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Abstract 

   The study of maps which act on a finite set of objects is of special importance in modern algebra. The main 

objective of this paper is to compare between the structures of groups that yield from the definition of composite 

functions in group theory (permutation groups) and those in calculus.  

   In calculus there no detailed study for groups, but we took the definition of composite functions as a binary 

operation to define a group. This study can be considered as an essential model for isomorphic groups.  

 

1. Introduction 

 Definition 1:  

To define maps of Sets: Let f: G  G be a map of G into itself such that G: , , , , … be a finite or infinite set 

of objects, then f is a rule whereby to each G there is assigned a unique object G, called the image of  

under f. We can write  = f(). Two maps f and g are equal if and only if f() = g() G. The composite of f 

and g is the map fg defined by fg() = g(f()) which means that fg is obtained by letting f be followed by g. 

Thus if f() = , then fg() = g(). But the definition in calculus is:  fog() = f(g()) [5], [6]. 

   Now let f, g and h be three maps of G into itself. We can show that the composition of these maps always 

obeys the associative law. Let G and put f() =  , g() =  , h() = .  

Then  

f(gh)() = gh(f()) = gh() = h(g()) = h() =   

and (fg)h() = (g(f())h = (g())h = h(g()) = h() = . 

 

Since  was an arbitrary element of G, it follows that 

             f(gh) = (fg)h                                                      (1) 
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Similarly:    fo(goh) = (fog)oh                                                (2) 

    The study of maps which act on a finite set G of objects is of especial importance. For simplicity the objects 

of G are often denoted by the integers 1, 2, 3,…, n [1], [4].  

Definition 2:  A map of G ( of order n) onto itself is called a permutation of degree n.  

It is explicitly described by the symbol: 
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Where aj = j is the image of j under  . Thus the second row in (3) is a rearrangement of the integers 1, 2, …, n. 

From elementary algebra it is known that there are n such rearrangements. Hence there n permutations of 

degree n. The complete set of permutations will be denoted by sn. In fact the different rearrangements of the 

columns in (3) give the same permutations for example; 
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If we have another permutation p such that 
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Then from (3) and (4) , 
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Definition3: Let G and G
/
 be two (finite or infinite) groups, where the identity elements of G and G

/
 are denoted 

by e and e
/
 respectively. Suppose there exists a one-to-one correspondence: G G

/
 between the elements of G 

and G
/
 , that is to each x in G there is a unique image y in G

/
 and to each image y in G

/
 there is a unique element x 

in G. In other words the elements G and G
/ 
have been paired off in such a way that each element of G and G

/
 

occurs in precisely one pair. Then we say G and G
/ 
are isomorphic [3].  

Example1: Let z range over the extended z-plane, that is over all complex numbers and the point at infinity. The 
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following six maps transform the extended z-plane into itself and therefore constitute an associative system 

under composition.  
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The complete multiplication table of the system is as follows: 

  

 

 

 Table 1: Multiplication of Composite Functions in z-plane. 

If  654321 ,,,,, ffffff , then the system (  , o ) satisfied all the group postulates: 

( I ) Closed ( II ) Associative ( III ) There exists an identity element (f1) 

( IV ) The inverse element exists for every element as: 

 

f f1 f2 f3 f4 f5 f6 

f
-1 

f1 f3 f2 f4 f5 f6 

 

We can note that, table 1 is not symmetric about the main diagonal, then the system (  , o ) represents (non 

Abelian) group [3]. 
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2. Results and Discussion 

     

Now the following examples for investigating the composition of permutation groups according to the 

definitions in  group theory (modern algebra) and the definitions in calculus correspondingly.  

Example 2:  Let S = {1, 2} and S2 = { 0 , 1} such that:  



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













12
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21

21
10  . Then 

multiplication tables are: 

        

  

 

(i) Table 2: Multiplication Table of (S2 ,  ) in group theory. 

The system (S2 ,  ) satisfied all the group postulates, then represents permutation Abelian group.  

 

 

 

 

(ii) Table 3: Multiplication Table of (S2 , o) in calculus. 

The system (S2 , o ) satisfied all the group postulates , then represents the same permutation Abelian group.  

Example 3: Let S = {1, 2, 3} and S3 = {0, 1, 2, 3, 4, 5}  such that: 
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 0   1 
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1 

0   1 

1   0 

 0   1 
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1   0 
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Then multiplication tables are: 

 

 0   1   2   3   4   5 

0 

1 

2 

3 

4 

5 

0   1   2   3   4   5 

1   0   3   2   5   4 

2   4   0   5   1   3 

3   5   1   4   0   2 

4   2   5   0   3   1 

5   3   4   1   2   0 

 

(i) Table 3: Multiplication Table of (S3 ,  ) in group theory. 

The system (S3 ,  ) satisfied all the group postulates, then represents (non Abelian) group of center 0 

(commutative elements).   

 0   1   2   3   4   5 

0 

1 

2 

3 

4 

5 

0   1   2   3   4   5 

1   0   4   5   2   3 

2   3   0   1   5   4 

3   2   5   4   0   1 

4   5   1   0   3   2 

5   4   3   2   1   0 

 

(ii) Table 4: Multiplication Table of (S3 , o ) by the definition in calculus. 

The system (S3 , o ) satisfied all the group postulates, then represents different (non Abelian) group of center 0.   

 

Example 4: Let S = {1, 2, 3, 4} and S4 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 

19, 20, 21, 22, 23}  such that: 
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For example (by definition in group theory) 5  17 =12 , but  5 o 17 = 15 (by definition in calculus). 

Obviously the systems (S4 ,  ) and (S4 , o ) are also represent two different (non Abelian) groups of centers 0 

with respect to group theory and calculus definitions. 

 

3. Conclusion 

We can conclude our discussion in three cases:  

(a) For S1 there is no rearrangement. 

(b) For S2 the both definitions of composition in group theory and in calculus yielded the same Abelian groups of 

order two. 

(c) Lastly,  Sn where n  2 , the definitions of composition in group theory and in calculus, yielded different non 

Abelian groups but are isomorphic groups.   
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