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Abstract 

In this paper a survey is carry out on models for pricing electricity from market data using the Ornstein – Uhlenbeck 

process and other time series models like Garch and Arima to calibrate model. We also consider models for the 

demand and supply of electricity and the associated spike and Equilibrium price for electricity. Simulation 

experiments are also designed for models studied. 
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1. Introduction 

Most models for pricing of electricity make use of models like jump diffusion model and the Box-Cox 

transformation model.  But these models do not capture the spikes in prices of electricity, that is, sudden jumps in 

prices because of seasonality in the demand and supply of electricity. Non-storable nature of electricity makes it 

pricing to be characterized by spikes .Electricity prices show strong seasonal fluctuations because of human activity 

and seasonal climate changes [10]. 

Electricity prices exhibit mean reversion. This is because of the basic fact that energy prices are driven by supply and 

demand. Prices of electricity fluctuation about the equilibrium, therefore, electricity prices models will usually have 

some mean reverting property to capture the mean reverting behavior of electricity prices [8] & [10]. 

 

In this work we will consider model for: 

1.  Pricing electricity from market data using 

The Ornstein – Uhlenbeck process and   use of other time series models like Garch and Arima to calibrate 

the model and also consider models for the demand and supply of electricity. 

2. Equilibrium price for electricity. 

3. Seasonality in the supply of electricity by the use of extended Box-Cox transformation. 

4. The utility function for Electricity Company with the possibility of how to optimize it. 

 

1.1 Ornstein-Uhlenbeck process 

Traditional financial models start with the Black-Scholes assumption of the Geometric Brownian Motion or log-

normal prices. This assumption does not make sense in the context of the electricity prices for many reasons 

including the non-predictability of the electricity prices. A model which has been used in practice is known as 

Ornstein-Uhlenbeck process. This is a continuous time model which permits autocorrelation in the series and is 

written as 

 

 

                                       )()]([)( tdwdttXktdX σµ +−=                             (1)  

It is necessary to incorporate mean reversion when modeling electricity prices, because some time we observe that 

electricity prices jump from 10KWh to 110 KWH due to an unexpected event (e.g. drop in water level at hydropower 

stations, lack of supply of gasses, transmission constraints, plant brake down, etc).Electricity is non-storable, hence 

the market is volatile because the variance or volatility will changes with time, that is, the volatility has  

heteroscedasicity behavour which is  a kind of time varying variance([1],[12-13]).  

 

Geometric Brownian motion is a random walk process which is used to model prices based on the assumption that 

price changes are independent of one another. This means, the historical path of the price follows to achieve its 

current price is irrelevant for predicting the future price path ([11], [13]). Modification of the random walk is known 

as the mean reversion, where price changes are not completely independent of one another but rather are related to 

one another. 

 

In Nigeria there are two groups or contractors as regard the generation, distribution and sale of electricity is 

concerned. One of the groups is the Power holding of Nigeria (PHCN) which is charged with responsibility of sale of 
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electricity. The second group is the independent power generators (IPG) responsible for the generation and supply of 

electricity to PHCN. 

 

Electricity forward contracts represent an obligation to buy or sell a fixed amount of electricity at a pre-specified 

contract price, known as the forward price, at certain time in the future (called maturity or expiration time).  

Therefore, electricity forward are supply contracts between a buyer (PHCN) and seller Independent Power Generator 

(IPG), where the PHCN is obligated to take power from IPG and supply it to the public. In finance circle, we say 

PHCN takes short side of electricity forward where as IPG takes the long position. 

Many electricity forward are contracts settled through financial payment based on certain market price index at 

maturity and others are stated through physical delivery of underlying electricity. 

 

The pay off of a forward contract promising to deliver one unit of electricity at price K at a future time T is KST −
 

where TS the electricity spot price is at time T ([13] & [15]). 

1.3 Spark Spread Options 

Spark spreads are cross-commodity options which pays out the difference between the price of electricity sold by the 

generator and the price of the fuels used to generate it. 

The payoff at maturity time T is [ ]+− THT GKS  

Where ST and GT are the electricity and fuel prices at time T, respectively. 

HK  Fixed heat rate, that is, fuel affects the amount of fuel that a generation assert requires producing one unit 

of electricity. 

 

1.4 Pricing Power Options 

1.4.1 Pricing electricity Derivatives 
There are several Research work done on modeling the Pricing of Electricity but the most acceptable one is based 

technical models directed on the stochastic behaviour of market prices from historical data and statistical analysis. 

 

2. PRELIMINARY NOTES 

2.1 Brownian motion ([15]) 

A scalar standard Brownian motion or standard Wiener process over [0, T] is a random variable W (t) that depends 

continuously on ],0[ Ttε  and satisfies the following conditions: 

1. W(0)=0 (with probability 1) 

2. For Tts ≤<≤0  the random variable given by the increments W (t) – W(s) is normally distributed with 

mean zero and variance t-s, equivalently, ( ) ( ) ( )1,0,, Nststswtw ε−=−  is the normal distribution 

with zero mean and unit variance. 

3. For Tvuts ≤<<<≤0 the increments w (t)-w(s) and      

W (u) – w (v) is independent. 

2.2 Stochastic Differential Equations  
Most models in Finance, Mathematical Physics (see [4] [9] & [11]) are described by the following Stochastic 

Differential Equations (SDE). 

( )( ) ( )( ) ( )
0

),(,,)( xaxtdwttxbdtttxatdx =+=  

Where W is a k-dimensional Brownian motion and
dR  ),0[:, →∞×dRba

  

Are maps defined .on 
dRin   values taking),0[ ∞×dR  

Definition 1 

An ( ){ } 0:tx process valued TtR d ≤≤− is said to be an Ito process if it can be represented as 

( ) ( ) ( ) ( ) ( )
satisfying   process  adapted  valuedan  is a ,measurable - F is 0 

                                     0,0

−

≤≤++= ∫∫
d

t

o

t

o

R)x(Where

Ttudwubduuaxtx (2) 
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( )( ) . ...2,1,1P
T

o
didtta ==∞<∫  

In differential form 

( ) ( ) ( ) ( ) (3)                                                                      tdx tdwtbdtta +=  

 

Definition  2 
A strong solution to the (SDE) on an interval [0,T] is an ito process 

( ){ } ( )( )  and 10xPfor which  0, ==≤≤ oxTttx  

( ) ( ) ( )( ) ( )( ) ( ) (4)                 0,,0 Ttsdwssxbdsssxaxtx
t

o

t

o
≤≤++= ∫∫  

Theorem 1 (Ito’s formula) ([11], [13] & [15]) 

Let x be a −dR  valued Ito’s process and let [ ]  T0,:f RR d →×  be continuously differentiable in its first 

argument and twice continuous differentiable in the second argument  

( ) ( ) ( )tbtb T=∑ tLet 

 

then ( ) ( )( )  withprocess itoan  is , txtft =Υ   
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Integrating the equation (5) we get 

( ) ( )( ) ( )

( ) ( ) (6)                                                                                     .
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If x, a and b are scales process, it becomes 

( ) ( ) ( ) ( )( ) ( ) ( )( ) ( )          (7)                   /2//

2
1/ tdwtxfdttbtxftaxftd ++=Υ  

Theorem 2 (Existence and Uniqueness of Solutions) 

Let ( ) ,
2

+∞<Ε
o

x
 such that there exists a constant k>0 such that 

 

1. ( ) ( )      ,, yxktyatxa −≤−
(Lipchitz  constant)

 

2. ( )( ) ( ) ( )  ||1,,, xktxbtxa +≤+ (Linear Growth Property) 

 [ ]   .Ry x,all and ,0 allFor dεε Tt

 

Then the solution of SDE admits a strong solution  

^

x

    and the solution is unique in the sense that if x is a 
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solution  

Then  

[ ] [ ] ( )[ ] ∞<Ε==
2

^

tx   satisfiessolution    ,,0 allFor   .1),0,)(( theTtTtxtxp εε  

Definition 3([15]): 

A. Martingales: An adaptive process ( ) }0,{ ≥ttx  is a said to be Martingale process if 

1. [ ] 0. tallfor  ≥∞<Ε tx  

2. } .ts0 allfor  ,|{ ∞<<≤=Ε tst XFx  

a process is Martingale if it has tendency to rise or fall. 

B. Sub-Martingale: If it has no tendency to fall but have tendency to rise, that is, if 

TtsallXFXE
tst

≤≤≤≥ 0  for   ]|[   

C. Super-Martingale: if it has no tendency to rise but may fall, that is, TtsallXFXE
tst

≤≤≤≤ 0  for  ]|[  

3. METHOD OF ANALYSIS 

Approach to characterize market prices include discrete –time series model such as Garch (see [1], [8] & [10]) 

Market Regime – switching models continuous – time diffusion model such as mean – reversion, jump –diffusion 

and other diffusion model. 

We consider a diffusion process with stochastic volatility governed by a continuous two factors SDE model of the 

form:  

( ) ( )
( ) ( )

MotionsBrownian   two,,

(8)                                           
,,

,,

212

2

2

1

1

arewwS
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dwtdttd

dwStdtstdS

tltt

tttt

tttit

=







∑+∑=∑

∑+=

∑
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δµ

 

Correlation coefficients ( ) ( )
tt

tSt Σ, and ,
21

µµ may account for some mean reversion either in the spot price or 

in the spot price volatility, because extreme spikes. Because of extreme power demand, the dynamic of electrical spot 

prices can be represented by a jump diffusion prices (German 1994) e.g. Merton (1976)(see[15]) model as 

(9)                                            
ttttTt

dNSdwSdtSdS µδµ ++=  

Where 

tN  is a Poisson process whose intensity frequency λ  is characterized by jumps, µ  is the real random variable 

from the normal family.  

 

The multi-factor forward curve are defined by the Stochastic Differential Equations (SDEs) 

( )
( )

( ) ( ) (10)                                   ,
,

,
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∑
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=
n

i

ii tdzTt
TtF

TtdF
δ  

Where ( )TtF , the forward price at time t with maturity is date T and ( )Tti ,δ is the volatility function associated 

with the Brownian motion ( )tzi

*
. 

Assume that 

1. ( ) ( ) nt)(independe j  ifor  0 ==×
tdztdz

x

ji
 

2. Interest rate are deterministic so that future and the  forward price are the same 

Therefore 

( )( ) ( ) ( ) ( ){ } (11)                     ,,Tt,F *2
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Integration yields 
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The Dynamic of sport price is finally given by  
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Figure 1: Simulation of Gaussian process 

 

0 50 100 150 200 250 300 350 400 450 500
-0.15

-0.1

-0.05

0

0.05

0.1

dt

d
w

gaussian path



Mathematical Theory and Modeling                                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.3, No.1, 2013 

 

76 

 

 

 

 
 
 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: ARCHITECTURAL DESIGN FOR PRICING OF ELECTRICITY 
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4 Numericalization of stochastic differential equations 

4.1 Stochastic Integrals 

Given a suitable function in the integral ( )∫
T

o
dssh can be approximated using remaining sum (see [4], [6] & [7]) as 
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(In Riemann sense).For stochastic Integral ∫
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The Ito version is the limiting case of  
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We can show that 

( ) ( ) ( )∫ −=
T

o
TTwsdssw

2
12

2
1  

For the ito integral. For Stratonvich integral 
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And the Stratonvich ( ) ( )( )
11 −+ jj

twtw version is the limiting case of  
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Seen that (see [12] & [13]) 

( ) ( )( ) 0
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=−∆ΖΕ∑ + jjj
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δ=∑ +1  

Therefore 
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George Box and Gwilyn Jenkins introduced Autoregressive Integrated Moving Average (ARIMA) time series models 

in 1970. These models are mathematical models and used for short term forecast of ’well behaved’ data and find the 

best fit of time series in order to get a forecast. Generalized Auto Regressive Conditional Heteroscedastic (GARCH) 

model, Bollerseve ([1]) generalized the conditional δ  (voluntary) to Garch (p.q) model as 

(20)                                       
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( ) ( )  1, and 1,...pj ,0,q1,...,i <+=≥=
ijj

forfor αββ  

To ensure that the condition variance is nonnegative and stationary for all t. 

Loosely speaking, we can think of heteroscedasicity as time-varying variance (i.e., volatility). Conditional implies a 

dependence on the observations of the immediate past, and autoregressive describes a feedback mechanism that 

incorporates past observations into the present. GARCH then is a mechanism that includes past variances in the 

explanation of future variances. If the process has the mean, variance and autocorrelation structure constant over 

time then process is known as stationary process. 

 

More specifically, GARCH is a time-series technique that allows users to model the serial dependence of volatility. 

The series is heteroscedastic, i.e., its variances vary with time. If its variances remain constant with time, the series is 

homoscedastic. 
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Condition for stationary.  The process is stationery if ( )[ ] 01 == Lβ  must be all the roots i.e. outside the of the 

polynomials unit circle. 

Hence 

( )( ) ( )[ ]( ) (21)                                11
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The GARCH Model can be expressed without lost of generality as an ARMA process. 

Suppose Garch Model can be expressed without loss of generality as an ARMA process. 

Suppose 
22

1 tt
n δε −=  is an martingale difference sequence, then 

( ) (22)                             2 1
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This is an ARMA process. 

 

Estimation of Model Parameters 
Estimation parameters of models is a very crucial aspect of modeling, there are many algorithms for estimation in the 

literature, many of which do not yield unbiased, efficient and consistent estimates.The estimation of ARCH models 

are usually done using maximum likelihood (ML) method, using the standard prediction error decomposition type, 

the log-likelihood function for the Garth Model is 
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This function is monotonically increasing without lost of generality, if we truncate the likelihood function for the 

GARCH Model assuming a normal error distribution therefore 
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The first derivatives with respect to their various parameters are: 
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3. The Euler –Murayama method([4]&[13]) 

Consider the stochastic differential equation 

TtxXtdwtXgdttXftdX ≤≤=+= 0,)0(),())(())(()(
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To apply numerical methods (SDEs), we first discretize the interval let 
L

T
t =∆  for some positive integer 

tktL
k

δ=, ,let the numerical approximation to )(
k

tX be 
k

X ,the Euler- Maruyama (EM) method takes the form 

))()()(()(
1111 −−−− −++=

kkkkkk
twtwXgtXfXX δ  

Remark 1 

For deterministic case, g=0; the EM becomes the classical Euler’s method 

 

Example 1 

Applying EM method to the following  

0
)0(),()()()( xXtdwtXdttXtdX =+= µλ  

From above )())(( and )())(( tXtXftXtXg λµ == .The analytic solution to the problem is 






 +−= )()
2

1
(exp)0()( 2 twtXtX µµλ .Truncating Ito-Taylor expansion at an appropriate point such that  

(26)                                 ))()()(()(
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In the logistic equation we can apply Milstein’s method to the SDE  

(27)               
2

1
))()(())()(()(

1

2

1 −− +−+−=
kkkk

XtwtwXdttXKtrXtdX ββ
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Applying Milstein’s algorithm, we get  

(28)               
2

1
))()(()(

1

2

11 −−− +−+−+=
kkkkkkkk

XtwtwXXKXrXX ββδ
  

 

4. Utility, Demand and Supply Functions 

The general utility function electricity is of the form 




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Denote the goods by 
21

 and qq ,and assume that 
1

q  can be purchases in unlimited quantities at price p2 ,but that 

electricity q1 is purchased according g to a two-part tariff with decreasing block rate as follows: 

12
ππ < , assume that the consumer possesses a utility function ),(

21
qqφ  that is maximized subject to his level 

of income x. 

In short run 

szxuq ),,( π=  

Where (.)u is the utilization rate of s .and assume to depend upon the level of income (x) ,the price of electricity 

)(π  and other factors such as (economic, social, or demographic) that might be relevant. 

For short run demand the utility function is  

zaaxaau
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lnlnln
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3210

3210

+++=

+++=

π

π
 

The short run demand function for electricity becomes  

( )

( )szaaxaaq

szaaxaaq

lnlnln

or

3210

3210

+++=

+++=

π

π
 

Long run 

Stock of electricity consuming capital goods () is given by  

zbrbbxbbS
4321

^

0
)( +++++= δπ  

Where δ and r  denotes the market rate of interest and rate depreciation of the capital stock respectively p denotes 

the price per kilowatts of addition to the capital stock. 

 

 

5. Model for Supply and Demand of electricity 

The model for supply ( )(qS
t

) and Demand ( )(qD
t

) of electricity at time t as modeled by Manuda et.al (see[10]) 

in their study on dynamic supply-demand model for electricity prices was given as  
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> +−+=
tt

ttQHqttttt
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t

τ
τ

)90,60(30
,3,2,1,0
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And 
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The equilibrium model 
)()()( qDqSqE

ttt
−=

and the equilibrium price q* such that 
.0)( * =qE

t  

The sport price process at time t is defined by the equilibrium of supply and demand at time t so we have 

ttt
Dpu =)(

 demand follows       

Ornstein-Uhlenbeck process, Balow (2002) (see [10]) suggests cappy 
t

p  at some maximum price whenever demand 

exceeds the maximum supply. 

Suppose supply is non random and independent of t defined  
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Let the inverse of Box-Cox transformation be  
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Design of Simulation Experiments ([4], [6] & [7]) 

The price process 
t

p  is a function of normalized demand 
t

x which follows an Ornstein-Uhlenbeck process (OUP). 

The exact solution to OUP 
t

x  for any ),(~,0 2σµNXTt
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For time-stepping equation Simulate 
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X  at time ....0
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Monte Carlo Simulation ([2], [5], [6] & [14]) for OUP model 

 

Algorithm 1 

Input: a, b, T,σ  

For ni ,...,2,1=  
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 with probability 1 as ∞→n .Let the sample deviation of nPPP
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,..., and let δz  denotes the 
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δ−1  quartile of the standard normal distribution (i.e. δφ −=1)(
0

z  then 
n

s
zP nP

n

^

2/

^

δ± is an asymptotical (as

∞→n ) valid for 
a

e
s

tTa

c
2

)1( )(22 −−−
=
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([2], [9] & [15]) 
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Appendix 

Experiment 1 

Simulation of a non-linear Ornstein-Uhlenbeck process 

%Barlow’s model 

%dX=a*(b-X)*dt+sigma*dW 

%P= (1+alpha*X) ˆ (1/alpha) if 1+alpha*X>epsilon 

%P=epsilonˆ (1/alpha) if 1+alpha*X<=epsilon 

a=1.0055; b=1.020; sigma=0.042; alpha=1.234; epsilon=0.008; % calibration of model 

N=1000; %number of time steps 

T=10; %time interval 

dt=T/N; 

tvec= [1: N]; 

X (1) =1; %X_0 

%time stepping algorithm 

for i=2: N 

X(i)=exp(-a*dt)*X(i-1)+b*(1-exp(-a*dt))+sigma*... 

...sqrt ((1-exp (-2*a*dt))/ (2*a))*randn (1); 
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end 

for i=1: N 

if 1+alpha*X (i)>epsilon 

P (i) = (1+alpha*X (i)) ˆ (1/alpha); 

else 

P (i) =epsilonˆ (1/alpha); 

end 

end 

%generate the plot of the simulated NLOU 

plot (tvec, P) xlabel (’Time index’) ylabel (’Price P_t’) 

title (’Simulation of the NLOU process P_t’) 

 
Experiment 2 

randn ('state', 100) 

>> T=1; N=1000; dt=T/N; 

randn ('state', 100) % activate random generator 

>> T=1; N=1000; dt=T/N; % activate the counter 

>> dw=sqrt (dt)*randn (1, N); 

>> W=cumsum (dw); 

>> plot (0: dt: T, [0, W],'b-') % plot W (t) using marker 

>> xlabel (‘W (t)','FontSize', 17) % labeling of x-axis with the given fontsize 

>> ylabel (‘W (t)', FontSize’, 16,'Rotation', 0) % labeling of x-axis with the given fontsize 

Experiment 3 

% solve dX (t) =k [mu-X (t)] dt+sigmadw (t) 

>> randn ('state', 100) 

>> k=2.023; mu=0.54; sigma=0.044; 

>> Xzero=1; T=1; N=200; dt=T/N; 

>> Dt=dt; 

>> Xem=zeros (1, N); 

>> Xtemp1=Xzero; 

>> j=1: N 

winc=sigma*randn; 

>> g=k*(mu-Xtemp1); 

>> Xtemp1=Xtemp1+Dt*g+winc; 

>> Xtemp (j) =Xtemp1; 

>> end 

plot ([0: Dt: T], [j, Xtemp1],'b-') 
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>> legend ('solution of OUP model') 

>> xlabel ('t','FontSize, 12) 

ylabel (‘X (t)','FontSize', 14) 
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