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Abstract

Use of penalty functions in calibration estimators has severally been considered by this author. A calibration
problem is transformed to an unconstrained optimization problem by constructing a penalty function. To
guarantee convergence in the minimization of the penalty function by the Newton method, the order of the
penalty function is usually restricted to 2. In this paper, we consider use of more flexible higher order penalty
functions by applying the variable metric method. We report on the results of the resulting population total
estimator for a cubic penalty function.
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1. Introduction

Suppose U = {1,2,..., N } is the set of labels for the finite population. Let (yi , Xi)be the respective values
of the study variable Y and the auxiliary variable X attached to the i"unit. Let s— {1,2,..., n}be the set of
sampled units under a general sampling design p, and let 7z; = p(i € S) be the first order inclusion
probabilities and d, = ~* . Wu and Sitter [9] considered the conventional calibration estimator
AR Z:‘:lwi y, for the population total where WS are design weights obtained by

minimizing the chi-square distance measure below

_ (W| _di)2 1
CD—; a;d; =

Subject to the Deville and Sarnda I[2] constraint below
n

D wx = ZN:xi 2

and yet another constraint

>w =N 3)
Kihara [4] considered the above calibration problem as a nonlinear optimization problem which he solved by
converting it into unconstrained optimization problem by use of penalty function method. He obtained the
penalty function below.

n (W _ d )2 n N a n q
¢ (W, 1, x)=> 1 +r{2wixi—2xi} +rk[ZWi—N}

it Q;d; -1 i-1 i-1 4)
Frank and Jorge [3] have discussed flexible ways of choosing the penalty. Also, the rationale of the penalty terms
is described by Ozgur [6].

In particular, Kihara [4] considered a quadratic penalty function where q =2 . He used the Newton method of
unconstrained optimization to obtain the optimal weights W,S. While quite efficient for penalty functions of
degree q = 2, the Newton method does not guarantee convergence of the penalty functions of higher
degrees > 2 as illustrated in Rao[7]. In fact the Newton method may lead to divergence of the penalty
function. It is with this in mind that Kihara [4] restricted the penalty function to degreesq = 2. In this paper,
we look at the variable metric method as a way of handling higher order degree penalty functions.

2. Higher order penalty functions
In calculus, to obtain W; that minimizes (1) we differentiate (4) partially with respect to W, to obtain
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, 2(w, —d, n N o~ n at
¢(Wi,l’k,x):(q'd')+quxi[ wjxj—ZxJ} +qu{zllwi—N}
J i=

iYi j=1 j=1

Equating (5) to zero and solving for W; would give optimal W; and the estimator of population total becomes

Ve = iwi Yi
©

Cleary, it’s quite tedious to obtain W, from equation (5) for high degreesq . With the penalty approach, to
obtain the weightsW,, (i =1,2,...,n), we solve the penalty function (4) as unconstrained minimization
problem in which case we only require to start with some initial guess for w; and I, and then iteratively improve
on the initial values until we have optimal values. Since the constraints (2) and (3) are equality constraints, we
need not start with a feasible guess for w; . In this paper, we adopt the variable metric method discussed in Rao
[7] to estimation problems to allow flexibility in the choice of the degree of the penalty function.

Let w = {w,,w,,..., w, } be the set of the weights. We need to obtain v~ such that
W) =[# (W, . ), (W, 0] =0 )
We first start with some initial penalty I, some initial approximation W,, of W” and a nbyn positive

definite symmetric matrix H,; which may be taken as the identity matrix | . Compute ¢'(W,;) at the point
W,; and set

Z; = _H1i¢,(\N1i) (8)
Find the optimal step length i in the direction Zui by differentiating PWy + A +Z5) with respect to lu,
equating the derivative to zero and solving for Ay . Now, we set

Wiy =Wy + 42y 9)
and test for the optlmalw of Wl(i+1). If optimal, it becomes the estimator for W at the penalty value 1. If not
optimal, we adjust the matrix as

Zy ZT HyiQy ) (HyQy '
My My« 221 (HQ)(HQ,)
le Qy Qu HyQy
where Qy = ¢!(\Nl(i+l)) —¢'(\Wy)

We repeat the process by adjusting equation (8) accordingly. The process is repeated until an optimal estimator
say W.for W at that particular penalty value " is obtained. We proceed further to obtain a sequence of
penalty values 2,2 I»- and obtain a corresponding sequence of estimators

(10)

W, Wopeos Wi until W =W to a given accuracy level. The Ipenalty values are set such that the starting
pomt rr>0 and rk+l = cr, , where C > 1 We can now generalize our estimator for the population total as
n

= Zwi Yi =W~ Ys (1)

where Y." = (y,, Va,...,Y, ) isthe sample from the population of 'y

3. Nonparametric Model Estimation
Considered is a super population regression model which is denoted by & and given as
Vi = u(X)+& (12)

where ,,(x,) is a smooth function. Given N pair of observations (x,,y,),(X,,V,). (X,,y,) from a
population of size N . Let p(x)be the estimator of 4(x) =E.(y/x) - A nonparametric method like local
polynomial or splines may be used for this estimation. In model callbratlon the weights W, 'S may be obtained
by minimizing the distance measure (1) subject to the constraint (3) and the constraint (13) below defined on the
fitted values
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Sowalx) = > a(x)

(13)
We have the penalty function
o (W, e, A1(X)) = Z(VV;") +H (rk){i Wa(x) —Zﬁ(xi)} +H (rk){iwi - N}
i=1 ii i=1 i=1 i=1 (14)

Forq =2, Kihara [5], used Newton method to obtain the design weights. For higher order penalty functions,
the weights W,'S may now be obtamed by the variable metric method described in section (2) above. If we
let the resultmg set of welghts be W = (W, W,,...,w, ), then we have the estimator of the population total as

= Zwi Yi =W,
i=1

4. Results

(15)

We report on the performance of the estimators yt and yn defined in equations (11) and (15) respectively for
cubic penalty functions. That is, for = 3. Using R program, we simulated a population of independent and
identically distributed variable X using uniform (0, 1). Using X as the auxiliary variable we generated the
populations of size 300 for random variable Yy as a linear functiony =2+5X. For each of different
sample sizesn, 5 samples were generated. Our initial penalty constant was set at I, = 0.00010 . The
convergence criteria considered was w, =w, ", 10 six decimal places. The performances of the estimators f/t
and yn were compared to that of the Horvitz

Thompson deS|gn estimator Ve = ; y,d, discussed in Thompson [8]. For the nonparametric population
total estimator ynp , We use local poly flomial of degree 1to fitthe Yy values so that

(X ) SSI S

where, given & = (L0.,..,0)", Y, =(Y,, Y,.....Y,)", @q =@/ h)diag(K((x; =x;)/h)..., K((
bandwidth and X is a matrix “with rows [ (x —x) 206G =x)"], j=12,..
See Breidt and Opsomer[l] for a discussion of local polynomlal

(16)

h is the
Y X!@

)
., then sT— o1 (XTa, X

si Ysi /Nsi s

4.1 Results for Estimator Y,

We let :Zi”:l y, be the actual population total, and Y, — Y, and Y, — VY, be the errors in the
estimation
Table 1: Estimates and the Errors for §, and Y,
sample number | 1 2 3 4 5
sample size n 100 100 100 100 100
y 1384.49498 1384.49498 1384.49498 1384.49498 1384.49498
t
g 1399.01338 1404.88568 1397.04904 | 1322.13453 1331.37077
t
y 1399.26412 1405.27219 1397..28737 1321.30981 1330.55318
ht
. -14.51840 -20.390070 -12.55406 62.36045 53.12421
Y =V
Vi—y -14.76914 -20.77721 -12.79239 63.18517 53.94189
t— Jht

In table (1), the errors in estimation for ¥, are consistently smaller than the errors for Y, .However; the
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From Fig (1), the ratio var(y,)/var(y,,) tends to a constant, which is
Y, has a smaller variance than Y, .

difference in the errors is so small.
less than 1but very close to 1. This indicates that

variance ratio vs sample size
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Fig 1: Variance Ratio var(y,)/var(y,,)
4.2. Results for Nonparametric Estimator f/np
Welet y -y~ and y -y, betheerrorsinthe estimation.
Table 2: Estimates and the errors for 9np and Y,
sample number | 1 2 3 4 5
sample size n 100 100 100 100 100
y 1344.531793 1344531793 | 1344.531793 1344.531793 1344.531793
t
" 1344.875876 | 1342.336025 | 1332.540571 | 1347.019506 | 1347.815665
np
y 1345.813667 | 1340.217041 | 1323.345573 | 1349.288456 | 1350.717785
ht
-0.344083 2.195768 11.991222 -2.487713 -3.283872
Yi— ynp
y—y -1.281874 4.314752 21.186220 -4.756663 -6.185992
t— Jnt

From table (2), both the estimators

)7np and Y,, have small errors in estimation and consistently, 9np has

smaller errors than Y, . This is expected because the data is linear and ¥, is obtained from a linear local
polynomial model. That is, the nonparametric model is correctly specified for the data. From figure (2), as the
sample size increases, the ratio var(y,,)/var(y,,) stabilizes almost to a constant between 0.3 and 0.4, That
is, )7np has a lower variance than Y, as is expected since 9np is correctly specified for the data.
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variance ratio vs sample size
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Figure 2: Variance Ratio var(y,,, )/ var(y,,)

5. Conclusion

We conclude that the estimator ¥, is more accurate than the Horvitz Thompson design estimator Y, since Y,
yields smaller errors in estimation than does Y,,. Also, Y, has lesser variance thany, . Since Y, is
considered to be a very reliable design estimator, we conclude that )7t is also quite reliable.

We conclude that when the nonparametric model is correctly specified for the data, the nonparametric estimator
9np is quite accurate, more than the Hprvitz Trlompson design estimator Y,, . A comparison of the performance
of both population total estimators Y, and Y, when penalty function is cubic and when the function is
quadratic as shown in Kihara[4] and Kihara[5], shows that cubic penalty functions yields more efficient estimators
than quadratic penalty functions.
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