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1. INTRODUCTION AND PRELIMINARIES 

In 1922, Banach proved the principal contraction result [1]. As we know, there have 

been published many works about fixed point theory for different kinds of 

contractions on some spaces such as quasi-metric spaces [2], cone metric spaces [3], 

convex metric spaces [4], partially ordered metric spaces [5-9], G-metric spaces [10-

14], partial metric spaces [15-16],,quasi-partial metric spaces [17], fuzzy metric spaces 

[18], and 

Mengerspaces[19].Also, studieseither on approximate fixed point or on qualitative aspec

ts of numerical pro-cedures for approximating fixed points are available in the 

literature; see [4,20,21]Jungck and Rhoades [22] weakened the notion of compatibility 

by introducing the  

notion of weakly compatible mappings (extended by Singh and Jain [23] to 

probabilistic metric space) and proved common fixed-point theorems without 

assuming continuity of the involved mappings in metric spaces. In 2002, Aamri and 

Moutawakil [24] intro-duced the notion of property (E.A) (extended by Kubiaczyk 

and Sharma [25] to probabilistic metric space) for self-mappings which contained the 
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class of non compatible map-pings due to Pant [26]. Further, Liu et al. [27] defined 

the notion of common property (E.A) (extended by Ali et al. [28]to probabilistic 

metric space) which contains the property (E.A) and proved several fixed point 

theorems under hybrid contractive conditions. Since then, there has been 

continuous and intense research activity in fixed-point theory and by now there 

exists an extensive literature (e.g. [29-33] and the references there in). 

Many mathematicians proved several common fixed-point theorems for 

contraction mappings in Menger spaces by using different notions viz. compatible 

mappings, weakly compatible mappings, property (E.A), common property (E.A) (see 

[18, 34-48]). 

 

The important development of fixed point theory in Menger spaces were due to Sehgal and 

Bharucha-Reid [21]. A  probabilistic metric space shortly 𝑃𝑀-Space, is an ordered pair 

(𝑋, 𝐹) consisting of a non empty set 𝑋 and a mapping 𝐹  from 𝑋 ×  𝑋 to 𝐿, where 𝐿 is the 

collection of all distribution functions (a distribution function 𝐹 is non decreasing and left 

continuous mapping of reals in to [0,1] with properties, 𝑖𝑛𝑓 𝐹(𝑥) = 0 and 𝑠𝑢𝑝 𝐹(𝑥) = 1).   

1. The value of 𝐹 at (𝑥, 𝑦) ∈  𝑋 ×  𝑋 is represented by 𝐹𝑥,𝑦. The function 𝐹𝑥,𝑦 are assumed 

satisfy the following conditions; 

2. (FM-0) 𝐹𝑥,𝑦 (𝑡)  =  1, for all 𝑡 > 0, iff 𝑥 = 𝑦;  

3. (FM-1) 𝐹𝑥,𝑦 (0) =  0, if 𝑡 = 0; 

4. (FM-2) 𝐹𝑥,𝑦(𝑡) =𝐹𝑦,𝑥(𝑡); 

5. (FM-3) 𝐹𝑥,𝑦 (𝑡)  =  1 and  𝐹𝑦,𝑧 (𝑠)  =  1 then 𝐹𝑥,𝑧 (𝑡 +  𝑠)  =  1. 

6. A mapping 𝑇: [0,1] × [0,1] → [0,1] is a 𝑡-norm, if it satisfies the following conditions; 

7. (FM-4) 𝑇(𝑎, 1) = 𝑎 for every 𝑎 ∈ [0,1]; 

8. (FM-5) 𝑇(0, 0) = 0, 

9. (FM-6) 𝑇(𝑎, 𝑏) = 𝑇(𝑏, 𝑎) for every 𝑎, 𝑏 ∈ [0,1]; 

10. (FM-7) 𝑇(𝑐, 𝑑)  ≥ 𝑇(𝑎, 𝑏)for 𝑐 ≥ 𝑎 and 𝑑 ≥ 𝑏 

11. (FM-8) 𝑇(𝑇(𝑎, 𝑏), 𝑐) = 𝑇(𝑎, 𝑇(𝑏, 𝑐)) where 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1]. 

12. A Menger space is a triplet (𝑋, 𝐹, 𝑇), where (𝑋, 𝐹) is a 𝑃𝑀-Space, 𝑋 is a non-empty set 

and a 𝑡 − norm satisfying instead of (FM-8) a stronger requirement. 

13. (FM-9)  𝐹𝑥,𝑧 (𝑡 +  𝑠) ≥  𝑇 (𝐹𝑥,𝑦(𝑡), 𝐹𝑦,𝑧(𝑠)) for all 𝑥 ≥ 0, 𝑦 ≥ 0. 
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14. For a given metric space (𝑋, 𝑑) with usual metric 𝑑, one can put 𝐹𝑥,𝑦  (𝑡)  =  𝐻 (𝑡 −

𝑑(𝑥, 𝑦)) for all 𝑥, 𝑦 ∈  𝑋 and t >  0. where 𝐻 is defined as:  

                     𝐻(𝑡)  =  {
1  𝑖𝑓 𝑠 > 0,
 0  𝑖𝑓 𝑠 ≤ 0.

 

        and 𝑡-norm 𝑇 is defined as 𝑇(𝑎, 𝑏) =  𝑚𝑖𝑛 {𝑎, 𝑏}.  

For the proof of our result we required the following definitions. 

   Definition 1.1 :-A triangular norm ∗(shortly t-norm) is a binary operation on the unit 

interval [0,1] such that for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0,1] the following conditions are satisfied: 

(1) 𝑎 ∗ 1 = 𝑎, 

(2) 𝑎 ∗ 𝑏 = 𝑏 ∗ 𝑎, 

(3) 𝑎 ∗ 𝑏 ≤ 𝑐 ∗ 𝑑 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑎 ≤ 𝑐 𝑎𝑛𝑑 𝑏 ≤ 𝑑, 

(4) 𝑎 ∗ (𝑏 ∗ 𝑐) = (𝑎 ∗ 𝑏) ∗ 𝑐. 

Examples of t-norms are 𝑎 ∗ 𝑏 = 𝑚𝑖𝑛{𝑎, 𝑏} , 𝑎 ∗ 𝑏 = 𝑎𝑏 𝑎𝑛𝑑 𝑎 ∗ 𝑏 = 𝑚𝑎𝑥{𝑎 + 𝑏 − 1,0}. 

Definition 1.2 :- Let (𝑋, 𝐹,∗) be a Menger space and  be a continuous 𝑡-norm. 

(a) A sequence {𝑥𝑛} in 𝑋 is said to be converge to a point 𝑥 in 𝑋 (written 𝑥𝑛→𝑥) iff for 

every 𝜀 > 0 and 𝜆 ∈  (0, 1), there exists an integer 𝑛0 = 𝑛0(𝜀, 𝜆) such that 𝐹𝑥𝑛,𝑥(𝜀) > 1 −

𝜆 for all 𝑛 ≥  𝑛0. 

(b) A sequence {𝑥𝑛} in 𝑋 is said to be Cauchy if for every ε > 0 and 𝜆 ∈  (0, 1), there exists 

an integer 𝑛0 = 𝑛0(𝜀, 𝜆) such       that 𝐹𝑥𝑛,𝑥𝑛+𝑝 (𝜀) > 1 − 𝜆 for all 𝑛 ≥  𝑛0 and 𝑝 >  0. 

(c) A Menger space in which every Cauchy sequence is convergent is said to be complete. 

Remark 1.3:- If  is a continuous t-norm, it follows from (𝐹𝑀 − 4)  that the limit of 

sequence in Menger space is uniquely determined. 

Definition 1.4:- Self maps 𝐴 and 𝐵  of a Menger space (𝑋, 𝐹,∗)  are said to be weakly 

compatible (or coincidentally commuting) if they commute at their coincidence points, i.e. if 

𝐴𝑥 =  𝐵𝑥 for some 𝑥 ∈  𝑋 then 𝐴𝐵𝑥 =  𝐵𝐴𝑥. 

 

Weakly Compatible Maps 

In 1982, Sessa [17], weakened the concept of commutativity to weakly commuting mappings. 

Afterwards, Jungck [4] enlarged the concept of weakly commuting mappings by adding the 
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notion of compatible mappings. In 1991, Mishra [16] introduced the notion of compatible 

mappings in the setting of probabilistic metric space. 

Definition 1.5 :- Self maps 𝐴 and 𝐵 of a Menger space (𝑋, 𝐹,∗) are said to be compatible if 

𝐹𝐴𝐵𝑥𝑚,𝐵𝐴𝑥𝑛,(𝑡)  →  1 for all 𝑡 >  0 , whenever {𝑥𝑛} is a sequence in 𝑋 such that 𝐴𝑥𝑛 →  𝑥 , 

𝐵𝑥𝑛 →  𝑥 for some 𝑥 in 𝑋 as 𝑛 → ∞. . 

Definition 1.6:- Let 𝑆 and 𝑇 be weakly compatible of a Menger space (𝑋,𝑀,∗) and 

𝑆𝑢 =  𝑇𝑢 for some 𝑢 in 𝑋 then 

𝑆𝑇𝑢 =  𝑇𝑆𝑢 =  𝑆𝑆𝑢 =  𝑇𝑇𝑢. 

Example 1.7:-. Let 𝑋 =  [0, 3] be equipped with the usual metric 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦| Define 

𝑓, 𝑔: [0,3] → [0,3] by 

𝑓(𝑥)  =  {
𝑥  𝑖𝑓 𝑥 ∈ [0,1),
 3  𝑖𝑓 𝑥 ∈ [1,3].

 

And                                              𝑔(𝑥) = {
3 − 𝑥  𝑖𝑓 𝑥 ∈ [0,1),
 3       𝑖𝑓 𝑥 ∈ [1,3].

 

Then for any 𝑥 ∈  [1,3], 𝑥 is a coincidence point and 𝑓𝑔𝑥 =  𝑔𝑓𝑥, showing that 𝑓, 𝑔 are 

weakly compatible maps on [0, 3]. 

Remark 1.8:- If self maps 𝐴 and 𝐵 of a Menger space (𝑋, 𝐹,∗) are compatible then they are 

weakly compatible.  

Lemma 1.9.  Let (𝑋,𝑀,∗) be a Menger space. Then for all 𝑥, 𝑦 ∈  𝑋, 𝑀(𝑥, 𝑦, . ) is a non-

decreasing function. 

Lemma 1.10. Let (𝑋,𝑀,∗) be a Menger space. If there exists 𝑘 ∈  (0, 1) such that  

for all 𝑥, 𝑦 ∈  𝑋 

𝑀𝑥,𝑦(𝑡) ≥ 𝑀𝑥,𝑦(𝑡)   ∀ 𝑡 > 0 

then 𝑥 =  𝑦. 

Lemma 1.11. Let {𝑥𝑛} be a sequence in a Menger space (𝑋,𝑀,∗). If there exists a 

number 𝑘 ∈ (0, 1) such that 

𝑀𝑥𝑛+2,𝑥𝑛+1
(𝑘𝑡) ≥ 𝑀𝑥𝑛+1,𝑥𝑛

(𝑡) ∀ 𝑡 > 0 𝑎𝑛𝑑 𝑛 ∈ 𝑁. 

Then {𝑥𝑛} is a Cauchy sequence in 𝑋. 

Lemma 1.12. The only 𝑡-norm ∗ satisfying 𝑟 ∗  𝑟 ≥  𝑟 for all 𝑟 ∈  [0, 1] is the minimum t-

norm, that is 

𝑎 ∗  𝑏 =  𝑚𝑖𝑛 {𝑎, 𝑏} for all 𝑎, 𝑏 ∈  [0, 1]. 

Example 1.13. Let (𝑋, 𝑑) be a metric space. Define 𝑎 ∗  𝑏 =  𝑚𝑖𝑛 {𝑎, 𝑏} and  
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𝑀𝑥,𝑦(𝑡) =
𝑡

𝑡+𝑑(𝑥,𝑦)
, for all 𝑥, 𝑦 ∈  𝑋.and all 𝑡 >  0. Then (𝑋,𝑀,∗) is a Menger space. It is 

called the Menger space induced by d. 

 

2. MAIN RESULT 

Now we prove the following results: 

In the rest of the paper we assume that a Menger space (𝑋,𝑀,∗) satisfies the following: 

 (1)  𝑀𝑥,𝑦(𝑡) → 1 as 𝑡 → ∞ for all 𝑥, 𝑦 ∈ 𝑋 

 (2) If  {𝑥𝑛} and  {𝑦𝑛} are sequence in 𝑋 such that 𝑥𝑛 → 𝑥 𝑎𝑛𝑑 𝑦𝑛 → 𝑦  then 

𝑀𝑥𝑛,𝑦𝑛
(𝑡) → 𝑀𝑥,𝑦(𝑡)  𝑎𝑠 𝑛 → ∞ 

Theorem 2.1: Let (𝑋,𝑀,∗)  be a Menger space and 𝐴, 𝐵, 𝑆  and 𝑇  be self maps on 𝑋 

satisfying the following conditions: 

1. 𝐴(𝑋) ⊂ 𝑇(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋), 𝑆(𝑋)𝑎𝑛𝑑 𝑇(𝑋) are closed 

2. 𝑀(𝐴𝑥,𝐵𝑦)(𝑡) ≥ 𝜑

{
 
 

 
 

𝑚𝑖𝑛

(

 
 

𝑀(𝑆𝑥,𝑇𝑦)(𝑡),𝑀(𝑇𝑦,𝐵𝑦)(𝑡),𝑀(𝑆𝑥,𝐴𝑥)(𝑡),

𝑚𝑎𝑥 {𝑀(𝑆𝑥,𝐵𝑦)(𝑡),𝑀(𝑇𝑦,𝐴𝑥) (
2

𝑘
− 1) 𝑡} ,

𝑚𝑎𝑥 {𝑀(𝑆𝑥,𝐵𝑦) (
2

𝑘
− 1) 𝑡,𝑀(𝑇𝑦,𝐴𝑥)(𝑡)}

)

 
 

}
 
 

 
 

          (2.1.1) 

For all 𝑥, 𝑦 ∈ 𝑋   𝑡 >  0   a n d fo r  some  0 <  𝑘 <  1 . where 𝜑: [0,1] → [0, 1] , is a 

continuous function and 𝜑(𝑡) >  𝑡    

I f  0 <  𝑡 <  1. Suppose the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy common E.A. property and 

(𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible. Then 𝐴, 𝐵, 𝑆, 𝑎𝑛𝑑 𝑇 have a unique common fixed 

point in 𝑋. 

Proof: Since (𝐴, 𝑆) and (𝐵, 𝑇) satisfy common E.A. property, there exist sequences {𝑥𝑛} and  

{𝑦𝑛}  such that 

𝑙𝑖𝑚
𝑛→∞

𝑀𝐴𝑦𝑛,𝑧(𝑡) = 𝑙𝑖𝑚
𝑛→∞

𝑀𝐵𝑥𝑛,𝑧
(𝑡) = 𝑙𝑖𝑚

𝑛→∞
𝑀𝑆𝑦𝑛,𝑧(𝑡) = 𝑙𝑖𝑚

𝑛→∞
𝑀𝑇𝑥𝑛,𝑧

(𝑡) = 1 

For some 𝑧 ∈ 𝑋  and for all𝑡 > 0 

So that  

𝑙𝑖𝑚
𝑛→∞

𝐴𝑦𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝐵𝑥𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑇𝑥𝑛 = 𝑙𝑖𝑚
𝑛→∞

𝑆𝑦𝑛 = 𝑧. 

Since 𝑆(𝑋)  and 𝑇(𝑋)  are closed subsets of 𝑋,  there exist 𝑢, 𝑣 ∈ 𝑋  such that 𝑆𝑢 = 𝑧  and 

𝑇𝑣 = 𝑧 We show that 𝐴𝑢 =  𝑧. Put 𝑥 =  𝑢 and 𝑦 =  𝑥𝑛 in (2.1.1) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.2, 2018 

 

6 

 

𝑀(𝐴𝑢,𝐵𝑥𝑛)(𝑡) ≥ 𝜑

{
 
 

 
 

𝑚𝑖𝑛

(

 
 

𝑀(𝑆𝑢,𝑇𝑥𝑛)
(𝑡),𝑀(𝑇𝑥𝑛,𝐵𝑥𝑛)

(𝑡),𝑀(𝑆𝑢,𝐴𝑢)(𝑡),

𝑚𝑎𝑥 {𝑀(𝑆𝑢,𝐵𝑥𝑛)
(𝑡), 𝑀(𝑇𝑥𝑛,𝐴𝑢) (

2

𝑘
− 1) 𝑡} ,

𝑚𝑎𝑥 {𝑀(𝑆𝑢,𝐵𝑥𝑛) (
2

𝑘
− 1) 𝑡,𝑀(𝑇𝑥𝑛 𝐴𝑢)

(𝑡)} )

 
 

}
 
 

 
 

 

On letting 𝑛 → ∞ we get 

𝑀(𝐴𝑢,𝑧)(𝑡) ≥ 𝜑

{
 
 

 
 

𝑚𝑖𝑛

(

 
 

𝑀(𝑧,𝑧)(𝑡),𝑀(𝑧,𝑧)(𝑡),𝑀(𝑧,𝐴𝑢)(𝑡),

𝑚𝑎𝑥 {𝑀(𝑧,𝑧)(𝑡),𝑀(𝑧,𝐴𝑢) (
2

𝑘
− 1) 𝑡} ,

𝑚𝑎𝑥 {𝑀(𝑧,𝑧) (
2

𝑘
− 1) 𝑡,𝑀(𝑧 𝐴𝑢)(𝑡)} )

 
 

}
 
 

 
 

 

= 𝜑 (𝑀(𝑧,𝐴𝑢)(𝑡)) > 𝑀(𝑧,𝐴𝑢)(𝑡)𝑖𝑓 𝐴𝑢 ≠ 𝑧, 𝑎 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛. 

Therefore 𝐴𝑢 = 𝑧. 

In a similar way we can show that 𝐵𝑣 =  𝑧. 

Thus 𝑢 is a coincidence point of 𝐴 and 𝑆,  

𝑣 is a coincidence point of 𝐵 and 𝑇. 

Since (𝐴, 𝑆)  is weakly compatible 𝐴𝑆𝑢 =  𝑆𝐴𝑢 so that 𝐴𝑧 =  𝑆𝑧  and (𝐵, 𝑇)  is weakly 

compatible 𝐵𝑇𝑣 =  𝑇𝐵𝑣 so that 𝐵𝑧 =  𝑇𝑧 

Now we show that 𝑧 is a common fixed point of 𝐴 and 𝑆 

𝑀(𝐴𝑧,𝑧)(𝑡) = 𝑀(𝐴𝑧,𝐵𝑣)(𝑡) ≥ 𝜑

{
 
 

 
 

𝑚𝑖𝑛

(

 
 

𝑀(𝑆𝑧,𝑇𝑣)(𝑡),𝑀(𝑇𝑣,𝐵𝑣)(𝑡),𝑀(𝑆𝑧,𝐴𝑧)(𝑡),

𝑚𝑎𝑥 {𝑀(𝑆𝑧,𝐵𝑣)(𝑡),𝑀(𝑇𝑣,𝐴𝑧) (
2

𝑘
− 1) 𝑡} ,

𝑚𝑎𝑥 {𝑀(𝑆𝑧,𝐵𝑣) (
2

𝑘
− 1) 𝑡,𝑀(𝑇𝑣,𝐴𝑧)(𝑡)} )

 
 

}
 
 

 
 

 

  

On letting  𝑛 →  ∞ we get  

  

= 𝜑

{
 
 

 
 

𝑚𝑖𝑛

(

 
 

𝑀(𝐴𝑧,𝑧)(𝑡),𝑀(𝑧,𝑧)(𝑡),𝑀(𝐴𝑧,𝐴𝑧)(𝑡),

𝑚𝑎𝑥 {𝑀(𝑧,𝑧𝑣)(𝑡),𝑀(𝑧,𝐴𝑧) (
2

𝑘
− 1) 𝑡} ,

𝑚𝑎𝑥 {𝑀(𝑧,𝑧𝑣) (
2

𝑘
− 1) 𝑡,𝑀(𝑧 𝐴𝑧)(𝑡)} )

 
 

}
 
 

 
 

 

= 𝜑 (𝑀(𝐴𝑧,𝑧)(𝑡)) > 𝑀(𝐴𝑧,𝑧)(𝑡)𝑖𝑓 𝐴𝑧 ≠ 𝑧, 𝑎 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛. 

Therefore 𝐴𝑧 =  𝑧. 

Hence 𝐴𝑧 =  𝑆𝑧 =  𝑧.  
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Similarly 𝐵𝑧 =  𝑇𝑧 =  𝑧.  

Hence  𝐴𝑧 =  𝑆𝑧 =  𝑇𝑧 =  𝐵𝑧 =  𝑧. 

Thus 𝑧 is a common fixed point for 𝐴, 𝐵, 𝑆 and 𝑇. 

Uniquesness: 

If 𝑥 and 𝑦 are fixed points of 𝐴, 𝐵, 𝑆 and 𝑇, then 

𝑀(𝑥,𝑦)(𝑡) = 𝑀(𝐴𝑥,𝐵𝑦)(𝑡) ≥ 𝜑

{
 
 

 
 

𝑚𝑖𝑛

(

 
 

𝑀(𝑆𝑥,𝑇𝑦)(𝑡),𝑀(𝑇𝑦,𝐵𝑦)(𝑡),𝑀(𝑆𝑥,𝐴𝑥)(𝑡),

𝑚𝑎𝑥 {𝑀(𝑆𝑥,𝐵𝑦)(𝑡),𝑀(𝑇𝑦,𝐴𝑥) (
2

𝑘
− 1) 𝑡} ,

𝑚𝑎𝑥 {𝑀(𝑆𝑥,𝐵𝑦) (
2

𝑘
− 1) 𝑡,𝑀(𝑇𝑦,𝐴𝑥)(𝑡)} )

 
 

}
 
 

 
 

 

= 𝜑

{
 
 

 
 

𝑚𝑖𝑛

(

 
 

𝑀(𝑥,𝑦)(𝑡),𝑀(𝑦,𝑦)(𝑡),𝑀(𝑥,𝑥)(𝑡),

𝑚𝑎𝑥 {𝑀(𝑥,𝑦)(𝑡),𝑀(𝑦,𝑥) (
2

𝑘
− 1) 𝑡} ,

𝑚𝑎𝑥 {𝑀(𝑥,𝑦) (
2

𝑘
− 1) 𝑡,𝑀(𝑦,𝑥)(𝑡)} )

 
 

}
 
 

 
 

 

 

= 𝜑 (𝑀(𝑥,𝑦)(𝑡)) > 𝑀(𝑥,𝑦)(𝑡)𝑖𝑓 𝑥 ≠ 𝑦, 𝑎 𝑐𝑜𝑛𝑡𝑟𝑎𝑑𝑖𝑐𝑡𝑖𝑜𝑛. 

 

Hence 𝑥 =  𝑦. 

Consequently 𝐴, 𝐵, 𝑆, 𝑎𝑛𝑑 𝑇 have unique common fixed point. 

Theorem 2.2 Let (𝑋,𝑀 ∗)  be a Menger space and 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇  be self maps on 𝑋 

satisfyimg the following conditions: 

1. 𝐴(𝑋) ⊂ 𝑇(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋), 𝑆(𝑋)𝑎𝑛𝑑 𝑇(𝑋) are closed 

2. 𝑀(𝐴𝑥,𝐵𝑦)(𝑡) ≥ 𝜑

{
 
 
 

 
 
 

𝑚𝑖𝑛

(

 
 
 
 
 

𝑀(𝑆𝑥,𝑇𝑦)(𝑡),

𝑚𝑖𝑛 {𝑀(𝑇𝑦,𝐵𝑦) (
2

𝑘
− 1) 𝑡,𝑀(𝑆𝑥,𝐴𝑥)(𝑡)},

𝑚𝑖𝑛 {𝑀(𝑇𝑦,𝐵𝑦)(𝑡),𝑀(𝑆𝑥,𝐴𝑥) (
2

𝑘
− 1) 𝑡},

𝑚𝑎𝑥 {𝑀(𝑆𝑥,𝐵𝑦)(𝑡),𝑀(𝑇𝑦,𝐴𝑥) (
2

𝑘
− 1) 𝑡} ,

𝑚𝑎𝑥 {𝑀(𝑆𝑥,𝐵𝑦) (
2

𝑘
− 1) 𝑡,𝑀(𝑇𝑦,𝐴𝑥)(𝑡)} )

 
 
 
 
 

}
 
 
 

 
 
 

           (2.2.1) 

 

for all 𝑥, 𝑦 ∈ 𝑋   𝑡 >  0   a n d fo r  some  0 <  𝑘 <  1 . where 𝜑: [0,1] → [0, 1] , is a 

continuous function and 𝜑(𝑡) >  𝑡    

I f  0 <  𝑡 <  1. Suppose the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy common E.A. property and 

(𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible. Then 𝐴, 𝐵, 𝑆, 𝑎𝑛𝑑 𝑇 have a unique common fixed 

point in 𝑋. 
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Proof: The proof is similar to that of Theorem 2.1 

Corollory 2.3: (𝑋,𝑀 ∗)  be a Menger space and 𝐴, 𝐵, 𝑆 𝑎𝑛𝑑 𝑇  be self maps on 𝑋 

satisfying the following conditions: 

1. 𝐴(𝑋) ⊂ 𝑇(𝑋), 𝐵(𝑋) ⊂ 𝑆(𝑋), 𝑆(𝑋)𝑎𝑛𝑑 𝑇(𝑋) are closed 

2. 𝑀(𝐴𝑥,𝐵𝑦)(𝑡) ≥

𝜑 {𝑚𝑖𝑛(𝑠𝑢𝑝
𝑡1+𝑡2=

2

𝑘
(𝑡)

𝑀(𝑆𝑥,𝑇𝑦)(𝑡),

𝑚𝑖𝑛{𝑀(𝑆𝑥,𝐴𝑥)(𝑡1),𝑀(𝑇𝑦,𝐵𝑦)(𝑡2)} ,

𝑠𝑢𝑝
𝑡3+𝑡4=

2

𝑘
(𝑡)  

𝑚𝑎𝑥{𝑀(𝑆𝑥,𝐵𝑦)(𝑡3),𝑀(𝑇𝑦,𝐴𝑥)(𝑡4)}

)}    (2.3.1) 

for all 𝑥, 𝑦 ∈ 𝑋   𝑡 >  0   a n d fo r  some  0 <  𝑘 <  1 . where 𝜑: [0,1] → [0, 1] , is a 

continuous and increasing function and 𝜑(𝑡) >  𝑡    

I f  0 <  𝑡 <  1. Suppose the pairs (𝐴, 𝑆) and (𝐵, 𝑇) satisfy common E.A. property and 

(𝐴, 𝑆) and (𝐵, 𝑇) are weakly compatible. Then 𝐴, 𝐵, 𝑆, 𝑎𝑛𝑑 𝑇 have a unique common fixed 

point in 𝑋. 

Proof: Since 𝜑 is increasing we observe that (2.3.1)  >  (2.2.1). consequently from Theorem 

2.2 the result follows. 
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33. Long, W, Abbas, M, Nazir, T, Radenovi ć, S: Common fixed point for two pairs of 

mappings satisfying (E.A) property in generalizedmetric spaces. Abstr. Appl. Anal. 2012, 

Article ID 394830 (2012) 

34. Ali, J, Imdad, M, Mihe，t, D, Tanveer, M: Common fixed points of strict contractions in 

Menger spaces. Acta Math. Hung. 132(4), 367-386 (2011) 

35. Altun, I, Tanveer, M, Mihe，t, D, Imdad, M: Common fixed point theorems of integral 

type in Menger PM spaces. J. Nonlinear Anal. Optim., Theory Appl. 3(1), 55-66 (2012) 

36. Beg, I, Abbas, M: Common fixed points of weakly compatible and noncommuting 

mappings in Menger spaces. Int. J. Mod. Math. 3(3), 261-269 (2008) 

http://www.iiste.org/


Mathematical Theory and Modeling                                                                                                                                                  www.iiste.org 

ISSN 2224-5804 (Paper)    ISSN 2225-0522 (Online) 

Vol.8, No.2, 2018 

 

11 

 

37. Chauhan, S, Pant, BD: Common fixed point theorem for weakly compatible mappings in 

Menger space. J. Adv. Res. Pure Math. 3(2), 107-119 (2011) 

38. Cho, YJ, Park, KS, Park, WT, Kim, JK: Coincidence point theorems in probabilistic 

metric spaces. Kobe J. Math. 8(2), 119-131 (1991) 

41. Imdad, M, Ali, J, Tanveer, M: Coincidence and common fixed point theorems for 

nonlinear contractions in Menger PM spaces. Chaos Solitons Fractals 42(5), 3121-3129 

(2009) MR2562820 (2010j:54064) Zbl 1198.54076 

42. Imdad, M, Tanveer, M, Hassan, M: Some common fixed point theorems in Menger PM 

spaces. Fixed Point Theory Appl. 2010, Article ID 819269 (2010) 

43. Kumar, S, Chauhan, S, Pant, BD: Common fixed point theorem for noncompatible maps 

in probabilistic metric space. Surv. Math. Appl. (in press) 

44. Kumar, S, Pant, BD: Common fixed point theorems in probabilistic metric spaces using 

implicit relation and property (E.A). Bull. Allahabad Math. Soc. 25(2), 223-235 (2010) 

45. Kutukcu, S: A fixed point theorem in Menger spaces. Int. Math. Forum 1(32), 1543-1554 

(2006) 

46. Pant, BD, Chauhan, S: Common fixed point theorems for two pairs of weakly compatible 

mappings in Menger spaces and fuzzy metric spaces. Sci. Stud. Res. Ser. Math. Inform. 21(2), 

81-96 (2011) 

47. Saadati, R, O’Regan, D, Vaezpour, SM, Kim, JK: Generalized distance and common fixed 

point theorems in Menger probabilistic metric spaces. Bull. Iran. Math. Soc. 35(2), 97-117 

(2009) 

48. R. K. Dubey, R. Shrivastava, P. Tiwari” Some Common Fixed Point Theorem for Two, 

Three and Four Mappings in Menger Spaces” South Asian Journal of Mathematics, 4 (4), 

(2014), 185-191. 

 

 

 

 

 

 

http://www.iiste.org/

