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Abstract 

Use of penalty functions in calibration estimators has severally been considered by this author. A calibration 

problem is transformed to an unconstrained optimization problem by constructing a penalty function. To 

guarantee convergence in the minimization of the penalty function by the Newton method, the order of the 

penalty function is usually restricted to 2. In this paper, we consider use of more flexible higher order penalty 

functions by applying the variable metric method.  We report on the results of the resulting population total 

estimator for a cubic penalty function. 
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1. Introduction 

 Suppose  NU ,...,2,1 is the set of labels for the finite population.  Let ),( ii xy be the respective values 

of the study variable y and the auxiliary variable x  attached to the i
th

 unit.
 

 Let  ns ,...,2,1 be the set of 

sampled units under a general sampling design p , and let )( sipi  be the first order inclusion 

probabilities and 1id  . Wu and Sitter [9] considered the conventional calibration estimator 
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Subject to the Deville and Sarnda l[2] constraint below 
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and yet another constraint  
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Kihara [4] considered the above calibration problem as a nonlinear optimization problem which he solved by 

converting it into unconstrained optimization problem by use of penalty function method. He obtained the 

penalty function below. 
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Frank and Jorge [3] have discussed flexible ways of choosing the penalty. Also, the rationale of the penalty terms 

is described by Ozgur [6]. 

In particular, Kihara [4] considered a quadratic penalty function where 2q  . He used the Newton method of 

unconstrained optimization to obtain the optimal weights swi

'
.  While quite efficient for penalty functions of 

degree 2q , the Newton method does not guarantee convergence of the penalty functions of higher 

degrees 2q  as illustrated in Rao[7]. In fact the Newton method may lead to divergence of the penalty 

function. It is with this in mind that Kihara [4] restricted the penalty function to degrees 2q .  In this paper, 

we look at the variable metric method as a way of handling higher order degree penalty functions.  

 

2. Higher order penalty functions 

In calculus, to obtain iw  that minimizes (1) we differentiate (4) partially with respect to iw  to obtain
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(5)                          

    

         

Equating (5) to zero and solving for iw  would give optimal iw  and the estimator of population total becomes 


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Cleary, it’s quite tedious to obtain iw from equation (5) for high degrees q  . With the penalty approach,  to 

obtain the weights ),...,2,1(, niwi  , we   solve the penalty function (4) as unconstrained minimization 

problem in which case we only require to start with some initial guess for iw and kr and then iteratively improve 

on the initial values until we have optimal values. Since the constraints (2) and (3) are equality constraints, we 

need not start with a feasible guess for iw  . In this paper, we adopt the variable metric method discussed in Rao 

[7] to estimation problems to allow flexibility in the choice of the degree of the penalty function.  

Let  ni wwwW ,...,, 2  be the set of the weights.  We need to obtain *W such that   
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We first start with some initial penalty 1r , some initial approximation  
iW1

 of *W  and a nbyn  positive 

definite symmetric matrix 
iH 1
 which may be taken as the identity matrix I . Compute )( 1iW  at the point 

iW1
 and set 

)( 111 iii WHZ                                  (8) 

Find the optimal step length
*

1i  in the direction iZ1 by differentiating )( 111 iii ZW    with respect to i1 , 

equating the derivative to zero and solving for i1  . Now, we set  

iiii ZWW 1

*
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and test for the optimality of )1(1 iW . If optimal, it becomes the estimator for 
*W at the penalty value 1r . If not 

optimal, we adjust the H matrix as 
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where )()( 1)1(11 iii WWQ     

We repeat the process by adjusting equation (8) accordingly.  The process is repeated until an optimal estimator 

say 1W for 
*W at that particular penalty value 1r  is obtained. We proceed further to obtain a sequence of 

penalty values ,...,...,, 22 krrr  and obtain a corresponding sequence of estimators 

 ,...,...,, 21 kWWW until 1 kk WW  to a given accuracy level. The penalty values are set such that the starting 

point 01 r  and kk crr 1 , where 1c . We can now generalize our estimator for the population total as 
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where  n

T

s yyyY ,...,, 21  is the sample from the population of y  

3. Nonparametric Model Estimation 

Considered is a super population regression model which is denoted by  and given as 

  )( ii xy                              (12) 

 

where )( ix  is a smooth function. Given n  pair of observations ),(),...,,(),,( 2211 nn yxyxyx  from a 

population of size N .  Let )(ˆ
ix be the estimator of )/()( xyExi   . A nonparametric method like local 

polynomial or splines may be used for this estimation. In model calibration, the weights swi ' may be obtained 

by minimizing the distance measure (1) subject to the constraint (3) and the constraint (13) below defined on the 

fitted values 
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We have the penalty function   
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For 2q , Kihara [5], used Newton method to obtain the design weights.  For higher order penalty functions, 

the weights swi '  may now be obtained by the variable metric method described in section (2) above.  If we 

let the resulting set of weights be ),...,,( 21

*

n

T

np wwwW  , then we have the estimator of the population total as 
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4. Results   

We report on the performance of the estimators tŷ  and 
npŷ  defined in equations (11) and (15) respectively for 

cubic penalty functions. That is, for 3q . Using R program, we simulated a population of independent and 

identically distributed variable x  using uniform (0, 1).  Using x  as the auxiliary variable we generated the 

populations of size 300 for random variable y  as   a linear function xy 52 .  For each of different 

sample sizes n , 5 samples were generated.  Our initial penalty constant was set at 00010.01 r . The 

convergence criteria considered was *

1

*

 kk WW to six decimal places.  The performances of the estimators tŷ  

and 
npŷ  were compared to that of the Horvitz  

Thompson design estimator  


n

i iiht dyy
1

 discussed in Thompson [8].  For the nonparametric population 

total estimator
npŷ , we use local polynomial of degree 1to fit the y  values so that 
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See Breidt and Opsomer[1] for a discussion of local polynomial.   

 

4.1 Results for Estimator tŷ  

 

We let  


N

i it yy
1

 be the actual population total, and  tt yy ˆ  and htt yy   be the errors in the 

estimation 

  Table 1:  Estimates and the Errors for tŷ  and hty  

sample number 1 2 3 4 5 

sample size n 100 100 100 100 100 

ty  
1384.49498  1384.49498  1384.49498  1384.49498  1384.49498  

tŷ  
1399.01338   1404.88568   1397.04904  1322.13453  1331.37077 

hty  
1399.26412   1405.27219   1397..28737   1321.30981  1330.55318 

tt yy ˆ  
-14.51840   -20.390070   -12.55406    62.36045    53.12421 

htt yy   
-14.76914   -20.77721   -12.79239    63.18517    53.94189 

In table (1), the errors in estimation for tŷ  are consistently smaller than the errors for hty .However; the 
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difference in the errors is so small.  From Fig (1), the ratio )var(/)ˆvar( htt yy  tends to a constant, which is 

less than 1but very close to 1. This indicates that  tŷ  has a smaller variance than hty . 

 

Fig 1: Variance Ratio )var(/)ˆvar( htt yy  

4.2. Results for Nonparametric Estimator
npŷ  

 

We let 
npt yy ˆ  and 

htt yy   be the errors in the estimation.   

 

Table 2: Estimates and the errors for
npŷ  and hty  

sample number 1  2 3 4 5 

sample size n 100 100 100 100 100 

ty  
1344.531793 1344.531793 1344.531793 1344.531793 1344.531793 

npŷ  
1344.875876  1342.336025  1332.540571 1347.019506 1347.815665 

hty  
1345.813667  1340.217041 1323.345573 1349.288456 1350.717785 

npt yy   
-0.344083  2.195768  11.991222  -2.487713  -3.283872 

htt yy   
-1.281874 4.314752  21.186220   -4.756663   -6.185992 

From table (2), both the estimators   
npŷ  and hty  have small errors in estimation and consistently, 

npŷ  has 

smaller errors than hty  . This is expected because the data is linear and 
npŷ is obtained from a linear local 

polynomial model. That is, the nonparametric model is correctly specified for the data. From figure (2), as the 

sample size increases, the ratio )var(/)ˆvar( htnp yy  stabilizes almost to a constant between 0.3 and 0.4, That 

is, npŷ  has a lower variance than hty  as is expected since npŷ is correctly specified for the data.   
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Figure 2: Variance Ratio )var(/)ˆvar( htnp yy  

5. Conclusion 

We conclude that the estimator tŷ is more accurate than the Horvitz Thompson design estimator hty  since tŷ  

yields smaller errors in estimation than does hty .  Also, tŷ  has lesser variance than hty .  Since hty is 

considered to be a very reliable design estimator, we conclude that tŷ is also quite reliable.  

 We conclude that when the nonparametric model is correctly specified for the data, the nonparametric estimator 

npŷ  is quite accurate, more than the Horvitz Thompson design estimator hty . A comparison of the performance 

of both population total estimators tŷ  and 
npŷ  when penalty function is cubic  and when the function is 

quadratic as shown in Kihara[4] and Kihara[5], shows that cubic penalty functions yields more efficient estimators 

than quadratic penalty functions.  
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