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Abstract 

In this paper we prove a fixed point theorem in cone metric spaces, which is an extension of metric space into cone 
metric spaces. Our result generalizes and extends some recent results. 
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1. Introduction and Preliminaries 

 

The study of fixed points of mappings satisfying certain contractive conditions has been at the centre of strong 
research activity. In 2007 Huang and Zhang [5] have generalized the concept of a metric space, replacing the set of 
real numbers by an ordered Banach space and obtained some fixed point theorems for mapping satisfying different 
contractive conditions. Subsequently , Abbas and Jungck [1] and Abbas and Rhoades [2] have studied common fixed 
point theorems in cone metric spaces (see also [3,4] and the references mentioned therein). In this paper we extend 
the fixed point theorem of P.D.Proinov [7] in metric space to cone metric spaces.                    

 
Throughout this paper, E is a real Banach space, N = {1, 2, 3,……} the set of all natural numbers. For the mappings f, 
g: X→X, let C(f, g) denotes set of coincidence points of  f , g , that is, 
 C(f,g):={z∈X : fz = gz }. 
 
We recall some definitions of cone metric spaces and some of their properties [5]. 

1.1 Definition 

Let   E be a real Banach Space and P a subset of E .The set P is  
Called a cone if and only if: 
(a).  P is closed, nonempty and P };0{≠  

(b).  a, b R∈ ,  a, b 0≥ , x, y P∈ implies ax + by P∈ ; 

(c) .  x∈P and –x ∈P  implies  x = 0.  
 

1.2 Definition 

Let P be a cone in a Banach Space E, define partial ordering ‘≤ ’on E with respect to P by x≤  y if and only if y-x 
P∈ . We shall write x<y to indicate x y≤  but x y≠  while X<<y will stand for y-x∈Int P , where Int P denotes 

the interior of the set P. This Cone P is called an order cone. 
 

1.3 Definition 

Let E be a Banach Space and P⊂ E be an order cone. The order cone P is called normal if there exists L>0 such that 
for all x, y∈E, 
                      0 yx ≤≤  implies ║x║ ≤ L ║y║. 
The least positive number L satisfying the above inequality is called the normal constant of P. 
 

1.4 Definition  

Let X be a nonempty set of E .Suppose that the map d: X×X→E satisfies: 
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        (d1)  0 ≤  d(x, y) for all x, y X∈ and  
                 d (x, y) = 0  if and only if  x = y ; 
        (d2)  d(x, y) = d(y, x)  for all x, y X∈ ;  

        (d3)  d(x, y)≤ d(x, z) + d(z, y)    for all  x, y, z X∈ . 
   
 Then d is called a cone metric on X and (X, d) is called a cone metric space.  
 
It is obvious that the cone metric spaces generalize metric spaces.  
 

1.5 Example ([5]) 

Let E = R2 , P = { (x , y)∈E such that : x, y ≥ 0}⊂  R2 , X = R and d: X ×  X→E such that  
d(x, y) = (│x - y│, α│x - y│), where α ≥ 0 is a constant. Then (X, d) is a cone metric space. 
 

1.6 Definition 

Let (X, d) be a cone metric space .We say that {xn} is 

         (a)  a Cauchy sequence if for every c in E with 0 << c , there is N such that        
                 for all n , m > N,  d(xn, xm) <<c ; 
         (b) a convergent sequence if for any 0 << c ,there is N such that for all     
                n > N, d(xn, x) <<c, for some fixed x∈X. 
A Cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.  
 

1.7 Lemma ([5]) 

Let (X, d) be a cone metric space, and let P be a normal cone with normal constant L. Let {xn } be a sequence in X. 
Then  
(i). {xn } converges to x  if and only if  d(xn ,x) →  0 (n ∞→ ). 
(ii). {xn } is a Cauchy sequence  if and only if  d (xn , xm )→0 (n,m→∞). 
 

1.8 Definition ([9]) 

Let f, g: X→X. Then the pair (f, g) is said to be (IT)-Commuting at z  if f(g(z)) = g(f(z)) with  
f(z) = g(z ).  
 

2. Common Fixed Point Theorem 

 

In this section we obtain a common fixed point theorem in cone metric spaces, which extend metric space into cone 
metric spaces.       

2.1 Notation  

Throughout this section we define the function E: X → R+  by the formula  E (x) = d(x, Tx)  for x X∈ . 
          
The following theorem generalizes and extends Theorem 4.1 of [7].  
2.2 Theorem           

Let T be a continuous and asymptotically regular self-mapping on a complete cone metric space (X, d) and P be 
an order cone satisfying the following conditions: 
        
 (A1):   d(T x ,T y) ≤ φ (D(x ,y)) , for all  x , y X; 
               
   Where,  D(x, y) = d(x, y) + γ[d(x, Tx) + d(y, Ty)] ,  0≤γ ≤1.   
Then T has a unique fixed point.   
 

Proof.  We shall show that (Tnx) is a Cauchy sequence for each x X and 

X∈

∈

∈
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 put  xn = T
nx  and  En = E( Tnx)  for n N∈ . Without loss of generality we may assume that δ< 2ε. Since T is 

asymptotically regular, then En→0. Hence, there exists an integer N≥1 such that  

     

     En <
γ

εδ

21+
−

    for all  n ≥N.                                                   (2.3)                                  

 
 
 
By induction we shall show that  
 

            d(xn, xm)<
γ

γεδ

21
2

+

+
   for all m,n N∈ ,  with  m , n≥N .                              (2.4)                                                 

Let n ≥ N be fixed, obviously, (2.4) holds for m = n. 
Assuming (2.4) to hold for an integer m ≥ n, we shall prove it for m+1. 
By the triangle inequality, we get that 
 
          d(xn , xm+1) = d( Tnx , Tm+1x ) 
                   
                    ≤  d( Tnx ,  T

n+1x ) + d( Tn+1x ,  T
m+1x ) 

                    
                    = En + d(Txn , Txm)  
           
           d( xn , xm+1 ) ≤ En + d( T xn , T xm ) .                                          (2.5) 

 

We claim that  
   

  d( Txn ,T xm ) ≤ ε .                                                                                                (2.6)                                  
 
If  d( T xn ,T xm ) not less than or equal to ε , then  
 
    ε< d ( Txn , Txm ) ≤ φ(D( xn , xm ))<δ. 
 
⇒  ε< D( xn , xm ) ≤ ε , which is a contradiction . 
     
Therefore,   d ( Txn , Txm ) ≤ ε.  
Hence, the claim.                    
From (2.5), (2.6) and (2.4), it follows that  
 

d(xn , xm+1) ≤ En  + ε < 
γ

εδ

21+
−

+ ε =
γ

γεδ

21
2

+

+
 for all  m, n ≥N . 

 

d(xn , xm+1) <
γ

γεδ

21
2

+

+
   for all  m, n ≥N .  

Therefore, (2.4) is proved. 
Since  δ<2ε , then (2.4) implies that d( xn , xm )<2ε  for all integers  m  and  n with  m≥n≥N.  
Therefore, {xn } is a Cauchy sequence.  
Since X is a complete cone metric space, then {xn } converges to a point z∈X. If T is continuous, then z is a fixed 
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point of T.  
Uniqueness, let w be another fixed point of T then, (A1) it follows that  
 

              d(z,w) = d(Tz, Tw) ≤φ(D(z,w)) 
                                
                              = φ(d(z,w)+ γ[d(z,Tz)+d(w,Tw)]) 
                                
                              = φ(d(z,w)+ γ[d(z,z)+d(w,w)]) 
                               
                              ≤φ(d(z,w))< d(z,w), a contradiction .  
 

Therefore, T has a unique fixed point. 
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