infected when there is an interaction between infected mosquitoes.
They also considered the control of elephantiasis.

The pathogenesis of lymphatic filariasis has been a matter of debate for many decades. In
their paper, Dreyer et al (2000) proposed a dynamical model of bancroftian filariasis,
integrating  clinical, parasitological, surgical, therapeutic, ultrasonographic and
histopathological data. This model has profound implications for filariasis control programs
and the management of the individual patient. This study describes the relationship between
transmission intensity and infection and disease due to Wuchereria bancrofti in an endemic
area of Papua New Guinea. The prevalence of microfilaremia in the entire study population
was 66%. Of 1892 persons examined, 6.2% and 12.3% had lymphedema of the legs and
hydroceles, respectively. The prevalence of microfilaremia and clinical morbidity were lowest
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in persons less than 20 years old and increased progressively with age. Annual transmission
potential and annual infective biting were monitored in five villages where Anopheles
punctulatus and Anopheles koliensis are the only vectors of W. bancrofti. Both measures of
the entomologic inoculation rate were positively associated with the village-specific
microfilarial rate, mean intensity of microfilaremia, and prevalence of leg edema. These data
indicate that transmission intensity is a major determinant of patent infection and morbidity
rates in bancroftian filariasis. The lack of a quantitative framework that describes the dynamic
relationships between infection and morbidity has constrained efforts aimed at the community-level
control of lymphatic filariasis.

In their paper, Chan et al (1998) described the development and validation of EPIFIL, a
dynamic model of filariasis infection intensity and chronic diseases. Infection dynamics were
modeled using the well established immigration-death formulation, incorporating the
acquisition of immunity to infective larvae over time. The dynamics of disease (lymphodema
and hydrocele) were modeled as a catalytic function of a variety of factors, including worm
load and the impact of immunopathological responses. The model was parameterized using
age-stratified data collected from a Bancroftian filariasis endemic area in Pondicherry in
southern India. The fitted parameters suggest that a relatively simple model including only
acquired immunity to infection and irreversible progression to disease can satisfactorily
explain the observed infection and disease patterns. Disease progression is assumed to be a
consequence of worm induced damage and to occur at a high rate for hydrocele and a low rate
for lymphodema. This suggests that immunopathology involvement may not be a necessary
component of observed age-disease profiles. These findings support a central role for worm
burden in the initiation and progression of chronic filarial disease.

Alison and Robert (2010) surveyed the current state of a group of parasitic and microbial
diseases called the Neglected Tropical Diseases (NTDs). These diseases currently infect a
billion people, primarily in socioeconomically depressed areas of the world, are a leading
cause of worldwide disability, and are responsible for approximately 534,000 deaths per year.
They focused on several subcategories: protozoans, helminthes and bacterial diseases. They
identify the populations most at risk from these diseases, and outlined symptoms and other
disease burdens. They also examined the progress being made in controlling NTDs, including
the current state of drug development. They further examined mathematical modeling of
NTDs. While mathematical modeling is not bound by many of the strictures of access, data
collection and infrastructure funding, they nevertheless demonstrated that few NTDs have
received much attention from mathematical models, and that some have received no attention
at all. They concluded that simple mathematical models could contribute significantly to the
understanding of these diseases and the efforts required controlling them, at very little cost.
Finally they concluded that investment in prevention, treatment and awareness of NTDs is
urgently warranted.

Ottesen et al (1997) reported that Lymphatic filariasis infected 120 million people in 73
countries worldwide and continues to be a worsening problem, especially in Africa and the
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Indian subcontinent. Elephantiasis, lymphoedema, and genital pathology afflicted 44 million
men, women and children; another 76 million have parasites in their blood and hidden internal
damage to their lymphatic and renal systems. In the past, tools and strategies for the control of
the condition were inadequate, but over the last 10 years dramatic research advances have led
to new understanding about the severity and impact of the disease, new diagnostic and
monitoring tools, and, most importantly, new treatment tools and control strategies. The new
strategy aims both at transmission control through community-wide (mass) treatment
programmes and at disease control through individual patient management. Annual single-
dose co-administration of two drugs (ivermectin + diethylcarbamazine (DEC) or albendazole)
reduces blood microfilariae by 99% for a full year; even a single dose of one drug (ivermectin
or DEC) administered annually can result in 90% reductions; field studies confirm that such
reduction of microfilarial loads and prevalence can interrupt transmission. New approaches to
disease control, based on preventing bacterial super-infection, can now halt or even reverse
the lymphoedema and elephantiasis sequelae of filarial infection. Recognizing these
remarkable technical advances, the successes of recent control programmes, and the biological
factors favouring elimination of this infection, the Fiftieth World Health Assembly recently
called on WHO and its Member States to establish as a priority the global elimination of
lymphatic filariasis as a public health problem.

Srividya et al (1991) in their study examined the relationship between the dynamics of
Wuchereria bancrofti infection and the development of chronic lymphatic disease. Data sets
from Pondicherry, South India, and Calcutta were used to estimate the age-specific proportion
of the endemic population which has converted from microfilaria positive to
amicrofilaraemia, and was assumed to be at risk of disease. For men, but not women, the age-
prevalence profile of the estimated population ‘at risk’ was shown to correspond closely to the
observed age-prevalence of chronic lymphatic disease in the same community. For both sexes,
and independent of age, approximately 11% of the population at risk eventually developed
lymphoedema. They concluded that these observations suggest that filariasis endemic
populations consist of those individuals who remain amicrofilaraemic and asymptomatic, and
those who progress through the sequence: uninfected, microfilaraemic, amicrofilaraemic, to
develop irreversible obstructive lymphatic pathology.

Das and Subramanian (2002) in their work reported that Wuchereria bancrofti transmitted by
Culex quinquefasciatus accounts for >90% of the global burden of lymphatic filariasis (LF).
Recent advances in diagnostic and control tools and a better epidemiological understanding of
the disease have led to hope that LF is eradicable. The World Health Organization has helped
a number of member countries to launch nation-wide programmes of mass treatment with
antifilarial drugs such as diethylcarbamazine, albendazole and ivermectin, for the elimination
of this disease. In order to make rational decisions about control strategies, reliable predictions
of the long-term impact of such treatment, and of alternative interventions, need to be made,
and these can only be based on a sound, quantitative understanding of the population biology
of the parasites. Mathematical models have proven valuable in gaining quantitative insights
into the population dynamics of the parasites, and may be used to make credible predictions of
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the likely outcomes of various control strategies. This article provides an overview of the
development of the relevant mathematical/statistical models and of their application in studies
of the epidemiology, transmission and control of lymphatic filariasis.

Michael et al. (2008) reported that the ultimate goal of the global programme against
lymphatic filariasis is eradication through irrevocable cessation of transmission using 4 to 6
years of annual single dose mass drug administration. The costs of eradication, managerial
impediments to executing national control programmes, and scientific uncertainty about
transmission endpoints, are challenges to the success of this effort, especially in areas of high
endemicity where financial resources are limited. We used a combined analysis of empirical
community data describing the association between infection and chronic disease prevalence,
mathematical modeling, and economic analyses to identify and evaluate the feasibility of
setting an infection target level at which the chronic pathology attributable to lymphatic
filariasis - lymphoedema of the extremities and hydroceles - becomes negligible in the face of
continuing transmission as a first stage option in achieving the elimination of this parasitic
disease. The results show that microfilaria prevalence below a threshold of 3.55% at a blood
sampling volume of 1 ml could constitute readily achievable and sustainable targets to control
lymphatic filarial disease. They also showed that as a result of the high marginal cost of
curing the last few individuals to achieve elimination, maximal benefits can occur at this
threshold. Indeed, a key finding from our coupled economic and epidemiological analysis is
that when initial uncertainty regarding eradication occurs and prospects for resolving this
uncertainty over time exist, it is economically beneficial to adopt a flexible, sequential,
eradication strategy based on controlling chronic disease initially.

Bitran et al (2009) in their paper analyzed the rationale for, and costs associated with, the
control and elimination of neglected tropical diseases (NTDs) in Latin America and the
Caribbean. They also estimated the magnitude of potential health gains. The results suggest
that lymphatic filiariasis, onchocerciasis, and trachoma can be feasibly and affordably
eliminated by 2020, at a total cost of US$128 million. Control of other NTDs could produce
important reductions in prevalence and incidence, along with other social and economic
benefits. They finally concluded that in particular, controlling soil-transmitted helminths
(roundworm and hookworm, for example) would produce total costs of $41 million between
now and 2020.

Supriatna, et al. (2009) in their paper discussed a mathematical model for the transmission of
Lymphatic Filariasis disease in Jati Sampurna, West Java Indonesia. Their model assumes
that acute infected humans are infectious and treatment is given to a certain number of acute
infected humans found from screening process. The treated acute individuals are assumed to
remain susceptible to the disease. The model was analyzed and it was able to found a
condition for the existence and stability of the endemic equilibrium. A well known rule of
thumb in epidemiological model, that is, the endemic equilibrium exists and stable if the basic
reproduction number is greater than one, was shown. Moreover, it was also shown that if the
level of screening n is sufficiently large, current medical treatment strategy will be able to
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reduce the long-term level of incidences. However, in practice it was not realistic and cannot
eliminate the disease, in terms of reducing the basic reproduction number. The reproduction
number could be reduced by giving additional treatments, such as reducing the biting rate and
mosquito's density. This suggests that there should be a combination of treatment to eliminate
the disease.

Other useful works that were reviewed in this work were the works of Michael, et al. (2006),
Michael, et al. (2004), Gersoyitz and Hammer (2003) and Chan, et al. (1998).

Here, in our this work, we develop and analyze a mathematical model that captures the
transmission dynamics of lymphatic filariasis using differential equations to explore if
treatment for those symptoms alone will be able to keep the infection under control. We also
considered eight compartments, five for the human populations and three for the mosquito
population. We also considered the rate at which susceptible humans and susceptible
mosquitoes become infected. We considered only the natural death rate of humans and
mosquitoes.

2. Model Formulation

2.1 Symbols and Parameters

Sy - Susceptible humans
E, - Exposed humans
I, - High concentration of microfilaria with antibody in humans

I,,. - Chronic, very high concentration of microfilaria and antibody, symptoms showing at
scrotum of humans

T,, - Treatment as a result of successful operation at scrotum in humans
S, - Susceptible mosquitoes

E,, - Expose mosquitoes

I, - Infected mosquitoes

A, - Recruitment rate of susceptible humans through birth and migration
A, - Recruitment rate of susceptible mosquitoes through breeding

b - Biting rate of the vector mosquitoes

By - Rate that a Human becomes infectious after interacting with infected mosquitoes
P - Rate that a vector mosquitoes becomes infectious after feeding from infected human

M, - Natural death rate of humans

My - Natural death rate of mosquitoes
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o, - Rate of progression of humans from the exposed state to infectious state
o, - Rate of progression of mosquitoes from the exposed state to infectious state
7y - Rate of progression of human from infectious state to chronic states.

Oy - Rate at which chronic infected humans undergo treatment

@ - Rate at which high infected humans undergo treatment

p, - Fraction of individuals in the chronic infected human population whose treatment were
successful

p, - Fraction of individuals in the highly infected population whose treatment were
successful

2.2 Assumptions of the Model

1. It is assumed that because infected individuals E, have a low level of microfilaria

they are un-dictated by diagnostic tests before treatment.

Both the highly infected and the chronic infected individuals can transmit the disease.
The infection cannot result to the death of the infected population.

Individuals can only be treated through operation at the scrotum.

Failure in treatment in both cases of highly and chronic infectiousness takes an
individual back to the exposed.

Fractions of individuals whose treatment fail is the same for the highly infected and
chronically infected

7. Treated individuals acquire permanent immunity against re-infection

okrwmn

o

2.3 Model Flow Chart

Hyy Sy M By
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2.4 The Model Formulation

Using this flow diagram, the assumptions, symbols and parameters stated above, we now
formulate the required model as follows:

dSy _ ., _DAuSHIm

—un S
at H NH HHOH
dE bBHSHI

H _ bBHSH M+ (L-p1)Sy e + A= p2)ol yp —(@y + 1p )ER
dt N
dl
d_:'h:aHEH —(@+yH +un )l Hn
dl
d:lc =7H uh = (OH +uH )T He
(2.1

dTH
T: P1OH THe + P2l ph — 1 TH
dSm bBmSm (I He + I Hh)
=m oA - —HmS
it m N, Hmom
dEm  bBmSm(IHe +1
dtm _ Bm m(N:c Hh)—(am'i'/lm)sm
dlpy

=amEm —tmlm

dt

The model consists of human and mosquito interacting populations. The human population is
sub-divided based on the level of microfilariae, in the human hosts that include susceptible

(S, )no parasites, low infected individual (E,), with low level of microfilariae less than
(20mf/ml), highly infected individual (IHh), with high level of MF, chronically infected
individuals (IHC) which is characterized by higher MF and treated individuals (T, ). The
mosquito population is divided into susceptible(S,,), Exposed (E, ) and infected mosquito,
(1,). Hence,

Ny () =S, (1)+E, () + 1y + 1o + T4 (1)

N, (t)=S,(t)+E, (t)+1,(t)

Recruitment into the human population is assumed to be a constant rate of A,, which include

birth and migration. Natural mortality is the only way individuals can die at an assumed rate
of u,, which is proportional to class sizes (Hooper et al 2009) and (WHO Report, 1995).

When an infectious mosquito takes a bite at a susceptible host, there exist some probability L
stage infective larvae, can be transmitted to the individual (Michael, 1999), where the

infection rate is 4, which results on movement of susceptible (S, ) individuals to Exposed
E, (t) and the rate is defined by

_bﬂHSHIm _
=Ll (1-0)
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where @ represents the factor at the bed—net effect reduce the transmission rate. If =1
means bed-nets are used by all individuals, implying A, =0 and & =0 means bed-nets were

not used. g, is the rate of parasite transmission to human, b is the average bites per
mosquito per day. Infected people in the Exposed class E, can leave because of diseases
progression at the rate ay to high infectious class 1, or by natural mortality rate x,, . Highly
infected individuals can progress to chronic infectious class I, at a constant ratey,, .
Treatment of I, and 1, infected humans occurs at a rate of @ and &,, that reduces the
intensity level of microfilariac (MF). It’s assumed that because infected individuals E,, have
low level of microfilariae they are undetected by diagnostic, tests before treatment.

The rate of recruitment in mosquito population isA, and the mortality at the rate xz,. The

susceptible mosquito engorges microfilariare MF (L, stage) when it bites infected individuals.
l.,, and I, and therefore, becomes infected at a rate A4, defined by

bﬂmsm(IHh—i_ch)
N

m

Ay =

Where g, the rate of parasite transmission to mosquito

Patients in chronic class whose infection status had reached an advanced stage will start
showing clinical manifestation of hydrocoele, lyphoedema and elephantiasis, Hooper, et al
(2009). According to Krishnamoorlly et al (2004), there is a higher rate of the death of a
mosquito that engorges microfilariae beyond its saturation level.

3. Model Analysis

In this paper, we analyze the elephantiasis model, we first prove that the set of solution is
confined in a feasible region, and then show that all the solutions are positive. We investigate
the existence and stability of the equilibrium point. Further we computed the basic
reproduction number. We also proved global stability of the disease free equilibrium (DFE)
and endemic equilibrium (EE) using the lyapunov function. Finally we considered the
numerical solution of the model using simulation.

3.1  Basic Properties of the Model
3.1.1 Invariant Property

Theorem 3.1: The closed set

D=4(S,,E,,l,,l..T,,S ,E eR®:S +E, +1,+1, +T,>0;S +E +1_>0
H H Hh? "He! "H m + H H Hh Hc H m m m

m? Im
is positively- invariant and attracting with respect to the model of (2.1).
Proof:
Considering the human population we have,
Ny =S, +E, +1, +1c +Ty (3.1)

Differentiating (4.1) we obtain
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dN, dS,  dE, dl,,  dl,  dT, (3.2)
at dt dt dt o dt | dt

Substituting (2.1) into (3.2) gives us

dNy Ay _bBKSHIm i SH +bﬂHN5H|m

™ No +(@=p1)oH IHe + A= p2)olyh —(@H +uH)EH +aH Enl

—(@+yH +uu ) Hn +7H THR = (OH + 41 )T He + P1OH THe + P2l ph — 1 TH
=Ay - Ny

dN,,

T

<Ay —uy Ny

dN,,
dt

+uy Ny <A

%(NHeﬂHt)SAHe“Ht

N, e < Au e“Ht 4k
Hy

N, < Ay gt
Hy

Taking limitas t —> o0
A
=N, <—H (3.3)
Hy
Here we study the model for human population from the epidemiological concept in the

feasible region.

5. Du
Dy = R{(SH;EH;IH}UIHC'TH) ER}:< .U_}
H

Considering the mosquito population we have,
Ny =S, +Ep+ 1, (3.4)
Differentiating (3.4) we have
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IISTE

dN, dS, dE, dl,

m

=
dt dt dt dt

Substituting (2.1) into (3.5) we obtain

= de :Am _bﬂmsm(IHh + IHC) _lumsm + bﬂmsm(IHh + IHc)
dt N_ )

dN

dtm =Am_lumsm_lumEm_lum|m =Am_lum(sm+Em+|m)SAm
dN

dtm SAm_:umNm
dN

dtm + 1 N, <A

d

E(Nme*’mt)gAHe“mt

N, e*mt < An gt 4
Hm

N, < An | gersnt

Hm
Taking limitas t — o0

N, <Am

Hm

_amEm_:umEm +amEm _:uml

(3.5)

m

_/umNm

(3.6)

Also we study the model for mosquito population from the epidemiological concept in the

feasible region

3 Am
Dm = {(Sm! Em; Im) € IR+: Nm S —}

m

Generally, D = Dy X D,, = R} x R2 this means that both the human population at a given
time Ny (t) and the mosquito population N (t) are confined in the feasible regions Dy and D,

respectively.

That is all the solutions for both human and mosquito are within this region.

Then the total population N (t) = N, (t)+ N, (t)is confined within the feasible region given

by
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A A
D= {(SH,EH, T Iico Tt S Es In) € RE: Ny < =2 N, < —m}
U Um

So we are studying our model in the feasible regione RS .m
3.2 POSITIVITY OF SOLUTION

Theorem 3.2: The solutions of the elephantiasis model with positive initial values in the
feasible region D remains positive at all time t > 0.

Proof: We will adopt the ideas of Chiyaka et. al. (2008) and Lashari et al. (2012) to prove the
positivity of solution of our model

From the first equation of the model it is obvious that S, (t) >0 for allt > 0; otherwise let
there exist t, >0such thatS, (t.) =0, S/, (t.)<0and S, ,E,, .}, liics 1y Sy By 1 >0

For O<t<t,
ba.,S, (t.)I(t.
=S, (t)=Ay - b |_||\|( ) )_IUHSH(t*)
H
S, (t)=Ay, >0

Which is a contradiction of the assumption that S, (t.) <0

Hence S, (t)>0

In the second equation

Let there exista t. =sup{t >0:S,,, Ey, Ly, Lc Ty Sins Enps 1y >0}
Then we have

L B R e e
H (3.7)

Integral (4.7) from O to t«

*

(aH * t
Ene UM By (0)= | F(0)e@H+aH)P g
0

(aH * t
Eq e AT ZE (0)+ | f(0)e@H+an )04
0

~(aH * ~(aH _
En () =Ey Qe At +£e Ay ]ff(@)e("‘HWH)'gdH 3.8)
0

Hence E,, (t)>0
Again for 1,

We assume that there exist a t. >0 such that 1, (t.) =0Oand I (t) =0

83


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) i i
Vol.8, No.4, 2018

— |: | Hhe(w"',uH +7H )ti| =y, EH e(a)+ﬂ|-| 7t

(3.9)
Integrating (3.9) from O to t«
L ()@ T 1 0) = T By (0)e(7H)0 4o
0
In(t") = n(0)e @ 7Hm )T (E_WH“‘“ * )tf ap En () 7H 1) do (3.10)
0
= lyp >0
For I, we have that
d | gl o glduraalt
dat Hc® =Vhun€
(3.11)
Integrating (3.11) from 0 to t« we have
e @M 110 (0) = [y Lune M a0
0
o @ T 1@ e *(ewH )t ]tf 7 e 7o (312)
0
Hence 1,,.(t)>0
We also prove for T,
dT,
—A =po,l,.+pol, —u,T
dt Poy Tye + PO, — 2 1y (3.13)
d T e#nt) = I I ayt
E( HE )_(plGH He T P Hh)e (3.14)

Integrating (3.14) from O to t.

* t*
Th (eH)t —Tyy (0) = [g(Q)e“H)do
0

* * t*
Ty () =Ty (0)e~(uH)t +(e*(/’H )t )j g(0)e“H)0dg (3.15)
0

To prove the positivity of S, , it follows the same approach as we used in the case of S,

From the sixth equation of the model (3.1), it is obvious that S, (t) >0for allt > 0; otherwise
let there exist t. >0such that S (t.) =0
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o e

Sn(t)<o0and S\, By, 1y lye Ty s Sy By 1 >0

For O<t<t,

= 5(t) = Ay Lot le) s )

S, (t)=A,>0
Which is a contradiction of the assumption that S (t.) <0

Hence S, (t) >0

For the next

dE, _ PBnSm(lyy +14e)
dt - Nm (am+ﬂm)Em

Let there exista t. =sup{t >0:Sy, Ey, |y, Lo Ty Sy By Iy >0}
Then we have

i( Eme(am+#m)) ZLbﬂmSm (I\IIHh +1 Hc)je(am+ym)

dt

Integrate (3.17) from O to t«

te
E, (t,)el* ) _E_(0)= [f (@)l g
0
te
En(t.)e ™ = E(0)+ [ f (9)e ™" d 6
0

te
Em (L) — E(O)e_(aer,um)t* +e—(am+ﬂm)t*J' f (e)e(am+ﬂm)9d9
0

Hence E,(t) >0

dl_
dt :amEm_,umIm

d

a(lme“mt):amEm

Integrating (3.20) from O to t«
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t.
| (t)ert —1_(0)= j g(0)e“’do
0

L
In(t)ee” = 1,(0) + [ g(O)e*n’dg
0
t.
I (t)=1,(0)e#n 4 g #nt j g(0)e*m’do
0

2 In®>0 (3.21)

This completes the proof that for all t > 0 the solution of the system (2.1) is non-negative. m

3.3 Existence of Equilibrium Points for Non-Special Case

The points at which the differential equations of the system (2.1) are equal to zero are referred
to as equilibrium points or steady-state solutions.

dt dt dt dt dt dt dt dt

=0

This implies that

bBHSH I
Ay —-2BrSHlm s
NH
bBH SH Im

N +(@=p1)on e + (A= p2)@lpp —(ay +puH )El =0
H

anEy —(@+yn +un)lpn =0

YHIHh —(OH +un ) e =0

(3.22)
P1OH I He + P2@l yh —unTH =0
bBSm(Iye +1
Am - BmSm (I He Hh)—ym5m=0
Nm
BBmSm (I He + THn)

—(am +4m)Em =0
Nm

AmEm —#tmlm =0

Solving (3.22) we have
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5% AnNE

H = "
(bBuIm + Ny un)
£ = bAH Sk Im + N (1 p1)dH T + N (1 p2)el hn
(ern +un N

* aHEa

lh="——"7"—"—~
(0+yH +4H)

1 7H i

.= /HHh
© " (On +tun)

* . (3.23)
Tr P1OH lHe + P2@l pn
o=
HH
. N A

A YT

EX :bﬁmfm(lﬁc""l*Hh)
Nm(am + 4m)

« _omEm

I'm
Hm

Therefore it is important to note that there is no trivial equilibrium points as long as the
recruitment term A, and A are not zero. This implies that

m

(S; Ef e e T Smy Ems I,’;);t (0,0,0,0,0,0,0,0) and the population will not be extinct.
3.4 Stability of the Disease — Free Equilibrium point

At the disease free equilibrium point all the disease compartments are set to be zero, that is,

Ev =lih =lhe =Emn =1n =0

Hence our model reduces to,

Ay —ppSy =0= Sy =A—H

HH

Ty =0 and S, _Am
7

Therefore the disease-free equilibrium (DFE) of our model is given by
% =(S9,EQ 19,19, T2, S9,EQ, I%){A—“,o,o,o,o,A—m,o,oj

Hy Hm
3.5 Basic Reproduction number for the model (2.1)

The basic reproduction number R, is defined as the average number of secondary infection
that can occur when one infected individual is introduced into an entirely susceptible human
population.

The local stability of &% will now be explored using the next generation matrix operator as
developed by Vanden Driessche and Watmough (2002)
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Let X:(EH’IHh’ IHclEml Im)T

Then we can re-write our model for the disease components as

d
d_f: £(X)-v(X) (3.24)

Where f(X) is defined as the rate of appearance of new infections into the disease
compartment and we have it as;
bAH SH Im

NH
0

0
bBmSm (I He + 1Hh)
Nm
0

f(X)=

And v(X)is defined as the rate of transfer of individual in and out of the disease
compartment, and we have it as;

(#t44 + 04 ) Epy = (1= P ) @1y = (1= 1) 6 g
(#4n + ey + @)1y~ Ey
And VX) =| (11 + 64 ) Lo =7

(:um +am) Em

/umlm_amEm

Then F which is the Jacobian of f(x) evaluated at the DFE £% becomes
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00 0 0 ba,

00 0 00

0 b, bB, 0 0

0 0 0 00

And V the Jacobian of v(X) evaluated at the DFE £° becomes

Uy +ay —(1— pz)a) _(1_ pl)aH 0 0
—ay (4 + 74 +a)) 0 0 0
0 0 0 Hm +am 0
Then
(@y, +1,)(6, + 1)
-a, a
—a. (5
O )G, i) (p. =D
, 1
A Ty Oty (O + Vb)) Taloy +py) A= poey, +(a, +m )@+ p,)
0 0 0 'El2 +
0 0 0 «,.a,

&
o (o, + )

where, y = (=1+ p,)a, 70y + (34 +/”H)[(_1+ pz)mH + (0 + up Mo+ yy +/UH)]

3, =(1- p)rudy, +(_1+ pz)a)+(5H + )
a, =(1-p)oy, +(w+7H +ﬂH)
a, =(1-p)ayyydy

3, = (dy +/‘H)[(_1+ P)ayo+ (ay + py )(a)+7/H +/UH)]
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R, =p(FV™) where p is the spectral radius, is given by

R = bﬂHbﬂMaHaM (7H +0, +/uH)
-
JOBDB, (1 + 6, + )ty (04 7+ ) (8, + a1, )+ [ty (Rt i+ 1, ) 40, (0 B+ 1, )] 1 (1, + 1)

= bﬂHO{H (7H +§H +:uH) « bﬂmam
Bt (1 + 6, + ) g (04 7+ )8, + 1, ) b [, (Pt 7+, )+ 6, (o B+, )]] DBty (@ + 41)

=R =R,R,
Ro =R}
Ry =RN = bAnan (yH +0H +un )

pn (P2o+7H +1H )+ﬂ

b +0y + +7H + OH + +
\/ﬁHaH(J/H H +HH {UH(‘U VH ﬂH)( H ﬂH) O’H[5H(I0260+ P17H +/1H)
bBmam

Rm =RN =
" " bBmam ﬂm(am +,Um)

:>R0=RHRm

where R[ (Reproductive number of Humans for non-special case) tells about the number of
humans that one infectious mosquito infects during its period of infectiousness in an entirely
susceptible human population and R\ (the reproductive number of mosquitoes for non-special

case) gives us the information about the average number of mosquitoes that one infectious
individual can infect during his/her period of infections in an entirely susceptible mosquito
population.

3.6  Basic Reproduction number for the Special Case

Differential Equation for special case where we assumed there is no treatment that is
P. =P, =1
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dSu _,  _DPuSulm _, d¢

dt H NH
dE bAHSHI
H _ bAHSH m _Ep
dt Ny
dlyp
——=anyEy ksl
ot HEH —k2lhn
dipc

=7H IHnh —K3lHe
dt (3.25)

dT
d_?=5Hc+W|Hh_NHTH
dSy DBmSm (I hh + THe)
—=Apn - — UmS
dt m N, HmSm
dEp _bﬂmsm(th+|Hc)_

= k4Em
dlny
—=amEm — uml
qt CmEm —Hmlm

Where k; =(a,, + ), k, =(@0+ py +70), Ky =(8y + uy ) and Kk, = (at,, + 4,
Hence, the equilibrium point for the special case is

N Au Ny

SH = N
(bBuIm +Npyun)

Ex _ bBuSH Im

H=————

(an +pu )NH

* aHEa
Ihh =
(0+yH +4nH)
5 7H 1
He =
(6H +unH) (3.26)
«  SHlfc+olhn
Ty = SH HC T 2Hh
HH
. N Am

" b (e + 1)
EX = bﬁmfm(l He + L rin)

Nm(am + 4m)
_omEn

*
Im_
Hm

The threshold quantity R, is called the reproductive number of the disease elephantiasis. It

represent the expected average number of new infections produced directly or indirectly by a
single infective when introduced into a completely susceptible population. When the basic
reproductive number R, <1, on average each infected individual infects fewer the one

individual, and the disease dies out, if R, >1, on average each infected individual, infect more
than one other individual, so we would expect the disease to spread.

To obtain R, for our special case we now explored using the next generation matrix operator
as developed by van den Driessche and Watmough (2002).
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Let X =(E,, Iy 11 Eni 1) » that is, the set of the entire disease compartment.

Our model can be written as

&= (x)-v(X)

(3.27)
Where f (X) is the rate of appearance of new infection into the disease compartments

It is defined by

bﬂHSH Im

0 bB, bg, 0 0

0 0 0 0 0

v(X) is the rate of transfer of individual in and out of the disease compartment, it is defined
by v(X):v(’X) —v&)

Where v, is the rate of transfer of disease out of the disease compartments
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(et + 444 )Ey
(a)H +7u +:uH)IHh
Vix)y = (34 +:uH)IHc

(am +,um)Em

ool
And v{x) is the rate of transfer of disease into the disease compartment by other means.

0
a,E,

Vix) = o

k,E,
k1, —an By
V(X): Kol e = 74

k,E

m

;umlm_amEm

V is the jacobian of v(X) with respect to the disease compartment at the point g,
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0 0 0 -a, 7
i 0 0 0 0
kl
@ 1 9 o9 o
klk2k3 k2
v Oyln VH i 0 0

0 0 0 i 0
k4
o o o Zm =l
MKy Hp,
0 0 O bﬂH am bﬁH
MKy Hen
0 0 0 0 0
FeVv = 0 0 0 0 0
bﬁmamkz b/Bme bﬂm O 0
klk2k3 k2k3 k3
0 0 0 0 0

Ro = \/bzﬂHaHﬂmam(k3 +7H )
kikaKsKg gt

94


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) i i
Vol.8, No.4, 2018

_ bfyay (ka +7/H) R — bfnaty,
" k;k,ksk, o My,

R, =+R4R,,
where R, =Re productive number for the special case
Ry = Re productive number of humans for the special case

R, = Re productive number of mosquitoes for the special case

R,, = describes the number of humans that one infectious mosquito infects over its expected

infection period in a completely susceptible human population, and R, is the number of

mosquitoes infected by one infectious human during the period of infectiousness in a
completely susceptible mosquitoes population.

Using the basic reproduction number (R, )obtained for the model (4.31)

Theorem 3.3: The disease-free state, £° is locally asymptotically stable if R, <1 and

unstable if R, >1 for both special and non special cases

Proof:

Linearizing (3.1) at1% =R% =19 =0 we have,

— 0 0 0 0 o0 0 bAu
0  —(an +un) 1-p2)o (A= p1)oH 0 0 0 bABH
0 aH —(w+yH +uH) 0 0 0 0 0
IED) 0 0 7H —(On +tun) O 0 0 0
0 0 pow p15H — U1H 0 0 0
0 0 0 0 0 —um 0 0
0 0 0 0 0 0 —-(am+um) O
0 0 0 0 0 0 am i
-2 0 0 0 0 0 0 bAy
0 —(an +un)-1 (- p2e (- p1)oH 0 0 0 bBH
0 ay —(0+yHy +un)—-A4 0 0 0 0 0
0 0 —(0n + -1 0 0 0 0
PEY-1 0 " ( legi.H) —up—4 0 0 0
0 0 0 0 0 —pm-A 0 0
0 0 0 0 0 0  —(am+um)-4 O
0 0 0 0 0 am —Un—A
|J-14=0

= (ot = 2w+ ) A2t = 2t~ - + )~ 2 ]~ TR EROE O o

(~un — WHan +un) = L1(pn = 28)[=4m — Asl[~(am + tim) — A7) [=4tm — Agl[=(@ + yn + r) = BI~(OH + ) — 4] =0
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Sh=-un. o=—(an+un), B=—(0+yn +un), Aa=—(0H +4H), 5 =—pH, 4% =—tm A7 =—(om + um) and Jg =—unm

Since all the real parts of the seven eigen-values are negative, the DFE is locally
asymptotically stable.

3.7 Global Asymptotic Stability for Disease-Free Equilibrium

Theorem 3.4: if R, <1 then the disease-free equilibrium of the model (3.25) is globally
asymptotically stable.

Proof: To establish the global stability of the disease-free equilibrium 80 , we construct the following
linear Lyapunov function (L).

3.8 We consider the Linear Lyapunov Function below
L=C,E, +C,l,, +C,lc +C,E +C5l (3.28)
Where the constants are,
C — bﬂmamaH (k3 +7H)
' SLEL Ly
C _ bﬂmam(kB +7H)
, =
ki KoKsKy
C3 — bﬂmam
KK, 2t
C4 — ROam
k4:um
c.-R
Hi
Putting the values of €1.C,. G40 Cy and Cs into (3.28) we have
k k R R
LzbﬂmamaH( 3 +7H)EH + bﬂmam( 3 +7/H)|Hh bﬁmam IHC + Oam Em +_0 Im (3 29)
kKo KK, 22, kKo KsK, 22, KsKytim, Kyt M '

Differentiating equation (4.35) and substituting the steady state values
EH’ IHh’ IHC’ Emand Im
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Kik KoK, Ny KoKk, i

S bBnanct (k3+7’H )|:bﬂHSH I _klEH:|+ bﬂmam(k3+7H)[ a,E

2 Hh]

bB.S, (1, +1
+ bﬂmam [7/H IHh _k3IHC]+ Roam |: ﬂm m( Hh HC) _k4Em:|+&[amEm _/umlm]
KaK ot YA Ny Hr,
& bzﬂmﬂHamaH (k3 +7n )SH I, _ bBnctmcty (k3 7w )EH + bty (ka 7 )EH _ DB (Ks+ 7)) s
KikoKsK, 1, Ny KoKKt koKsK it L7
DByl BBnanlc R 0P S (IHh + IHC) RoanEn | Ro By
+ - + -Rl,,
KeKatty Koty Kottn Ny My Hy
_ bzﬁmﬁHamaH(k3+}/H)SHlm _bﬂmam Hh bﬁmamyHth bﬁ am He _ ROambﬂmSm(th+ IHC)_ | _bﬂmamyHth
kik KoKy, Ny Ky, K3k, LY Kyptn Ny o L7
Re-arranging we obtain;
bzﬂmﬂHamaH (k3+7H)SHIm _ROI _ambﬂmIHh _bﬁmamJ/Hth +bﬂmam7/H|Hh bﬂmam HC
k1k2 k3 k4/um N H " k4;um k3k4:um k3 k4/um k4:um
+ ROambﬁmSmIHh + RoambﬂmSmIHc
KottuNy, Kyttn Ny,

Collecting like terms

(RZ=R, I, + O:(mbﬂm (R, 1)1, +ZnPPn

4:um 4lum

(Ro - )I HC

L <R (R =1)1, + %2 (R ~1)1,, + %P (R, 1)1,

4/ °m 4/ m

L <Ry (Ry—1)1,, +R, (R, ~1) 1,5, +R, (R, ~1) ¢

&< o forR, <1, and for 8=0 , if and only if 1
principle, &° is globally asymptotically stable, m

m

3.9  Global Stability of Endemic Equilibrium Point.

=1, =1,=0 by Lasalle’s invariance

Theorem 3.5: The endemic equilibrium of the model (3.25) is globally asymptotically stable

whenever R, >1
p=p,=1

Proof: Let the endemic equilibrium of the model (3.25) be denoted by

M = (SH’EH’IHh’IHC1T S Em’ m)
and Let R, >1so that M exists.

Consider the following nonlinear Lyapunov function.
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SH J En -Ef -Ef |n[ ]‘|+C2[|Hh—|Hh_|Hh |r{IThH
EH I'Hh

M =Cq| Sy —Si5 —Sir In| 221+
SH
w o [ Sm Em I'm
+C4|Sm—=Sm -SmIn| =2 |+ Epn —Em —Em Inf == | |+Cs| Iy — I —Im In| —= || (3.30)
Sm Em |m

*k
+C3{|HC_|HC_|HC| [IH
H

Differentiating the nonlinear lyapounov function
- c[s& e e R L e

>k

=01K1—S:J(AH —w“—stHJ{l—E“J(W“—klEHj}czHl—'““J(aH E, —kleh)}
Sh Ny Ey Ny I
+63K1—::°](7Hlm " HC)}C Hl_z,:;J[Am_bﬂmsm(hlllec)_ msmj (3.32)

Substituting model (3.25) into (3.31)

+(1_ Em:](bﬂmsm(l ot | Hc)_k4EmH+C5|I1_||:J(amEm —,umlm)}

HC

N m m
At steady state.

bB, Sl -
A, :'BH—H—uHSH

Ny
bg.,Sil., " b, Sl
2P um _y E :klzﬂH—H**
H N Ey
B =k, 1% =k = FnE
I
Vil =Kl e = Ky —7H—*1Hh
Inc
Am — bﬂmsr’:f\ll:h-i_ IHMC)+ﬂmS;*

m

Substituting the values of steady state into (3.38)

98


http://www.iiste.org/

Mathematical Theory and Modeling www.iiste.org

ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) by
Vol.8, No.4, 2018 “gi
N&ch l—S—H bﬂHSH Im +,LIHS:—b'BHSHIm +luHSH + l_E_H bﬂHSHIm _klEH
S,, N, N, E, N,
[ I
+C2 |:[1—ILhJ(aH EH _kZIHh):|+C3|:[ _Ii}(yHth_k3lHC):|
Hh HC (333)
Cl[ls_ (MHSMMJ
m Nm Nm
4 1_E_: bﬂmsm(IHh+|HC)_k E +C 1_£ (a E — | )
Em Nm 4=m 5 Im m—m /um m
KskyNy Ny a2,

1

B bzﬂHﬂmSH**Sr:am(KS +7/H)

_ KiKgKg Ny N,
b® B BuSh Sty (ka 7 )

2

DB
T Ny N g Kiko Kk,

_ b Sy
) Ny 2k koK,

_ k3k4 N m
: bﬂms:am(K3+}/H)
Substituting the values of the lyapunov constants C’s into equation (3.33)

k,k,N,N " =l . | " |
- 384 T mHm 1_87H bBu Sk In tu,S: _bIBHSH LS 1_E7H [bﬁHSH m _klEHJ
b? By BSr Sty (ks +74) Sy Ny Ny Ey, Ny

k. kk,N,N (I b? SN (I
T3 - i 4**H nfn (1_ = ](aH EH _kZIHh) + ﬂHﬁm H2n Zn % {l_HC]O/H IHh _kach)
b* By BuSk Sh aHam(k3+7H) L Ny Np o kkokok, L

bB.STana, Hl_s;;*J(bﬂms:(l;”‘h +|;*C)+ﬂ o DSl +|“C)—ﬂm8mj

N, 22, K K K, S N mem N

+ 1_E7m bIBmSm(IHh+IHC)_k4Em + E3k4Nm l—lim (amEm _ﬂmlm)
Em Nm bﬂmsmam(k3+7H) Im

Collecting those terms with dot stars in the effected classes and substituting the values of k’s
inside the bracket we have

m m
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Hek ok el 2 x Hk
DB Sy In _bﬁH (SH) I _bﬁHSHImEH ﬂHS:-F,uHS:
_ Kok, Ny N, 24, N, N, Ny, + koky Ny Ny a4, (Sﬂ)z
0SS} B Bt (ks + 74 ) | b, ST 0285 Se B Bt (Ko + 7 ) ,““57“,%3“
N, .
+ Kiksky Ny N 2, |:a E**_I:haHEH:|+bZS:S:ﬁHﬁmaHam|: I*’;]_yHIHhI:C}
gy H™=H HH
bZSH SmﬁHﬁmaHam(k3+7H) lin kK Kk, Ny N HC
- ox wx\2 [ ex . . - ox
+bS:ﬁHaHam bB.Sn (IHh + IHC)_b:Bm(Sm ) I + IHC)_bﬂmSm(th + |HC)Em +bﬂmsm (IHh + lHC)
k1k2k3NH:um Nm Nmsm NmEm Nm
2
- - o Mo Sy -
+bSHIHHaHam Hey S + HySpy _#(87) + ksK N, {u “_amEmIm :|
K K.k, Ny, 4, m bS,, ﬁmam(k3+}/H) nm [
_/umsm

Factorizing further

M= Kok Nyt | {2_8:_ 1.Eq Sy } ksky N Ny i |:2_S:|*_SH:|
bs,S, am(k3+7H) Su SyEl, bZSm B Bt (k3+7H ) Sy S
Kk, Ny, Ny, Egy |:1_ =" :|+ b?S 4 S B B @it i |:1_ L e :|
b*Sy'S, By mam(k3+7H) I E kK, Kak, Ny N lican
0y Sict BuSn (Vi + Ve )[ ) S S,En | bSiAuctuSyatn[, i Sy
k1k2k4NHlumNm Sm EmSnT k1k2k4NH Sm S:
Kok N1 20, {1— amEm}
bS, Bty (ks + 70 )|t

o E-
Substituting the values of x,, = In

ok

m

and collecting the positive and negative terms, we have
the following

2Kk 4N Ny i | " 2Kk Ny Nt
b8, Sk B Bt (K + 7)) D*SST By Bt (Ks + 714)
MR = b?Spy St Bu Bl i

kKoK Ny Nt By "
b?S 1y St B Bl (K +741)

Hh + ZbZS:ﬂHﬁmaH amS:(IHHh + I:c) + ZbS:ﬁH ay ams:
kiKokk, Ny Ny, kKoK, Ny N, koK Ny,
k3k4Nm:um|;

bS,, Bt (ks +71)
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0287 S5 B B (ke + 70| Sy SeELC | 0SS B e (K + 1) | S, S
Kiksk,N N, 2, E |:I:hEH }4_ b*Sm S But B i |:|Hh|:c:|+
B b8 S5 B Bt (ks + 70 ) | i kiKokk, Ny Nty e P
bzs:ﬁHﬁmaHamS:(l:h + II::)) £+ SmEr’:r + bs:ﬂHaHamS: £ Zm o
KiKoK Ny N, Sn  EnSm kikok Ny Sm n
k3k4Nmﬂm|:ﬂ* I:Em
bS:IBmam(kS +7/H) Er:klm
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2k3k4NHleum|r: 2ok, Ny Ny 2y k1k3k4NHNm/umE:

= " + e + "
szmSHﬂHﬂmam(k3+7H) bZSmSHﬂHﬂmam(k3+7H) bZSmSHﬂHﬂmam(k3+7H)

0°S5S B Bl i 20°Sis i@ Sy (i + 1) 2087, 2,81 (3:34)
KikoKsk Ny N g, KikoK Ny Nt kik K, Ny,
k3k4Nm/um|l:/I*
bS; B (Ks + 744)
_ kakaNpNmsmlm [ﬁngmEﬁ*} kskaNp Nt [£+S_H
b?Sm SH B Bmam(ks +7H)| SH  SHEHIm | b?SmSH AHAmam(ks+7H)| SH  SH
kikakaNH NinsimEm It En . b?Sm SH A Bmamrr I | IhnlHe
b2Sm'SH AH Bmam(ks + 71) | IHER kikokskaNH Nmam | TnclHn
b?Sm Si An Bmarman (Hin + 1Hc) £+ SmEm
kikokgNp Nmsim Sm Eer;*
bsﬁ*ﬂH apamSm k3k4Nmﬂm|ﬁ* Im Em

kikoka Ny

bsmﬁmam

&l

*k
Em Im

(ke +7H)

|

From (3.34) and (3.35), we observe that A< B then, I\f?‘zdd—'\t/I < 0(which means that Mewill

be negative definite). M= ({j—l\f =0ifan

Fk Hk

S =S:’EH ZE:’IHh =l e = e T ZT:'S

d only
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Thus the largest compact invariant set, {(SH EnL by

Hh? Hc’TH 1Sm1

E.

)eAl:dd—l\t/I:O}iS

just the endemic equilibrium point&™. Then by Lassalle invariant principle, if A< B , then &
will be globally asymptotically stable inA,, m

3.10 Numerical simulation

For numerical results, we consider the following values for the parameters involved in the model.

VARIABLES & VALUE UNIT SOURCE
PARAMETERS
Sy 30 Assumed
En 25 | - Assumed
lun (1L E— Assumed
lye (0 JE E— Assumed
Ty o | - Assumed
Sm 20 | - Assumed
Enm 5 | - Assumed
I (0 JE E— Assumed
A, 24 Per day Ridouan etaal (2013)
A, 4000 Per day Ridouan etaal (2013)
By 3.576 Per day Ridouan etaal (2013)
i 0.091 Per day Labadin etaal (2009)
a, 0.0045 Per year Ridouan etaal (2013)
a, 0.055 Per day Ridouan etaal (2013)
yy 0.00048 Per day Ridouan etaal (2013)
yrn 0.067 Per day Ridouan etaal (2013)
Tn 0.000287 | Per year Ridouan etaal (2013)
3y 0.00196 Per day Olaniyi and
Obabiyi(2013)
) 0.00196 Per day Olaniyi and
Obabiyi(2013)
P, 0.005 Per day Assumed
P, 0.036 Per day Assumed
B 0.12 Per day Olaniyi and
Obabiyi(2013)

For high accuracy of results, we used MATLAB 15 to carry out our simulations.
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Fig.3.1: A plot of the eight compartments whenR, <1.
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Fig.3.2: A plot of the eight compartments when R, >1
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Fig. 3.3: Plot of the infected class (I, Iy and 1,,) against time when &,, =0.002
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Fig. 3.4: Plot of the infected class (I, 14 and 1) against time when 6,, =30
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Fig. 3.5: Shows the trend of the chronic infected humans when we vary s,
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Fig.3.6: Plot of I,,; against time when we vary the value of p,
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Fig. 3.7: Plot of 1y, against time when we vary the value of p,
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Fig. 3.8: Plot of I.at different biting rate (b)
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Fig. 3.9: Plot of I, at different biting rate (b)
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Fig. 3.11: Plot of Iy, against time with different values of @
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Fig. 3.12: Plot of Ty against time varying rate of treatment of 1
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3.11 Interpretation and Discussion of the Simulation Graphs

Fig 3.1shows the simulation of all the classes against time for Rg - 0.3130<1'We observe that
the infection is completely eradicated from the population in the long run.

For Fig. 3.2, at R, =6.2655 >1 the graph shows that the simulation of the population in the

2

long run and we observe that all the human population “N, ” is reduced. But the vector

mosquito population remains in the population. This means that genital elephantiasis will not
be eradicated form the population, that is, in future the menace of the infection will still be a
treat to the population.

Fig. 3.3, Shows that for s, =or all 0.002, we have both the infective classes of humans and
that of mosquito to remain in the population.

In Figure 3.4 we see that an increase in the value of the s, precise at s, = 30 we have that the
three classes where reduced with the I ,. completely out of the population in the long run.

Figure 3.5, our simulation reveals that if by any means s, approaches zero, the number of
individual grows continuously as t — « . Also increasing the value of 5, have a great effect in
reducing the chronic infected individual
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Figure 3.6 shows the impact of the effectiveness of treatment on the 1,. humans, where we

see that the population reduces rigorously until we get to a period of 70 days and them begins
to increase again. This shows that the treatment strategies are not effective. Hence there are
chances of fail in treatment. Furthermore our analysis shows that in a long run the trend stops.

In Figure 3.7 we see that 1, grows exponentially and we see that varying the parameter p,

have little or no impact on the population. Just as we have in Figure 3.6. Our analysis show
that in the long run, the trend stopped att =500.

In Figures 3.8 and 3.9 if in the long run as the biting rate increases, the infected population
increases. Then as biting rate decreases, then the 1,,. individuals are completely eradicated

from the population while the I, infected individuals are reduced.

In Figure 3.10 and Figure 3.11 we observed that both the I ,, and 1. infected individuals are
reduced as omega (@ = the treatment rate) increases though Iy, reduces more. Therefore,
treatment should be more focused on the I, infected individuals.

In Figure 3.12, we investigate the effect of increase in treatment rate on the treatment class,
and that shows that treatment population decreases until it approaches to t=80and then
increases throughout the long run. This is to say that, within the first 80 days those whose
treatment where successful were very minimal irrespective of the actions of the health
personnel. As the rate of treatment increases, more people recover from the infection and 80
days is the minimum time needed for full recovery.

Figure 3.13, we observe that varying the value A . As the recruitment rate of mosquitoes
decreases the number of infected mosquitoes reduces. This means that if the entire infected
mosquitoes can be eradicated from the environment the rate at which the infection is
transmitted will be reduced.

Our research also shows that varying A, reduce the susceptible mosquitoes in the population.

This is to say that if effort is made to ensure that the rate at which mosquitoes breeds in the
environment is control at the early stage we stand a chance to have a population free of
elephantiasis.

4. Summary, Conclusion and Recommendations
41  Summary

In this thesis work, we have formulated and analyzed a compartmental model for the
Elephantiasis (Lymphatic Filariasis) transmission in human and mosquito populations using a
deterministic model. The human population was divided into five compartment:
Susceptible(Sy), Exposed(Eg), Highly Infected(lyn), Chronic Infected(lnc), and
Treatment(Ty) class, while the mosquito population was divided into three compartment:
Susceptible(Sm), Exposed(Er), and Infected(l,). We established a region where the model is
epidemiologically feasible and mathematically well-posed, which is called the invariant
property. We also showed the existence of a disease-free equilibrium (DFE) and endemic
equilibrium (EE) points. We went further to establish the local and global stability of the DFE
and EE using the Lyapunov method. We finally carried out a simulation study of the model.
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4.2 Conclusion

The reproduction number is computed for both special cases and non-special cases. It is also
analyzed for when it is less than unity and for when it is greater than unity. The analysis
suggests that treatment of elephantiasis cases has some impact on reducing the spread of the
lymphatic filariasis infections.

However, sensitivity analysis tend to give a better picture about the relationship between the
reproduction number and the treatment factors, as it shows that the treatment factor reduces
the reproduction number but not to the level necessary for the disease elimination. This result
suggests that effective lymphatic filariasis control requires strategies beyond elephantiasis
treatment only.

From the simulation analysis of all the classes against time for Ry = 0.3130<1 we observe that
the infection is completely eradicated from the population in the long run.

For R, =6.2655 >1 the graph shows that the simulation of the population in the long run and

b

we observe that all the human population “N,” is reduced. But the vector mosquito

population remains in the population. This means that genital elephantiasis will not be
eradicated form the population that is in future the menace of the infection will still be a treat
to the population.

The graph also shows that for s, = 0.002, we have both the infective classes of humans and
that of mosquito to remain in the population. We also see that an increase in the value of the
5, precise at s, = 30 we have that the three classes where reduced with the I ,. completely

out of the population in the long run.

Our simulation also reveals that if by any means s, approaches zero, the number of
individual grows continuously as t — « . Also, it shows that increasing the value of s, have a
great effect in reducing the chronic infected individuals. It further shows that the impact of the
effectiveness of treatment on the |,. humans, where we see that the population reduces

rigorously until we get to a period of 70 days and them begins to increase again. This shows
that the treatment strategies are not effective. Hence there are chances of fail in treatment.
Furthermore our analysis shows that in a long run the trend stops.

We also see that I, grows exponentially and we see that varying the parameter p, have
little or no impact on the population. Our analysis show that in the long run, the trend stopped
att =500.

We also found out that in the long run as the biting rate increases, the infected population
increases. Then as biting rate decreases, then the 1,,. individuals are completely eradicated
from the population while the I ., infected individuals are reduced.

We observed that both the 1,,and I, infected individuals are reduced as omega (@ | the
treatment rate) Increases though I reduces more. Therefore, treatment should be more
focused on the I, infected individuals.

We investigated the effect of increase in treatment rate on the treatment class, and that shows
that treatment population decreases until it approaches to t =80 and then increases throughout
the long run. This is to say that, within the first 80 days those whose treatment where
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successful were very minimal irrespective of the actions of the health personnel. As the rate of
treatment increases, more people recover from the infection and 80 days is the minimum time
needed for full recovery.

4.3 Recommendations

Based on the above, humans need to boost their antibodies production to be able to subdue the
invasion of parasites in the bloodstream. Eating right food and living a healthy lifestyle can
help boost the level of antibodies in humans. It is also important to note that reducing human-
mosquito contact rate plays a big role in inhibiting the prevalence of elephantiasis.

The use of insecticide-treated bed net, closing of doors and windows against mosquitoes.
Clearing of stagnant water and drainages, are all regarded as vector control measures.

However, efforts should be intensified in developing elephantiasis vaccine as this would
facilitate the stimulation of the immune system in producing antibodies against elephantiasis.

Treatment should be more focus on the Chronic Infected (l¢) individual than the Highly
Infected (Inp) individual as we can see in our simulation of Figure 4.10.

REFERENCES

Addis, D. G and Dreyer G. (2000) Treatment of lymphatic filariasis : In: Nutman T, editor: Lymphatic Filariasis,
London, Imperial College Press; 2000, pp. 151-199.

Alison Kealey and Robert Smith (2010) Neglected Tropical Diseases: Infection, Modeling, and Control;

Journal of Health Care for the Poor and Underserved, VVolume 21, Numberl, pp. 53-69 10.1353/hpu.0.0270

Bitran, R, Martorell, B; Escobar, L.; Munoz, R and Glassman, A. (2009) Controlling and Eliminating
Neglected

Diseases In Latin America And The Caribbean, Health Affairs (Millwood), 28 (6), 1707-1719

Chan. M.S., Norman. R.A et al (1998) EPIFIL: a dynamic model of infection and disease in lymphatic filariasis,

American Journal of tropical medicine and Hygiene, Vol. 59, No. 4, PP. 600-614.

Chan, M. S., Srividya, A., Norman, R. A., Pani, S. P., Ramaiah, K. D., Vanamail, P, Michael, E, Das, P. K.,

Bundy, D. A. (1998 ) Epifil: a dynamic model of infection and disease in lymphatic filariasis; The

American Journal of Tropical Medicine and Hygiene, 59, 606-614

Chiyaka, C., Garira, W and Dube, S. (2008) Modeling immune response and drug therapy in human malaria,

infection, computational and mathematical methods in medicine, 9 No. 2, 143-163, doi:
10.1080/17486700701865661

Das, P. K. and Subramanian, S. (2002) Modeling the Epidemiology, Transmission and Control of lymphatic
filariasis; Annals of Tropical Medicine and Parasitology, DOI: 10.1179/000349802125002518

Dreyer, G.; Nordes, J, Figueredo-Silva, J and Piessens, W. F. (2000) Pathogenesis of Lymphatic Disease in

Bancroftian Filariasis:: A Clinical Perspective; Parasitology Today, Volume 16, Issue 12, Pages 544-548

Gersovitz, M. and Hammer, J. S (2003) Infectious diseases, public policy, and the marriage of economics and

Epidemiology, World Bank Res Obs 18: 129-157.

Hooper, P.J, Broadloy, M.H, Bisswas, G. Ottessen, E.A. (2009) The Global programme to Eliminate lymphetic
filariaris: health impact during its first 8 years (2000-2007), Oct. 103 Suppl. I: S17-21.
doi:10.1179/0003449809809 x 1250235776513.

Krishnamoorthy, K., Subramanian, S., Van Oortmarssen, G.J., Habbema, J.D.F., Das, P.K Vector (2004)
Survival and Parasite, infection: the effect of wuchereria bancrofti on its vector culex quinquefasciatus.
Parasitology 2014: 129:43-50.

Lashari, A. A., Aly S., Hattaf, K., Zaman, T., Jung I.H. and Li, X. (2012) Presentation of Malarial Epidemics
using multiple Optimal Controls, Journal of Applied Mathematics, 17.PP.d0i.10.1155/2012/946504.

Manguina. E., Bangsb. M. J, Pothikasikorne, J, and Chareonviriyaphap. T (2009) Review of global co-
transmission of human plasmodium species and Wuchereria bancrofti by Anopheles Mosquitoes, Infection,
Genetics and Evolution doi:10.1016/j.meegid, 11.014

112


http://www.iiste.org/
https://muse.jhu.edu/results?section1=author&search1=Alison%20Kealey
https://muse.jhu.edu/results?section1=author&search1=Robert%20Smith?
https://muse.jhu.edu/journal/278
https://muse.jhu.edu/issue/19665
https://doi.org/10.1353/hpu.0.0270
http://content.healthaffairs.org/search?author1=Ricardo+Bitran&sortspec=date&submit=Submit
http://content.healthaffairs.org/search?author1=Bernardo+Martorell&sortspec=date&submit=Submit
http://content.healthaffairs.org/search?author1=Liliana+Escobar&sortspec=date&submit=Submit
http://content.healthaffairs.org/search?author1=Rodrigo+Munoz&sortspec=date&submit=Submit
http://content.healthaffairs.org/search?author1=Amanda+Glassman&sortspec=date&submit=Submit
http://www.ajtmh.org/search?value1=M+S+Chan&option1=author&noRedirect=true
http://www.ajtmh.org/search?value1=A+Srividya&option1=author&noRedirect=true
http://www.ajtmh.org/search?value1=R+A+Norman&option1=author&noRedirect=true
http://www.ajtmh.org/search?value1=S+P+Pani&option1=author&noRedirect=true
http://www.ajtmh.org/search?value1=K+D+Ramaiah&option1=author&noRedirect=true
http://www.ajtmh.org/search?value1=P+Vanamail&option1=author&noRedirect=true
http://www.ajtmh.org/search?value1=E+Michael&option1=author&noRedirect=true
http://www.ajtmh.org/search?value1=P+K+Das&option1=author&noRedirect=true
http://www.ajtmh.org/search?value1=D+A+Bundy&option1=author&noRedirect=true
http://europepmc.org/search;jsessionid=1C20B50F07A68D0F6704E9AC8E9C12FF?query=AUTH:%22Das+PK%22&page=1
http://europepmc.org/search;jsessionid=1C20B50F07A68D0F6704E9AC8E9C12FF?query=AUTH:%22Das+PK%22&page=1
http://europepmc.org/search;jsessionid=1C20B50F07A68D0F6704E9AC8E9C12FF?query=AUTH:%22Subramanian+S%22&page=1
http://europepmc.org/search;jsessionid=1C20B50F07A68D0F6704E9AC8E9C12FF?query=AUTH:%22Subramanian+S%22&page=1
http://europepmc.org/search;jsessionid=1C20B50F07A68D0F6704E9AC8E9C12FF?query=AUTH:%22Subramanian+S%22&page=1
http://europepmc.org/search;jsessionid=1C20B50F07A68D0F6704E9AC8E9C12FF?query=AUTH:%22Subramanian+S%22&page=1
http://www.sciencedirect.com/science/journal/01694758
http://www.sciencedirect.com/science/journal/01694758/16/12

Mathematical Theory and Modeling www.iiste.org
ISSN 2224-5804 (Paper) ISSN 2225-0522 (Online) o
Vol.8, No.4, 2018 I E

McGill, Arizona, Yeshiva (2015) Modeling the transmission dynamics and control of lymphatic filariasis
(Wuchereria bancrofti parasites) in Papua New

McNulty S. N., Sahar, A., Gabrial M. S., Makedonka M., Nathan P. M., Kerstin, F., Kurt C. C., Norbert W. B.,
Gary J. W., Peter U. F. (2012) Transcriptomic and Proteomic Analyses of a Wolbachia-Free Filarial
Parasite Provide Evidence of Trans-Kingdom Horizontal Gene Transfer Transfer. PLoS ONE 7(9): e45777.
https://doi.org/10.1371/journal.pone.0045777

Michael, E., Bundy D.A.P and Grenfoll, B.T, (1996) Re-assessing the global prevalence and distribution of
lymphatic filariasis, Vol. 112, issue 04, 409-428.

Michael E. (1999) The Control of the Human Filarriasis, The Lancet Elsevier Journal, 12 (6), 565-578

Michael, E., Malecela-Lazaro, M. N., Simonsen, P. E., Pedersen, E. M., Barker, G., Kumar, A., & Kazura, J. W.
(2004). Mathematical Modeling and the Control of Lymphatic Filariasis; Lancet Infectious Diseases, 4(4),
223-234, DOI: 10.1016/S1473-3099(04)00973-9

Michael, E., Malecela-Lazaro, M. N., Kabali, C., Snow, L. C. and Kazura, J. W. (2006) Mathematical models
and lymphatic filariasis control: endpoints and optimal interventions; Trends Parasitology 22: 226-233.

Michael, E, Malecela, M. N, Zervos, M, Kazura, J. W (2008) Global Eradication of Lymphatic Filariasis : The
Value of Chronic Disease Control in Parasite Elimination Programmes. PLoS ONE 3(8): e2936.
https://doi.org/10.1371/journal.pone.0002936

Ottesen, E. A (1994) The human filariasis: New understandings, new therapeutic strategies 1994, Vol. 7. 5:550-
558.

Ottesen, E. A., Duke, B. 0., Karam, M and Behbehani, K. (1997) Strategies and tools for the
control/elimination of lymphatic filariasis.; Bulletin of the World Health Organisasion, 75 (6), 491-503
Plaisier, A. P, Subramanian, S., Das, P. K., Souza, W., Lapa, T., Furtado, A. F., Van der Pleog, C. P. B,
Habbema, J. D. E, and Van Oortmarseen, G. J (1998) The LYMFASIM simulation program for modeling

lymphatic filariasis and its control method of information medicine 1998, 37:97-108.

Srividya, A., Pani, S. P., Rajagopalan, P. K., Bundy, D.A.P., Grenfell, B. T. (1991) The dynamics of infection
and disease in Bancroftian filariasis; Transactions of the Royal Society of Tropical Medicine and Hygiene,
Volume 85, Issue 2, Pages 255-259

Subrmanian, S., Stolk, W. A., Ramaiah, K. D., Plaisier, A. P, Krishnamorthy, K., Van Oortmarseen, G. J.,
Domini, A. D., Gabbema, J. D. F and Das, P. K (2004) The dynamics of wuchereria bancropti infection: a
model-based analysis of longitudinal data from Pondicherry, India parastology 2004, 128:467-482.

Supriatna, A. K., Serviana, H and Soewono, E. (2009) A Mathematical Model to Investigate the Long-Term
Effects of the Lymphatic Filariasis Medical Treatment in Jati Sampurna, West Java; ITB Journal of
Science, Vol. 41 A, No. 1, 1-14

Swaminathan, S., Pani, S. P., Ravi, R., Krishnamoorthy, K. and Das, P. K (2008) Mathematical models for
lymphatic filariasis transmission and control: challenges and prospects”, Parasites and vectors, Vol. 1,
article 2, 2008.

van den Driessche and Watmough (2002) Reproduction numbers and Sub-threshold endemic equilibria for
compartmental models of disease transmission; Journal mathematics Biosciences vol. 180 ISSUE 1-2

World Health Report (1995) Geneva, World Health Organization

113


http://www.iiste.org/
https://doi.org/10.1371/journal.pone.0045777
http://dx.doi.org/10.1016/S1473-3099%2804%2900973-9
https://doi.org/10.1371/journal.pone.0002936
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ottesen%20EA%5BAuthor%5D&cauthor=true&cauthor_uid=9509621
https://www.ncbi.nlm.nih.gov/pubmed/?term=Duke%20BO%5BAuthor%5D&cauthor=true&cauthor_uid=9509621
https://www.ncbi.nlm.nih.gov/pubmed/?term=Karam%20M%5BAuthor%5D&cauthor=true&cauthor_uid=9509621
https://www.ncbi.nlm.nih.gov/pubmed/?term=Behbehani%20K%5BAuthor%5D&cauthor=true&cauthor_uid=9509621
http://www.sciencedirect.com/science/journal/00359203
http://www.sciencedirect.com/science/journal/00359203/85/2

