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Abstract  

In this paper, the discrimination and classification problem associated with the persistent non normal 

distribution has been studied. Sampling  from non normal distribution is assessed through the  

distribution of errors of misclassification in respect of Edgeworth Series Distribution (ESD) which is 

restricted to asymmetry. The effects of applying a normal classificatory rule (ND) when the 

distribution is ESD by empirical approach is examined  by comparing the errors of misclassication  

for ESD with ND using small sample sizes at every level of skewness factor. The empirical results 

obtained show that the normal procedure is sturdy against departure from normality. This is evident 

from the total probabilities of misclassification that are not greatly affected by the skewness factor. 

Keywords:   Normal Distribution, Classificatory Rules, Apparent Probability of Misclassification, 

Skewness Factor and Optimum Probabilities of Classification. 

 

(1.0) Introduction  

Discriminant analysis is a widely employed multivariate technique with two closely related 

goals(Discrimination and Classification). Discrimination is focused on the description of group 

separation which elucidates the difference between two or more groups (Alvin, 2002; William and 

Mathew, 1984). 

In classification, we are concerned with prediction or allocation of observations into groups. In this 

case, a sample of observations is given and the problem is to classify them into groups which shall be 

distinct as possible (Ogum, 2002). In essence, classification problem arises when a researcher makes a 

number of measurements on an individual and wishes to classify the individual into one of several 

groups on the basis of these measurements. The individual cannot be identified with a group directly 

without recourse to the measurements. Fisher (1936), illustrating this concept, classified iris flower 
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from unknown group (specie) to any of the three known species (Iris setosa-red, Iris Versicolour –

green, and Iris Virginica black) on the basis of their attributes (Sepal length in cm, Sepal width in cm, 

Petal length in cm and Petal width in cm). 

Anderson (2003), described classification problem as the problem of statistical decision making and as 

such, a good classification procedure should result to few misclassifications. 

The concepts of discrimination and classification have been carefully studied by Onyeagu (2003), 

Osuji and Onyeagu (2009), Olasunde and Soyinka (2013), Johnson and Wichern (2007), Dixon and 

Brereton (2009), De la Cruz (2008), Gupta and Nagari (2000) among others.  

In constructing a classification procedure, there is a need to minimize on the average, the bad effects of 

misclassification (Ariyo and Adebanji (2010), Richard and Dean 1988). 

Let  1

1 2, , , rX X X X K  denote the vector of measurements of an observation. To classify 
1X  into 

1 2or  , we consider an item as a point in a r-dimensional space and then partition the space   into 

two regions 1R  and 2R  which are mutually exclusive and exhaustive. If X
1 

falls into 1R , we classify it 

as coming from 1 and if it falls into 2 ,R  we allocate it to population 2 . 

In following the classification procedure, two kinds of errors in classification can be made when the 

sets of measured characteristics are not clearly distinct. If an item is actually from 1 , one may 

classify it as coming from 2 .  Also, one may classify an item from 2  as coming from 1 . In 

practice, such errors could prove costly and we need to know the relative undesirability of these errors 

in classification. 

The performance criteria for any suggested classification rule are the probabilities of misclassification 

or error rates.  The respective probabilities of misclassification are: 
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The Total Probability of Misclassification (TPM) is expressed as 

   
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The TPM is calculated easily when the population consists of multivariate normal densities with 

known parameters defined as: 

(1) 

   (2) 

(3) 
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 exactly, where   denotes the cumulative density 

function of standard normal distribution and    2 1

1 2 1 2         is 

the Mahalanobis squared distance between  1,    and  1,   .   

  The problem of classifying an observation into one of two multivariate normal populations with a 

common covariance matrix implies the classical classification.  Fisher’s Linear Discriminant Function 

serves as a criterion when samples are used to estimate the parameters of the two distributions.  

However, when the population parameters are unknown, and there is a need for their estimation from 

the sample, the exact calculation of the TPM for Linear Discriminant Function (LDF) is quite complex 

or complicated due to the intractability of the nature of the forms of the probabilities.   

Various techniques have since been developed and compared in trying to find the best approach for 

estimating the unknown parameters from the samples (Onyeagu and Adeboye, 1996;  Fujikoshi, 2000; 

Gupta and Nagari, 2000; Batsidis, et al., 2006). 

 Linear Discriminant Function (LDF) is employed as an assignment rule when: 

(a) The density of observation from , ( 1, 2)i i 
 
are multivariate normal; 

 ~ , , ( 1,2)i iN i     

(b) The variance – covariance matrix in 1 is the same as 2 ; 

(c) The priori probabilities ( 1,2)ip i   of an observation coming from , ( 1, 2)i i   respectively 

are known; 

 

(d) The parameters of the density functions in (a) are known. 

 

Suppose the assumptions specified above are satisfied, then the Linear Discriminant Function (LDF) 

provides optimal assignment rule in that it cannot be improved upon and the errors of misclassification 

are minimized. However, when some or all the assumptions are violated it would be of interest to 

determine the effects of the violation on the procedures using Linear Discriminant Functions (LDF).  

The purpose of the study is to discriminate a non-normal distribution using the persistent non 

transformable Edgeworth series distribution. We investigate the effects of applying a normal 

classificatory rule when it is Edge-worth Series Distribution by empirical methods. This is assessed 

through the distribution of the errors of misclassification.  

(2.0)  Methodology 

(2.1) Discrimination of Non-normal Distributions by Edgeworth Series Distribution (ESD) 
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Suppose , 1,2, 1,2, ,ij iX i j n  K  denote two independent random samples from populations 

, 1, 2i i  respectively.  Then 

3 3( ) 1 , , 1,2
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3 , ( 1, 2)i i   and   satisfy the conditions 3 , i          and 0  ,     where D 

denotes the operator 
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and 3  is the skewness  factor. 

(2.1.1)  Optimum Probability of Misclassification of ESD 

When all the parameters of the distributions in the populations are known, the probability of 

misclassification is optimal in the sense that we cannot improve upon it.  

When an observation from 1 is misclassified, the optimum probability of misclassification is given by 
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where 1 2

2

 


 
  
 

and ( )rH x is Chebyshev’s - Hermite polynomial of degree r and defined by the 

identity: 

( ) ( ) ( ) ( )r

rH x x D x    

Using the results of Kendall and Stuart (1958),   

 

  (4) 

(5) 

(6) 

       (7) 

     (8) 
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If an observation from 2  
is misclassified, the optimum probability of misclassification is given by 

 
 1 2

2

33 2

32 2 2
33

, Pr
2

1
6

6

R f x

x
D dx

x x x
H dx



 

 


 




  
 

   



 

 
  

 

   
    

  

       
      

     



 

 

Setting 
 1 2

2

 





 

1x
and z






 , we have 

 
   2 2

3
2 32

32 2 2
22

2

31 2 1 2 1 2

2

, Pr ( ) ( ) ( )
6

6

1
2 6 2 2

R f z dz H z z dx

H

   

 


  


     
 

   

     
 

   

 

 
 

       
      

     

        
       

       

 

 

The optimum probability of misclassification is of interest in this study as it would be used 

subsequently for comparison purposes. 

(2.1.2)   Classificatory Rules for Estimating Errors of Misclassification  

For the ESD with 1 2  , the classificatory rule is  

   (9) 

(10) 
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The normal classificatory rule for  1 2   is  

1 2
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(2.1.3)  Estimating the Probabilities of Misclassification 

1 2 1 2, 1,2; 1,2,... , ,ij iLet X i j n be independent samples of sizes n n from populations    To 

estimate the apparent probabilities of misclassification, we define

1 1

12 21
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1 2 1 1

2 1 2 2
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1 0,
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j j

E E

j j

j j j j

j j j j

E and E
n n
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if X is classified as belonging to and if X is classified as belonging to

 

   

   

 

 

 

 

 

E12E and E21E  represent the apparent probabilities of misclassification when observations from 

1 2and   are misclassified respectively by Edge worth Series  Distribution rule.  

                       

(14) 

       (13) 

  (12) 

  (11) 
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1 2

12 21

1 11 2

n n
j j

N N

j j

E and E
n n

 

 

    

E12N and E21N  represent the apparent probabilities of misclassification when observations from 

populations 1 and 2 are misclassified respectively by Normal  Distribution rule.  

(3.0)  Simulation Experiments and Results 

The optimum probabilities of misclassification   for the Edgeworh Series Distribution (ESD) are 

computed with 1 20, 1 1and      with the skewness factor 3                                                         

in the range (6.25 x 10
-3

, 0.4) .See (Barton and Dennis ,1952).  

The apparent probabilities of misclassification for the (ESD) and ND are also examined when 

1 2, and   are known and when  the parameters are estimated from the samples. Two independent 

samples of  simulation size  of 200 each are configured at each value of the skewness factor 3( )  from 

1 2and   whose distributions are of  ESD  with the respective parameters: 

2 2

1 20, 1 1, 1and       . 

Using the ESD and Normal Distribution  (ND)  classification rules, the proportion misclassified in 

1 2and   are obtained and repeated for small samples ( n = 5, 10, 15, 20, 25). The random numbers  

are generated using R program and simulation results are  obtained and  displayed in Tables 3.1- 3.7 

Table 3.1: Optimum Probabilities of Misclassification at Different Values                                                                  

of Skewness for ESD (all Parameters  Known) 

 

Optimum Probability of Misclassification 

Skewness Factor(λ3) E12E E21E Total 

0.00625 0.3082 0.3088 0.6170 

0.0125 0.3079 0.3091 0.6170 

0.025 0.3074 0.3096 0.6170 

0.05            

0.3063 

0.3107 0.6170 

0.10 0.3041 0.3129 0.6170 

0.15 0.3019 0.3151 0.6170 

0.20 0.2997 0.3173 0.6170 

0.25 0.2975 0.3195 0.6170 

0.30 0.2953 0.3217 0.6170 

0.35 0.2931 0.3239 0.6170 

0.40 0.2909 0.3261 0.6170 

 

  

                       

(15) 
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Table  3.2:   Comparison of Errors of Misclassification for All known                                                          

Parameters of  ESD with ND  Averaged over 5 Samples  

Skewness Factor(λ3) 

 

E12E E21E Total E12N E21N Total 

0.00625 0.329 0.303 0.632 0.327 0.303 0.630 
0.0125 0.321 0.321 0.642 0.318 0.322 0.640 
0.025 0.282 0.326 0.608 0.278 0.330 0.608 
0.05 0.312 0.289 0.601 0.308 0.296 0.604 
0.10 0.328 0.296 0.624 0.315 0.307 0.622 
0.15 0.355 0.298 0.653 0.330 0.324 0.654 
0.20 0.328 0.305 0.633 0.287 0.331 0.618 
0.25 0.339 0.262 0.601 0.298 0.296 0.594 
0.30 0.377 0.248 0.625 0.320 0.304 0.624 
0.35 0.387 0.255 0.642 0.328 0.310 0.638 
0.40 0.396 0.247 0.643 0.297 0.301 0.598 

 

Table  3.3:  Comparison of Errors of Misclassification of ESD with ND                                                                    

for Means unknown and Estimated by  Averaged Values over 5 Samples  

Skewness Factor(λ3) 

 

E12E E21E Total E12N E21N Total 

0.00625 0.140 0.40

0 

0.540 0.14

0 

0.400 0.540 
0.0125 0.220 0.41

0 

0.630 0.22

0 

0.410 0.630 
0.025 0.225 0.46

5 

0.690 0.22

0 

0.475 0.695 
0.05 0.210 0.39

5 

0.605 0.20

5 

0.400 0.605 
0.10 0.205 0.47

5 

0.680 0.17

5 

0.495 0.670 
0.15 0.260 0.28

5 

0.545 0.23

0 

0.320 0.550 
0.20 0.305 0.36

5 

0.670 0.29

5 

0.395 0.690 
0.25 0.455 0.18

5 

0.640 0.42

0 

0.230 0.650 
0.30 0.195 0.46

5 

0.660 0.11

5 

0.545 0.660 
0.35 0.225 0.46

5 

0.660 0.12

5 

0.520 0.645 

0.40 0.440 0.18

0 

0.610 0.36

0 

0.250 0.610 

 

Table  3.4: Comparison of Errors of Misclassification of ESD with ND                                                

for Means unknown and Estimated by Averaged  Values over 10 Samples  

 

 

 

 

 

 

                      

  

Skewness Factor(λ3) E12E E21E Total E12N E21N Total 

0.00625 0.252 0.249 0.501 0.252 0.315 0.567 

0.0125 0.236 0.236 0.472 0.236 0.236 0.472 

0.025 0.266 0.219 0.485 0.231 0.295 0.526 

0.05 0.224 0.282 0.506 0.216 0.314 0.530 

0.10 0.290 0.278 0.568 0.208 0.336 0.544 

0.15 0.387 0.203 0.590 0.215 0.220 0.435 

0.20 0.277 0.320 0.597 0.270 0.337 0.607 

0.25 0.255 0.245 0.500 0.230 0.292 0.522 

0.30 0.248 0.334 0.582 0.182 0.394 0.576 

0.35 0.216 0.339 0.555 0.175 0.354 0.529 

0.40 0.253 0.209 0.462 0.170 0.196 0.366 
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Table  3.5:   Comparison of Errors of Misclassification of ESD with ND                                             

for Means unknown and Estimated by Averaged Values over 15 Samples  

Skewness Factor(λ3) E12E E21E Total E12N E21N Total 

0.00625 0.345 0.145 0.490 0.345 0.150 0.495 

0.0125 0.310 0.310 0.620 0.310 0.310 0.620 

0.025 0.405 0.280 0.685 0.400 0.285 0.685 

0.05 0.230 0.390 0.620 0.225 0.395 0.620 

0.10 0.375 0.305 0.680 0.350 0.315 0.665 

0.15 0.405 0.180 0.585 0.360 0.225 0.585 

0.20 0.355 0.325 0.680 0.320 0.355 0.675 

0.25 0.295 0.340 0.635 0.235 0.395 0.630 

0.30 0.320 0.350 0.670 0.230 0.385 0.615 

0.35 0.260 0.345 0.605 0.200 0.430 0.630 

0.40 0.315 0.375 0.690 0.145 0.415 0.560 

 

Table 3.6:   Comparison of Errors of Misclassification  of  ESD with ND for                                

Means unknown and Estimated by Averaged Values over 20 Samples  

Skewness 

Factor (λ3) E12E E21E Total E12N E21N Total 

0.00625 0.220 0.206 0.426 0.220 0.206 0.426 
0.0125 0.280 0.280 0.560 0.192 0.295 0.487 
0.025 0.330 0.210 0.540 0.290 0.230 0.520 
0.05 0.345 0.205 0.550 0.295 0.250 0.545 
0.10 0.265 0.300 0.565 0.230 0.390 0.620 
0.15 0.340 0.350 0.690 0.330 0.375 0.705 
0.20 0.350 0.240 0.590 0.320 0.255 0.575 
0.25 0.295 0.270 0.565 0.270 0.295 0.565 
0.30 0.300 0.195 0.495 0.265 0.200 0.465 
0.35 0.310 0.350 0.660 0.270 0.360 0.630 
0.40 0.405 0.285 0.690 0.380 0.400 0.780 

 

Table 3.7: Comparison of Errors of Misclassification of ESD with ND for Means                                 

unknown and Estimated by Averaged Values over 25 Samples  

Skewness Factor(λ3) E12E E21E Total E12N E21N Total 

0.00625 0.27

0 

0.22

0 

0.490 0.270 0.22

0 

0.490 

0.0125 0.29

0 

0.33

0 

0.620 0.290 0.23

5 

0.525 

0.025 0.39

0 

0.29

5 

0.685 0.375 0.31

0 

0.685 

0.05 0.34

0 

0.27

0 

0.610 0.335 0.28

0 

0.615 

0.10 0.37

5 

0.30

5 

0.680 0.360 0.31

5 

0.675 

0.15 0.36

0 

0.23

0 

0.590 0.345 0.24

5 

0.590 

0.20 0.27

5 

0.43

0 

0.705 0.225 0.48

0 

0.705 

0.25 0.37

5 

0.25

5 

0.630 0.320 0.29

0 

0.610 

0.30 0.39

0 

0.24

0 

0.630 0.300 0.33

0 

0.630 

0.35 0.29

0 

0.30

0 

0.590 0.240 0.34

5 

0.585 

0.40 0.40

5 

0.22

5 

0.630 0.305 0.29

0 

0.595 
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 fig.3.1: graph showing optimum 
probabilities of misclassification for ESD.  

 

              

 Fig. 3.2: Graph showing Optimum Total 
Probabilities of Misclassification for ESD .  

 

 

              

Fig.3.4: Graph showing probabilities of misclassification 
for all known parameters averaged over 5 samples    
(E21E and E21N  ) 

Fig.3.3: Graph showing probabilities of misclassification 
for all known parameters averaged over 5 samples    
(E12E and E12N) 

Fig.3.5: Graph showing  total probabilities of 
misclassification(ESD and ND) for all known parameters 
averaged over 5 samples   

Source: Table 3.2 

Fig.3.6: Graph showing probabilities of misclassification 
for unknown parameters averaged over 5 samples    
(E12E and E12N  ) 
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Fig.3.7: Graph showing probabilities of 
misclassification for unknown parameters averaged 
over 5 samples    (E21E and E21N  ) 

 

Fig.3.8: Graph showing  total probabilities of 
misclassification(ESD and ND) for unknown parameters 
averaged over 5 samples   

 

Fig.3.9: Graph showing  probabilities of 
misclassification (E12E and E12N) for unknown 
parameters averaged over 10 samples   

 

Fig.3.10: Graph showing probabilities of 
misclassification (E21E and E21N) for unknown 
parameters averaged over 10 samples   

 

Fig.3.11: Graph showing total probabilities of 
misclassification (ESD and ND) for unknown 
parameter averaged over 10 samples   

 

Fig.3.12: Graph showing probabilities of 
misclassification (E12E and E12N) for unknown 
parameters averaged over 15 samples   
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Fig.3.13: Graph showing probabilities of 
misclassification (E21E and E21N) for unknown 
parameters averaged over 15 samples   

 

Fig.3.14: Graph showing total probabilities of 
misclassification (ESD and ND) for unknown 
parameter averaged over 15 samples   

 

Fig.3.15: Graph showing probabilities of 
misclassification (E12E and E12N) for unknown 
parameters averaged over 20 samples   

 

Fig.3.16: Graph showing probabilities of 
misclassification (E21E and E21N) for unknown 
parameters averaged over 20 samples   

 

Fig.3.17: Graph showing total probabilities of 
misclassification (ESD and ND) for unknown 
parameter averaged over 20 samples   

 

Fig.3.18: Graph showing probabilities of 
misclassification (E12E and E12N) for unknown 
parameters averaged over 25 samples   
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The results in Table 3.1 shows that E12 decreases as λ3  increases and E21 increases as λ3  increases. The 

Total Probability of  Misclassification is also stable (constant) as λ3  increases. 

From Table 3.2 , E12E  is always higher than  E12N at every level of  λ3 and E21E is also higher than E21N 

at every level of λ3. 

The total probabilites of  misclassification for the ESD and ND classification rules indicate no major 

difference between them at each value of  λ3. It is also evident from Tables 3.2 – 3.7  that the total 

probability of misclassification at every value of λ3 is either under or overestimated when small 

samples are employed to estimate 1 2, and  . 

The skewness factor (λ3) has a very little effect on the total probability of misclassification, which 

implies that it is not affected by the departures from normality. 

For the individual probabilities of misclassification: E12E and  E12N at every level of  λ3 , their 

behaviours show that for small sample sizes E12E  E12N and E21E E21N. The observed equality occurs 

when λ3 is very small with an increasing parity as λ3 increases. 

(3.0) Conclusion and Recommendation 

The results obtained in Tables (3.2 – 3.7) asserts that the normal procedure is strong against departures 

from normality as shown by the asymmetry factor of ESD. The apparent probabilities of 

misclassification E12E , E21E  and their totals are close to the corresponding errors prompted by the 

normal classification rule when λ3 is small.   

Fig.3.19: Graph showing probabilities of 
misclassification (E21E and E21N) for unknown 
parameters averaged over 25 samples   

 

Fig.3.20: Graph showing total probabilities of 
misclassification (ESD and ND) for unknown 
parameter averaged over 20 samples   
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Estimation of the errors when small sample sizes are used to estimate the means is an indication that 

the optimum probability of misclassification is underestimated or overestimated. This is anchored on 

the data generated and strictly limited to this work. 

It is recommended that further work should be done on the effects of using small sample sizes on the 

parameters. Efforts should also be made to derive the algebraic justification for equality of 

probabilities when λ3 is  very small. 
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