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Abstract 

In this paper, a new class of A-Stable Implicit Rational Runge-Kutta schemes were developed, analyzed and 

computerized to solve stiff system of ordinary differential equations. The method is motivated by the Implicit 

Conventional Runge – Kutta Schemes and Rational function approximation.  While its development and analyses 

make use of Taylor series expansion (Taylor and Binomial) and Pade’s approximation techniques respectively.  The 

schemes are convergent and A-stable.   
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1. Introduction 

An n
th

 order ordinary differential equation is of the general form 

   oy==′ )y(x  y),f(x,y o     (1.1) 

 where 

yo = (yo, yo2, yo3…yon) 

A differential equations  (1)  whose Jacobian possesses eigen values 

  λj = Uj + iVj,    j = 1(1)n                   (1.2) 

 where  i = 1− , satisfying the following conditions. 

   (a) Ui < < 0,  j = 1(1)n 

     (b) (x)Umin)x(UMax jj >>   

 is Stiff.  In this case condition (a) show that the system is stable while (b) indicates that the system possesses some 

components decay very rapidly. 

The problems associated with numerical solution of stiff ODEs were first recognized by Curtis and Hirschfelder 

(1952).  Other requirement include the necessity for the numerical scheme to be either A-stable, Stiffly stable, A (α)-

stable and A(o) –stable.  These stability criteria require that the numerical schemes must be implicit  Dahlquist 

(1963).  In the present of all these problems, Hong Yuanfu (1982) proposed a more general form of this scheme 

called Explicit Rational R-K scheme.  The general form of the scheme is given by 
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where,  K1 = hf(xn, yn) 
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  Hi = 



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
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nn z ,xhg                  (4) 

  with   ( ) )y (x,x nn,

2

n fZzg nn −=     (5) 

  and    
n

n y
1Z =       (6) 

In his development, aij = 0, bij = 0 for j > i.   He developed families of methods of orders two and three of these 

schemes.  During analysis, he discover that the schemes are A-stable.  This property prompted Okunbor (1985) to 

develop the order four of this methods.  From Okunbor’s work, it is observed that the higher the stage of the method, 

the poorer’s the stability.  Their performance on stiff oscillatory problem is nothing to write home about. 

However, experience with the conventional R-K  have shown that Implicit R – K scheme have  better resolution 

properties than Explicit ones.  This expectation is the chief mover of the present consideration  by Babatola (1999). 

 

2.   The Development of the Proposed Schemes 

An R-stage Implicit Rational R-K scheme is of the form 
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where, 
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and    ( ) )y(x,x nn,

2

n fZzg nn −=   =
2

1

ny
 ),( nn yxf                         

with the constraints     
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==

==
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The parameters Vi, Wi, Ci, di, aij and bij are to be determined from the system of non-linear equation generated by 

adopting the following step; 

(i) Obtained the Taylor series expansion of ,1+ny  Ki’s and Hi’s about point (xn,, yn) for i =1(1)R. 

(ii) Insert the series expansion into  (7). 

(iii) Compare the final expansion with Taylor series expansion of yn+1 about (xn, yn) in the power of h.  

      The number of parameters normally exceeds the number of equations, but these parameters are choosen to 

ensure that (one or more of the following conditions are satisfied).    

1. Adequate order of accuracy of the scheme (King 1966). 

2. Minimum bound of local truncation error (Gill, 1951). 

3. The method has maximum interval of Absolute stability (Blum 1952). 

4. Minimize computer storage facilities. 
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2.1  One Stage Scheme 

The general one-stage Implicit Rational R-K scheme is of the form 
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where, 

 ( )111n11 y  ,cK Kahxhf n ++=  

 ( )111n11 z  ,H Hbhdxhg n ++=      (11) 

 ( ) ),f(xz x n

2

nn nn yZg −=      (12) 

with the constraints 

 c1  = a11 

 d1  = b11        (13) 

Adopting binomial expansion theorem on the RHS of equation (10) and ignoring higher order terms, yields 

 ( )sorder termhigher V 11

2

111 +−+=+ HyKWyy nnn   (14) 

The Taylor series expansion of  yn+1  gives   
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where, 

  Dfn = fx + fnfy 

  D
2
fn  =  fxx + 2fnfxy + 2fnfxy + 

2

nf  fyy 

  D
3
fn = fxxx + 3fnfxxy + 3 

2

nf fxyy +  
3
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Similarly expand K1 about (xn, yn) we have,  

 K1 = hA1 + h
2
B1 + h

3
D1 + 0h

4
     (16) 

where, 

 A1 = fn    B1 = C1Dfn 

 D1 =
2

1C  (Dfnfy+ ½ D
2
fn)      (17) 

In a similar manner, expansion of H1 about (xn, yn) yields 

 H1 = hN1 + h
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Adopting  (16) and (18) in (14), we obtained 
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Comparing the coefficient of the powers of h and 
nh /2

 equations (15) and (20)  and substitute (17) and (19) to get  
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W1 + V1 = 1         (21) 

W1C1 + V1d1 = ½  

With  the constraints (13), we obtained family of one stage scheme of order two. 

 

(i)   W1 =  0,  V1 = 1, c1 = d1 =  ½ , a11 = b11  = ½  

scheme  (10) yields 

  

1n

1n
Hy1

y
+

=+
ny

       (22) 

where H1 = hg (xn + ½ h,  Zn + ½ H1). 

Also with 

(ii) V1 = W1 = ½ ,  c1 = a11 = ¾, d1 = b11 = ¼ . 

The scheme (10) result into 
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where 

  K1 = hf (xn + ¾ h,  yn + ¾ K1)    

  H1 = hf(xn + ¼ h,   zn + ¼ H1)  

Also with 

(iii) W1 =1, V1 = 0,    c1 =d1 = ½ ,  a11 = b11 = - ½ . 

Scheme (10) result into 

 yn+1 = yn + K1 

  where, 

  K1 = hf(xn + ½h,  yn + ½ K1) 

Which coincide with Implicit Euler’s Scheme of order 2. 

 

2.2 Two Stage Schemes 

The general two-stage implicit of Rational Runge-Kutta scheme is of the form 
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Adopting the same procedure as in one-stage scheme, we obtained the following system of equation for family of 

two-stage schemes of order three. 

 

W1 + W2+V1+V2 = 1 

 W1C1 + W2C2+ V1d1+V2d2 = ½  

W1 (a11C1 +a12c2) + W2 (a21c1 + a22c2) + V1 (b11d1 + b12d2) +V2(b21d1 + b22d2)  = 1/6  
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11 dVdVCW =+++ CW       (27) 

with the constraints 

  a11 + a12 = c1 

  a21 + a22 = c2 

  b11 + b12 = d1 

  b21 + b22 = d2       (28) 

Solving these equations (27 & 28) we obtained family of two stage implicit rational R-K schemes of order three. 

 (1)  W1 = W2 = 0, V1 = ¼,  V2 = ¾ , c1 = d1 = a12 = b12 = 1 

                   a11 = b11 = a21 = b21 = 0 

        c2 = d2 = a22 = b22 = 3
1          (29) 
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  where, 

  H1= hg(xn +h,  zn +H2) 

  H2 = hg(xn + 1/3h,  zn + 1/3H2) 

 

(2)  Also by setting the values of the parameters we obtain 

  V1 = W1 = 0,  V2 = W2 = ½ , c1 =d1 = 0, c2 = ½ + 6
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 equation (25) yields 
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 Imposing condition   Tn+1 = 0(h
5
) 

We obtain the following equations of two stage family of order four. 

V1+V2+W1+W2 = 1 

W1c1+W2c2+V1d1+V2d2 = ½  
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With the equations (28)and  (32). Possible family of two-stage schemes of order four are obtained by setting 

  (1)  V1 = V2 = 0,  W1 = W2 = ½ , d1=c1 = ½ + 6
3   

        4
1

111122222
1

22 a ,
6

3
d ====−== abbc  

        a
6

3
b a ,

6

3
 4

1
21214

1
1212 −==+== ba   

These into equation (25) yields 
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Which incidentally coincide with 2-stage Implicit R-K scheme of order four.  Proposed by Harmmer and Holling 

Worth (1955). 

(ii)  W1 = W2 = 0, V1 = V2 = ½,  c2 = d2 = ½ - 6
3  

        a11 = b11 = a22 = b22 = ¼ ,  a12 = b12 = ¼ 

Equation (25) yields 
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Next section analyses the error, consistency, convergence and stability property of these schemes. 

 

3.  Error, Convergence and Stability Properties 

In this section, we shall consider the error, convergence, consistency and stability properties of these schemes. 

 

3.1  Error Analysis 

Error of numerical approximation techniques for Stiff ODEs arise from different causes that can be majorly 

classified into discretization, truncation, and round –off error respectively. 

Round-off error is an error introduced as a results of the computing device.  Mathematically it can be expressed as 

   111 +++ −= nnn PyY      (35) 

where yn+1 is the expected solution of the difference equation (10), while Pn+1 is the computer output at (n+1)
th
 

iteration. 

Truncation error on the other hand is the error introduced as a result of ignoring some of the higher terms of the 

power series (Taylor and Binomial series expansion) during the development of the new schemes. 

Discretization error en+1 associated with the formular (10) is the difference between the exact solution y(xn+1)  and the 

numerical solution yn+1 generated by (10) at point xn+1.  That is 

   en+1 = yn+1 – y(xn+1)     (36) 

 

3.2  Consistency Property 

The one-step scheme is said to be consistent if 
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Substituting the expression for Hi and Ki in equation (8) 
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Dividing by h and taking limit as   h →  o 
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This shows that Implicit Rational R-K scheme is consistent.  

 According to Lambert (1963), a consistent one-step method is convergent.  Hence the new scheme is convergent. 

 

3.3. Stability Property 

To show the stability of the scheme, we apply (10) to Dahlquist (1963) stability scalar test initial value problem. 

 oo y)y(x , ==′ yy λ       (44) 

For example, the stability scheme (34) with  

 V1 = V2 = ½,  W1 = W2 = 0,  c1 = d1 = ½ - 6
3 , 

            c2 = d2 = ½ + 6
3 ,  b11 = b22 = a11 = a22 = ¼ . 

 b12 = a12 = ¼ + 6
3 ,  a21 = b21 = ¼ - 6

3   
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This scheme is A-stable with ( -∞, 0) as interval of Absolute stability.  Since  

  1 )(lim <
∞→

Zit
Z
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3.4 Numerical Computations and Results 

In order to access the performance of the schemes the following sample problem were solved. 

 

Problem 1: 

Consider    the Stiff systems of ODEs 

  Y′    =AY      (47)   Where A   

=   
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with initial condition  y(o) = (2, 1, 2), 0≤ x ≤ 1 

Using step size h = 0.01, the method is implemented and the results are shown in Table (1). 

   

Problem 2: 

The second sample problem considered is the Stiff system of initial values problem in ODEs. 
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With initial condition  y(o)  = [ ]1111 , 

The results are shown in Table 2. 
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4. Conclusion 

Implicit Rational Runge-Kutta method for the integration of Stiff system of ODEs has been proposed.  Theoretically 

it has been showed that the scheme is consistent, convergent and A – stable.  Numerical results showed that the 

scheme is accurate and effective.  Also from the above results the error is very minimal and this implies that the 

scheme is very accurate. 
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TABLE 1:  NUMERICAL RESULT OF A - STABLE  IMPLICIT RATIONAL RUNGE-KUTTA SCHEMES FOR 

SOLVING STIFF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 

  Y1 Y2 Y3 

Xn 
CONTROL STEP 

SIZE h 
E1 E2 E3 

  .1980099667D+01 .9706425830D+00 .8869204674D+00 

.3000000000D – 01 .3000000000D – 01 .8291942688D-09 .3281419103D-07 .8161313500D-05 

  .1885147337D+01 .8379203859D+00 .4917945068D+00 

.1774236000D+00 .1771470000D-01 .9577894033D-01 .3422855333D-08 .5357828618D-06 

  .1791235536D+01 .7191953586D+00 .2663621637D+00 

.3307246652D+00 .1046033532D-01 .11050933794D-10 .35587255336D-09 .3474808041D-07 

  .1694213422D+01 6088845946D+00 .1365392880D+00 

.4977858155D+00 .6176733963D-02 .1269873096D-11 .3655098446D-10 .2146555961D-08 

  .1556933815D+01 .4729421983D+00 .4953161076D-01 

.7512863895D+00 .3647299638D-01 .1425978891D-08 .3505060447D-07 .1010194837D-05 

  .1435390902D+01 .3709037123D+00 .1867601194D-01 

.9951298893D+00 .2153693963D-01 .1594313570D-09 .3316564301D-08 .4481540687D-07 

 

 

TABLE 2: NUMERICAL RESULT OF A-STABLE  IMPLICIT RATIONAL RUNGE-KUTTA SCHEMES FOR 

SOLVING STIFF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS 

  Y1 Y2 Y3 Y4 

Xn 
CONTROL STEP 

SIZE h 
E1 E2 E3 E4 

  .9950124792D+00 .9900498337D+00 .9139311928+00 .9048374306D+00 

.3000000000D – 01 .3000000000D – 01 .2597677629D-10 .4145971344D-09 .2617874150D-05 .3971726602D-05 

  .9708623323D+00 .9425736684D+00 .5872698932D+00 .5535451450D+00 

.1774236000D+00 .1771470000D-01 .3078315380D-11 .4788947017D-10 .2005591107D-06 .2890213078D-06 

  .9402798026D+00 .8841261072D+00 .3300866691D+00 .2918382654D+00 

.3694667141D+00 .1046033532D-01 .3621547506D-12 .5454525720D-11 .1355160001D-07 .1829417523D-07 

  .9144602205D+00 .8362374949D+00 .1999708940D+00 .1672231757D+00 

.5365278644D+00 .6176733963D-02 .4285460875D+13 .6268319197D-12 .9915873955D-09 .1265158728D-08 

  .8693495443D+00 .7557686301D+00 .8044517344D-01 .6079796167D-01 

.8400599835D+00 .3647299638D-01 .4961209221D-10 .6922001861D-09 .5087490103D-06 .5899525189D-06 
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