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Abstract 

Automatic Teller Machine (ATM) is meant to solve a lot of banking services in today technological world. But 

the problems its meant to solve in most cases is impeded with a lot of bottlenecks such as network failure, in 

sufficient funds and long delay in loading the ATM with cash. Meanwhile banking system service is known with 

First-Come-First-Serve (FCFS) discipline known as queue. Effective queue utilization is based on how efficient 

is the system in terms of service rate to the number of arrivals per time. The current developments in Rufus Giwa 

Polytechnic as our case study has also witness deployment of some ATMs within the school. But the incessant 

and unending long queues being experienced in the ATM point is a matter of serious concern. Dataset of queue 

records were collected and analyzed. The results show that the available ATM points (2 points) were overloaded, 

service utilization from each service point was above the threshold, and cases of long waiting time were noticed. 

While experimenting with R language the mean arrival rate and mean service rate for more than two servers a 

better performance in the system was observed. To a large extent better service delivery is achievable with 4 to 5 

ATM service points with a trade-off of likely idle time to be experience while the customers (most students are 

on holidays). 

Keywords: Automatic Teller Machine (ATM), First-Come-First-Serve (FCFS), Queue, Service utilization, 

dataset. 

 

1. Introduction 

One of the indicators of development in Information Technology both in the Banking sector and business world 

is the Automatic Teller Machine (ATM). It is meant to offer a range of services to people whether at the on-site 

of such machine or any Point-of-Sale (POS). Two types of ATMs had been an issue of concern; one of which is 

the branch ATM, the other being the out-of-branch ATM (Vasumathi and Dhanavanthan, 2010). The effort, be it 

any type deployed, is to maximize profit, reduce cost and satisfy customers optimally in the most generally 

acceptable international standard and practices (Bakari, Chamalwa and Baba, 2014). Meeting these needs on the 

other hand requires that services are rendered to customer without much delay. But one thing remain pertinent in 

the developing countries like Nigeria where ATMs are restricted to the banking vicinity; queue.   

Queue, known as a waiting line is a general and practicable occurrence of everyday life. They are formed when 

customers (human or things) demanding service have to wait in that their number exceeds the number of servers 

available; or the facility does not work efficiently or takes more than the time prescribed to service a customer. 

Some customers wait when the total number of customers requiring service exceeds the number of service 

facilities, some service facilities stand idle when the total number of service facilities exceeds the number of 

customers requiring service (Sharma, 2007; Bakari et al, 2010). According to Taha, (2003) queue is “defined as 

simply a waiting line”, while Hiray, (2008) puts it in similar way as a waiting line by two important elements: 

the population source of customer from which they can draw and the service system. The population of customer 

could be finite or infinite.  

Some estimates state that Americans spend 37 billion hours per year waiting in lines. Whether it is waiting in 

line at a grocery store to buy items or checking out at the cash registers, waiting in line at the bank for a teller, or 

waiting at an amusement park to go on the newest ride, we spend a lot of time waiting. We wait in lines at the 

movies, campus dining rooms, the registrar’s office for class registration, at the Division of Motor Vehicles, and 

even at the end of the school term to sell books. A waiting line system (or queueing system) is defined by two 

elements: the population source of its customers and the process or service system itself. Examples of objects 

that must wait in lines include a machine waiting for repair, a customer order waiting to be processed, 
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subassemblies in a manufacturing plant (that is, work-in process inventory), electronic messages on the internet, 

and ships or railcars waiting for unloading. In a waiting line system, managers must decide what level of service 

to offer. A low level of service may be inexpensive, at least in the short run, but may incur high costs of 

customer dissatisfaction, such as lost future business and actual processing costs of complaints. A high level of 

service will cost more to provide and will result in lower dissatisfaction costs. Because of this trade-off, 

management must consider what the optimal level of service to provide is (Prenhall, 2014). 

Waiting line management has the greatest dilemma for managers seeking to improve on the investment of their 

operation; as customers do not tolerate waiting intensely. Whenever customer feels that he/she has waited too 

long at a station for a service, they would either opt out prematurely or may not come back to the station next 

time when needed a service. This would of course reduce customer demand and in the long run reduce revenue 

and profit. Moreover, longer waiting time might increase cost because it equals to more space or facilities, which 

means additional cost on the management (Anderson, 2007).  

The queueing theory as a mathematical method of analyzing the congestions and delays of waiting in line is 

therefore adopted in solving waiting line problem (Investopedia, 2014). Queueing theory examines every 

component of waiting in line to be served, including the arrival process, service process, number of servers, 

number of system places and the number of "customers" (which might be people, data packets, cars, etc.). 

Taking a critical look into recent developments in Rufus Giwa Poytechnic, Owo, one will agree that there have 

been a massive increase in infrastructural development ranging from opening of new sites for construction, 

lecture halls and offices, diverse renovations to establishment of new faculties to mention but a few. Arising 

from this is a growing population of 14,000+ estimate. Banking sectors are also not left out in the course of this 

development because of the essential services they render. Attention is drawn to the growing number of populace 

within the community both students and staff as a direct reflection of the developments. This teaming populace 

is expected to be rendered some services by the Institution. In order to remove bottlenecks known with manual 

processing systems technological innovations in Banking system are therefore deployed to alleviate these 

problems, in which ATM has been found practicable. Host community often take a solace by visiting the ATMs.  

Drawing from the research carried out by Bakari et al (2005) on queueing process and its application to customer 

service delivery (a case study of Fidelity Bank Plc, Maiduguri). Observation method was adopted as their 

primarily method of data collection over a period of 10 working days. This we felt might not be provable enough to 

justify the correctness of the developed queue model for implementation. We, therefore rely on site data collection 

over a sample space at least 3000 datasets for a period of days in generating our queue data for modeling. 

Hence, a conscious effort was taken in providing workable queue model for selected ATMs (Skye Bank and 

Zenith ATMs) on campus to alleviate the present situation. This will in turn ensure the delivery of maximum 

profit, cost reduction and specifically optimal customers’ satisfaction putting into consideration the volatility of 

the operating environment (Augustine, 2013). 

 

2. Aim and Objectives of the Study 

The major focus of this research work was to provide the management of tertiary institution (Rufus Giwa 

Polytechnic as a pilot) and the banking sector at large with measures, standard and ideal practices for the 

deployment of ATMs into campuses. This in reflection will amount to effective and efficient delivery of services 

that will bring serenity to the operating environment, thereby ensuring compliance with the current 

developments. 

Specific objectives include: 

1) to study and identify the operating scenario of the selected ATM within a busy and tenable operating 

hours. 

2) to model from the collected data using an appropriate Queue model; 

 

3. Queueing Theory 

Anyone who goes shopping or to a movie experiences the inconvenience of waiting in line. Not only do people 

spend time waiting in lines, but parts and products queue up prior to a manufacturing operation and wait to be 

worked on, machinery waits in line to be serviced or repaired, trucks line up to be loaded or unloaded at a shipping 

terminal. Waiting takes place in virtually every productive process or service. Since the time spent by people and 
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things waiting in line is a valuable resource, the reduction of waiting time is an important aspect of operations 

management. 

Waiting lines are analyzed with a set of mathematical formulae which comprise a field of study called queueing 

theory which was based on the origin work of A.K Erlang. Different queueing models and mathematical formulas 

exist to deal with different types of waiting line systems (Prenhall, 2014). A queueing process therefore is a 

process in which customers arrive at some designated place where a service is being rendered. It assumed that the 

time between arrivals and the time spent in providing the service for a given customer follows a probabilistic laws 

(Raluca, Devon, and Paul, 2005). 

 

4. The Analysis of Waiting Line 

Waiting lines form because people or things arrive at the servicing function, or server, faster than they can be 

served. This does not mean that the service operation is understaffed or does not have the capacity to handle the 

influx of customers. Most businesses and organizations have sufficient serving capacity available to handle its 

customers in the long run. Waiting lines result because customers do not arrive at a constant, evenly paced rate, 

nor are they all served in an equal amount of time. Customers arrive at random times, and the time required to serve 

each individually is not the same. A waiting line is continually increasing and decreasing in length (and is 

sometimes empty) and in the long run approaches an average rate of customer arrivals and an average time to serve 

the customer.  

4.1 Elements of a Waiting Line 

The basic elements of a waiting line, or queue, are arrivals, servers, and the waiting line. The relationship between 

these elements is shown in Figure 1, for the simplest type of waiting line system, a single server with a single 

queue. This is commonly referred to as a single-channel queueing system. Other waiting line components are 

briefly defined below. 

a. The Calling Population: This is the source of the customers to the queueing system, and it can be 

either infinite or finite. An infinite calling population assumes such a large number of potential customers 

that it is always possible for one more customer to arrive to be served 

b. The Arrival Rate: This means the rate at which customers arrive at the service facility during a specified 

period of time. This rate can be estimated from empirical data derived from studying the system or a 

similar system, or it can be an average of these empirical data. We further assume that arrivals at a service 

facility conform to some probability distribution. Arrivals could be described by many distributions, but it 

has been determined (through years of research and the practical experience of people in the field of 

queueing) that the number of arrivals per unit of time at a service facility can frequently be defined by 

a Poisson distribution.  

c. Service Times: The queueing theory arrivals are described in terms of a rate and service in terms 

of time. Service times in a queueing process may also be any one of a large number of different 

probability distributions. The distribution most commonly assumed for service times is the negative 

exponential distribution. Although this probability distribution is for service times, service must be 

expressed as a rate to be compatible with the arrival rate. 

d. Queue Discipline and Length: The queue discipline is the order in which waiting customers are served. 

The most common type of queue discipline is first come, first served-(FCFS or FIFO). Other possibilities 

are last in, first out (LIFO), random (Service in Random Order (SIRO) or with Priority. Often customers 

are scheduled for service according to a predetermined appointment, such as patients at a dentist's office 

or diners at a restaurant where reservations are required. These customers are taken according to a 

prearranged schedule regardless of when they arrive at the facility. Queues can be of an infinite or finite 

size or length. An infinite queue can be of any size with no upper limit and is the most common queue 

structure. For example, it is assumed that the waiting line at an ATM could be as long as possible, if 

necessary. A finite queue is limited in size. 

e. Service Mechanism: Waiting line processes are generally categorized into four basic structures, according 

to the nature of the service facilities: single-channel-single-phase; single-channel-multiple-phase; 

multiple-channel-single-phase; and multiple-channel-multiple-phase processes. The number 

of channels in a queueing process is the number of parallel servers for servicing arriving customers. The 

number of phases, on the other hand, denotes the number of sequential servers each customer must go 

through to complete service. An example of a single-channel-single-phase queueing operation is a post 
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office with only one postal clerk waiting on a single line of customers. A post office with several postal 

clerks waiting on a single line of customers is an example of a multiple-channel-single-phase operation. 

f. Operating Characteristics: The mathematics used in queueing theory do not provide an optimal, or 

"best," solution. Instead they generate measures referred to as operating characteristics that describe the 

performance of the queueing system and that management uses to evaluate the system and make 

decisions. It is assumed these operating characteristics will approach constant, average values after the 

system has been in operation for a long time, which is referred to as a steady state.   

g. Kendall-Lee Notation: Kendall in 1953 and lee in 1966 came-up with a much simpler notation that 

describes the characteristics of a queue termed Kendall-Lee notation. Let us denote the system by 

A / B / m / K / n / D; 

  Where 

A: distribution function of the interarrival times, 

B: distribution function of the service times, 

m: number of servers, 

K: capacity of the system, the maximum number of customers in the system including the one 

being serviced, 

n: population size, number of sources of customers, 

D: service discipline. Exponentially distributed random variables are notated by M, meaning 

Markovain or memoryless. 

h. Little’s Queueing Formula: It is pertinent to determine the various waiting times and queue size for 

particular components of the system in order to make judgment about how to run the system. Suppose L 

denotes the average number of customers in the queue at any given time, assuming that the steady-state 

has reached. We can break that into Lq; average number of customers waiting in the queue and Ls; 

average number of customers in the service; and since the customers in the system can only either be in 

the queue or in service, this implies that: L=Lq+Ls. Moreover, we can say W denotes the average time a 

customer spends in the queueing system. Wq is the average time spends in the queue; while Ws is the 

average time spends in the service. Therefore, W=Wq+Ws. Let  denotes the arrival rate into the system, 

meaning thereby, the number of customers arriving the system per unit time, thus, 

L=W, Lq=Ws , Ls=Wq 

           (1) 

5. Related Work 

Bakari et al (2005) did a research work on queueing process and its application to customer service delivery (a case 

study of Fidelity Bank Plc, Maiduguri). Observation method was primarily their method of data collection over a 

period of 10 working days.  The study reveals that the traffic intensity (ρ) is 0.96, otherwise known as the 

utilization factor is less the one (i.e. ρ<1). It was concluded that the system operates under steady-state condition. 

Thus, the value of the traffic intensity, which is the probability that the system is busy, implies that 96% of the time 

period considered during data collection the system was busy as against 4% idle time. This indicates high 

utilization of the system. 

Another research work carried out by Bhavin and Pravin (2012) shows the arrival rate at a banking time is 𝟏 

customer per minute (cpm) while the service rate is 𝟏.𝟔𝟔 cpm. The average number of customers in the ATM is 

𝟏.𝟓 and the utilization period is 𝟎.𝟔𝟎. Data were sourced from a bank ATM in a city with the adoption of Little’s 

Theorem and M/M/1 queueing model. This means utilization is fairly above average. A simulation model was later 

proposed to confirm their result. 

A research work of Vasumathi. et al (2010) considered a simulation techniques on 3 ATM services of 3 different 

Banks at Vellore Institute of Technology, Chennai. Data were sourced from these banks using observation method 

in a period of 2 months. Their result shows a low service delivery in some area of the campus and suggested a new 

installation despite its cost. 
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6. Materials and Methods 

This research work painstakingly looked at the performance index of the Skye Bank ATMs deployed at Rufus 

Giwa Polytechnic, Owo. The system’s characteristics of interest that will be examined in this research work 

include; number of arrivals (number of customers arriving to the service point at a given time), service time (the 

time it takes for one server to complete customer’s service), the average number of customers in the system, and 

the average time a customer spends in the system. The results of the operating characteristics is used to evaluate the 

performance of the service mechanism and to ascertain whether customers are satisfied with the banks’ services. 

The importance is to deliver quality service from the customers’ perception of bank services. 

Contrary to the methods adopted from research literatures reviewed in sourcing data, a field-work approach was 

adopted. A life data were collected at the ATM point(s) using tally and timing method for a period of days 

amounting to 3000 data set.  

A generalized M/M/c/∞/FIFO model was adopted, where the first M denotes the inter-arrival time, the second M 

denotes the service time with c channels and First-In-First-Out discipline to analyze the data collected to derive the 

queue models and its parameters. Queue modeling program was written in R-language. 

 

7. Assumptions of Queueing Model 

Model as an idealized representation of the real life situation; in order to keep the model as simple as possible 

however, some assumptions need to be made (Hira and Gupta, 2004). The following assumptions is made on the 

System 

1) Poisson arrival (Random arrivals). 

2) Inter-arrival time & Service time follow exponential distribution. 

3) Multiple channel queue. 

4) There is an infinite population from which customers originate. 

5) The queue discipline is First-In- First-Out (FIFO). 

6)  The waiting area for customers is adequate. 

7.1 M/M/c/∞/FIFO model 

Establishing a foundation for this work, M/M/c/∞/FIFO model is analyzed with exponential interarrival times 

with mean 1/λ, exponential service times with mean 1/µ and a single serve.  Customers are served in order of 

arrival.  We require the utilization rate from 

1) Customers in the sojourn time 

2) Customers in the system 

3) Service time in the sojourn time 

4) Service time in the system 

5) Waiting time in the sojourn time 

6) Waiting time in the system 

Thus              Error! Reference source not found.Error! Reference source not 

found. 

as 

       (2) 

8. Results and Discussion 

In queue phenomenon, it is interesting to know that queue metrics for queue performances can be modeled from 

probabilistic (Markovian model) and Simulation (Discrete Event Simulation-DES) frameworks. This research 

employed a probabilistic approach and results were presented. 

The performance metrics as of the queue model were determined using equations (2) given above. Table 1.0 

therefore, shows the summary of the result using data collected for the period. The R script was used to generate 

graphical results presented in Appendix I. 
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From the Table 1.0, there are two notable outburst of utilization rate ρ. > 1 (it exceed 1), which implies that sever 

is over used and may be practicably down for service. It thus also means that the population (customers) in the 

particular day are extremely above the capacity of the server. In Appendix I, we detailed graphical presentation 

for our analysis putting into consideration a 5-server hypothetical model (i.e when the channel nS is 1, 2, 3, 4 or 

5).   

Figure 2 depicts the utilization rate considering server variation on the dataset for the same period. Using a one 

service channel shows an extremely high trends of utilization rate with notable point of the utilization rate 

exceeding normalcy. This same trend is also exhibited by 2 Servers deployment. But meanwhile the sharp high 

trends of utilization rate started reducing with 3 servers to 4 servers and finally to 5 servers. The implication is 

that with 1 or 2 server(s) considering the same infinite population, the tendency for the system to break down in 

terms of service is very high.  

The experiment was also investigated with density plot. Figure 3 shows that with One (1) server, density was low 

with wider spread of utilization rate over 1. Density was seen to becoming high with low spread of utilization 

rate. This implies that at the point of 3 or more Servers in the system we expect performance to boost with less 

queue and overloading of ATM. 

There was need to also inspect whether over-utilization rate experience within the experiment was detected in a 

particular service day or not. Figure 4 therefore shows the pattern of utilization rate and how it fairs for the days 

of the experiment. Our discovery was that there were notable period where utilization rate wasError! Reference 

source not found.. We further observed that if this is compared with Figure 5, it therefore suggest that with 1 

server fitted utilization rate is over 1. Whereas as the server increases (specifically at 3 or more) utilization rate 

becomes normal. Further justification for the experiment was based on the number of customers in the queue or 

in the system, which is also a way of verifying the performance of the system. The longer the queue the longer it 

takes for a customer to get a service. Figure 6 and 7, depict the average number of customers in the system and 

in the queue respectively. The results show without reproof that with 1 server over-population were observed to 

be in the system or in the queue. This ultimately is bound to lead to over-burden of the system. This is also a case 

with 2 servers. Poor service performance is likely experience here and customers may tend to leave the queue 

(renege). Numbers of customers in the system or in the queue started reducing with a functional 3-server service 

points.  

The third aspect of queue system performance analysis is the waiting time. We investigated this with a box plot 

where mean value can be visualized for better analysis. Figure 8 depicts a box plot for each of the servers’ 

average waiting time against utilization. We observed that customers can be waiting on a queue with average of 

252.90 hours when the queue is really built up in a 1 server scenario. This is a worst case ever as it is practically 

impossible for customers to wait that longer hours (amounting to days). The interpretation behind this could 

mean that the single server is not functioning well, service therefore delayed while many customers were trying 

to push their way to get served. Ultimately customers renege. Longer queue in most cases does not mean poor 

performance of the system in as much the waiting time is minimal (or bearable). But when queue are built up and 

waiting time is also on a high side definitely there is bound to be commotion, reneging and all sorts of inordinate 

attitude. With 4 or 5 servers specifically, we observed that customers are served optimally at less than 12 minutes. 

This may proofed preferable to impatient customers and is still cost effective for the banking institution. 

 

9.  Conclusion 

Providing a workable queue model for real life application of this type requires a real life data collection of a 

very good and large sample space. This was the focus of this paper. From the results described in the paper, it 

was highly recommended that additional two or more ATM points be provided to the existing two. Thus, for 4 

ATMs, the customer-server ratio will be 3,500 customers/ATM and for 5 ATMs, the customer-server ratio will 

be 2,800 customers/ATM on average. By submission it means to every additional 2,000 average growth in 

population one additional ATM be installed. With this, is expected that better service delivery will be achieved, 

less customers reneging and better profit for the banking institution. Meanwhile, this work has not considered 

discrete event simulation (DES) as basis of validating results obtained in the paper. Moreover is it opined that 

performance of ATM service system could be improved upon if results here are well and appropriately 

considered. 
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Figure 1 A typical queue model and its components 
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Table 1.0: The summarized queue metrics 

days nS p L Lq Wq W Wiq Lqq 

1 1 0.9 8.97 8.07 378.96 421.21 421.21 9.97 

1 2 0.45 1.13 0.228 10.72 52.97 38.4 1.82 

1 3 0.3 0.93 0.03 1.4 43.66 20.12 1.43 

1 4 0.23 0.9 0.004 0.2 42.44 13.63 1.29 

1 5 0.18 0.9 0.001 0.03 42.27 10.3 1.22 

*2 1 1.06 n/a n/a n/a n/a n/a n/a 

2 2 0.53 1.46 0.407 23.5 84.46 64.51 2.11 

2 3 0.35 1.11 0.056 3.25 64.21 31.34 1.54 

2 4 0.26 1.06 0.01 0.5 61.47 20.7 1.35 

2 5 0.21 1.06 0.001 0.07 61.04 15.45 1.27 

3 1 0.8 3.98 3.18 159.84 200 200 4.98 

3 2 0.4 0.95 0.152 7.63 47.8 33.45 1.67 

3 3 0.27 0.82 0.019 0.95 41.11 18.25 1.36 

3 4 0.2 0.8 0.002 0.12 40.28 12.55 1.25 

3 5 0.16 0.79 0 0.01 40.18 9.56 1.19 

*4 1 1.68 n/a n/a n/a n/a n/a n/a 

4 2 0.83 5.67 3.987 169.09 240.24 220.9 6.21 

4 3 0.56 2.06 0.386 16.37 87.53 53.82 2.27 

4 4 0.42 1.75 0.076 3.2 74.36 30.64 1.72 

4 5 0.34 1.69 0.016 0.66 71.82 21.42 1.51 

5 1 0.65 1.84 1.188 87.35 134.95 134.95 2.83 

5 2 0.32 0.72 0.076 5.57 53.17 35.19 1.48 

5 3 0.22 0.66 0.008 0.61 48.21 20.23 1.28 

5 4 0.16 0.65 0.001 0.06 47.67 14.2 1.19 

5 5 0.13 0.65 0 0.01 47.61 10.93 1.49 

6 1 0.75 2.99 2.241 142.03 189.52 189.52 3.99 

6 2 0.38 0.87 0.122 7.76 55.25 37.98 1.6 

6 3 0.25 0.76 0.015 0.93 48.42 21.1 1.33 

6 4 0.19 0.75 0.002 0.11 47.61 14.61 1.23 

6 5 0.15 0.75 0 0.01 47.51 11.17 1.18 

7 1 0.74 2.86 2.116 122.28 165.08 165.08 3.86 

7 2 0.37 0.86 0.118 6.8 49.6 33.99 1.59 

7 3 0.25 0.76 0.014 0.81 43.61 18.94 1.33 

7 4 0.19 0.74 0.002 0.1 42.89 13.13 1.23 

7 5 0.15 0.74 0 0.01 42.81 10.05 1.17 

8 1 0.87 6.49 5.62 252.9 291.9 291.9 7.49 

days nS p L Lq Wq W Wiq Lqq 

8 2 0.43 1.07 0.2 9.01 48 34.4 1.76 

8 3 0.29 0.89 0.026 1.16 40.15 18.27 1.41 

8 4 0.22 0.87 0.003 0.16 39.15 12.44 1.28 
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8 5 0.17 0.87 0 0.02 39 9.43 1.21 

9 1 0.78 3.42 2.643 205.21 265.28 265.28 4.42 

9 2 0.39 0.91 0.137 10.57 70.63 48.97 1.63 

9 3 0.26 0.79 0.017 1.29 61.35 26.98 1.35 

9 4 0.19 0.78 0.002 0.16 60.22 18.62 1.24 

9 5 0.16 0.78 0 0.02 60.08 14.21 1.18 

10 1 0.73 2.72 1.989 126.48 172.97 172.97 3.72 

10 2 0.37 0.84 0.112 7.17 53.66 36.64 1.58 

10 3 0.24 0.75 0.013 0.85 47.34 20.49 1.32 

10 4 0.18 0.73 0.002 0.1 46.59 14.22 1.22 

10 5 0.15 0.73 0 0.01 46.5 10.89 1.17 

11 1 0.53 1.13 0.601 54.54 102.73 102.73 2.13 

11 2 0.27 0.57 0.04 3.65 51.84 32.8 1.36 

11 3 0.18 0.54 0.004 0.35 48.54 19.52 1.21 

11 4 0.13 0.53 0 0.03 48.22 13.89 1.15 

11 5 0.11 0.53 0 0 48.19 10.78 1.11 

12 1 0.81 4.24 3.432 205.09 253.45 253.4 5.24 

12 2 0.41 0.97 0.158 9.47 57.82 40.61 1.68 

12 3 0.27 0.83 0.02 1.18 49.54 22.07 1.37 

12 4 0.2 0.81 0.003 0.15 48.51 15.16 1.25 

12 5 0.16 0.81 0 0.02 48.37 11.54 1.19 

13 1 0.58 1.4 0.815 64.61 110.84 110.84 2.4 

13 2 0.29 0.64 0.054 4.29 50.52 32.62 1.41 

13 3 0.19 0.59 0.006 0.44 46.67 19.13 1.24 

13 4 0.15 0.58 0.001 0.04 46.27 13.53 1.17 

13 5 0.12 0.58 0 0 46.24 10.47 1.13 

 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                           www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.2, 2018 

 

55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2:  Utilization Rate 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Density curve analysis of Utilization Rate 
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Figure 4: Fitted Utilization Rate for the period under investigation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Fitted Utilization Rate of Each Server for the period under investigation 
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Figure 6: Average Number of Customers in the System 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Average Number of Customers in the Queue 
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Figure 8: Average waiting time in the Queue 
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