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Abstract 

Statistical distributions are very useful in describing and predicting real-world phenomena. Numerous extended 

distributions have been extensively used over the last decades for modeling data in many applied sciences such 

as medicine, engineering and finance. Recent developments focus on defining new families that extend well-

known distributions and at the same time provide great flexibility in modeling data in practice. In this paper, we 

have introduced a new three-parameter exponential distribution called the generalized odd log-logistic-

exponential distribution by using the generator defined by Cordeiro et al (2017). This model extends the odd log-

logistic-exponential and exponential distributions. Several of its structural properties are discussed in detail. 

These include shape of the probability density function, hazard rate function, quantile function order statistics, 

and moments. The method of maximum likelihood is adopted to estimate the model parameters. The 

applicability of the new models is illustrated by using real data. The goodness-of-fits of the exponential, beta 

exponential, Kumaraswamy exponential and the generalized odd log-logistic-exponential distributions have been 

compared through the AIC, AICC, BIC and KS statistics and found that the generalized odd log-logistic-

exponential distribution fits well the data.  

Key Word: Exponential distribution, odd log logic distribution, maximum likelihood estimation, Monte Carlo. 

 

Introduction 

 

In 2017, Cordeiro et al. introduced a generator of continuous distribution called the generalized odd log-logistic 

family of distributions with pdf and cdf given by: 
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respectively. 
 

 

The aim of this paper is to consider exponential distribution with three parameters called the generalized odd 

log-logistic-exponential distribution. 

 

In this article we consider a new way of exponential distribution with three parameters by replacing 

( , ) 1 ,    0, 0xG x e x    
 

in equation (2), called the generalized odd log-logistic-exponential 

distribution.
 

Definition 1. A random variable X is said to have the generalized odd log-logistic-exponential distribution if it 

has the density: 
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The cumulative distribution function associated with Equation (5) is given by 
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Figure 1, 2 and 3 illustrates some of the possible shapes of the pdf, cdf and hazard function of the generalized 

odd log-logistic-exponential distribution for selected values of the parameters ,  , and  respectively. 

 

Figure 1. The pdf of the generalized odd log-logistic-exponential distribution for different values of parameters 

alpha, theta and lambda. 

 

Figure 2. The cdf of the generalized odd log-logistic-exponential distribution for different values of parameters 

alpha, theta and lambda. 
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2 Reliability Analysis 

 

2.1 Survival function 

 

The reliability function (survival function) of the generalized odd log-logistic-exponential distribution is given 

by 
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2.2 Hazard Rate Function 

 

The hazard rate function (failure rate) of a life- time random variable X the generalized odd log-logistic-

exponential distribution with three parameters is given by 
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Figure 3. The hazard rate function of the generalized odd log-logistic-exponential distribution for different 

values of parameters alpha, theta and lambda. 

 

2.3 Quantiles 

The quantile of any distribution is given by solving the equation 

 

( ) ,   0 1.pF x p p    

The quantile of the generalized odd log-logistic-exponential distribution is given by 
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   (7)

 

 

 

3. Order statistics of the generalized odd log-logistic-exponential distribution Order statistics has an important 

role in quality control and reliability analysis, and also in hydrological and extreme value analysis. It is often 

used to identify the situations and parameter estimation. Here we assume that 1X , 2X ,...,
1nX ,

nX  is a 

random sample from exponential distribution with pdf and cdf given in (3) and (4) respectively. Let (1)X , 

(2)X ,..., 1)( nX , )(nX  be the ordered values of the preceding sample in non-decreasing order of magnitude. 

The 
thn  order statistics of the generalized odd log-logistic-exponential distribution, =)(nX  1(Xmax , 

2X ,...,
1nX , )nX  is given by  
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 The smallest order statistic, =(1)X  1(Xmin , 2X ,...,
1nX , )nX  has the pdf 
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Generally the distribution of the 
thr  order statistics with the generalized odd log-logistic-exponential 

distribution is as follows  
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3.3. Useful expansions 

Based on generalized binomial expansions, the pdf (1) of X can be expressed as (for more details see Cordeiro 

2016) 
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By using the same methodology, the pdf of the generalized odd log-logistic exponential distributions has the 

form 
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Theorem. Let X be a random variable with pdf (6). The expectation is given by: 
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4. Estimation 

  In this section, we define the maximum likelihood estimation and Newton Raphson procedure to 

estimate the parametric values.  

4.1. Maximum likelihood estimation  

 In this subsection, interest is to define the parameter estimation of the generalized odd log-logistic-

exponential distribution by maximum likelihood estimation.  

Let 1X , 2X ,..., nX  be i.i.d random variables of size n . Then the likelihood function for this 

distribution is 
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 the sample log-likelihood function 
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The maximum likelihood estimates can be obtained as the simultaneous solutions of the following non-linear 

equations:  

( ; , , ) ( ; , , ) ( ; , , )
0,  0,  0.

X X X        

  

  
  

  
 

 

The exact solution for unknown parameters is not possible analytically so the estimates are obtained by solving 

nonlinear equations simultaneously. The solution of nonlinear system is easier by iterative techniques common 

as Newton Raphson approach. By providing initial guess of the parameters, Newton Raphson used these initial 

values to calculate parameter estimates. Asymptotically these estimates of parameters approaches to normality 

and the z-score are approximately standard normal, which can be used to find the )100(1   two sided 

confidence interval for the parameters. 

4.2 Maximum product spacing estimates 

 The maximum product spacing (MPS) method has been proposed by Cheng et al (1983). This method 

is based on an idea that the differences (Spacing) of the consecutive points should be identically distributed. The 

geometric mean of the differences is given as  
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where, (0)( , , , ) = 0F x     and ( 1)( , , , ) =1nF x    . The MPS estimators ˆˆ ,PS PS   and ˆ ,PS  of 

, ,    are obtained by maximizing the geometric mean (GM) of the differences. Substituting pdf of the 

generalized odd log-logistic-exponential distribution and taking logarithm of the above expression, we will have  
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The MPS estimators 垐ˆ , ,PS PS PS    of , ,    can be obtained as the simultaneous solution of the following 

non-linear equations: 
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4.3 Least square estimates 

 Let )((2)(1) ,,, nxxx   be the ordered sample of size n  drawn the generalized odd log-logistic-

exponential distribution pdf. Then, the expectation of the empirical cumulative distribution function is defined as  

   ni
n

i
XFE i ,1,2,=;

1
=)( 

                                                                                    (16)

 

The least square estimates (LSEs) 垐ˆ , ,LS LS LS    of , ,    are obtained by minimizing  
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Therefore, 垐ˆ , ,LS LS LS    of , ,    can be obtained as the solution of the following system of equations:  
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5. Simulation algorithms  

Since the probability integral transformation cannot be applied explicitly, we, therefore need to follow 

the following steps for generating a sample of size n  from the generalized odd log-logistic-exponential 

distribution
 

( , , )GOLLE    :  

1.  Set n , , ,     and initial value 
0x . 

2.  Generate  0,1U Uniform . 

3.  Update 
0x  by using the Newton’s formula 

0 0= ( , , , )x x R x      

where, 
 
 

0

0

0

, , ,
( , , , ) =

, , ,

X

X

F x U
R x

f x

  
  

  


, (.)XF  and (.)Xf  are cdf and pdf of the generalized odd 

log-logistic-exponential distribution, respectively. 

4.  If 
0| |x x   , (very small, 0>  tolerance limit), then store =x x  as a sample from 

( , , )GOLLE    . 

5.  If 
0| |>x x  , then, set 

0 =x x  and go to step 3. 

6.  Repeat steps 3-5, n  times for 
nxxx ,,, 21   respectively. 

6. Application 

Now we use a real data set to show that the generalized odd log-logistic-exponential distribution (GOLEE) can 

be a better model than the beta-exponential, Kumaraswamy-exponential and exponential distribution. 

We consider a data set of the life of fatigue fracture of Kevlar 373/epoxy that are 

subject to constant pressure at the 90% stress level until all had failed, so we have 

complete data with the exact times of failure. 

 

These data are: 

0.0251,0.0886,0.0891,0.2501,0.3113,0.3451,0.4763,0.5650,0.5671,0.6566,0.6748,0.6751,0.6753,0.7696,0.8375,

0.8391,0.8425,0.8645,0.8851,0.9113,0.9120,0.9836,1.0483,1.0596,1.0773,1.1733,1.2570,1.2766,1.2985,1.3211,

1.3503,1.3551,1.4595,1.4880,1.5728,1.5733,1.7083,1.7263,1.7460,1.7630,1.7746,1.8275,1.8375,1.8503,1.8808,

1.8878,1.8881,1.9316,1.9558,2.0048,2.0408,2.0903,2.1093,2.1330,2.2100,2.2460,2.2878,2.3203,2.3470,2.3513,

2.4951,2.5260,2.9911,3.0256,3.2678,3.4045,3.4846,3.7433,3.7455,3.9143,4.8073,5.4005,5.4435,5.5295,6.5541,

9.0960 
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Table 1. . Estimated parameters of the GOLLE, BE, KWE and exponential distribution for data set. 

Model ML Estimate Standard 

Error 

Log-

Likelihood 

LSE PS Estimator 

Generalized odd 

log-logistic 

exp.dist. 

Alpha=2.636 

theta= 0.453 

lambda= 0.155 

0.380 

0.114 

0.07 

120.752 2.697 

0.480 

0.170 

3.038 

0.356 

0.098 

Kumaraswamy 

Exponential 

a=1.556 

b=2.448 

Lambda=0.328 

0.401 

6.065 

0.691 

122.094 1.987 

2.228 

0.453 

1.520 

1.082 

0.598 

Beta 

Exponential 

a=1.679 

b=1.508 

Lambda=0.484 

0.374       

6.760 

1.981 

122.227 2.235 

1.558 

0.586 

1.520 

1.082 

0.598 

Exponential Lambda=0.510 0.058 127.114 0.981 0.926 

 

In order to compare the two distribution models, we consider criteria like Kolmogorov-Smirnov (K-S) statistics, 

−2ℓ, AIC (Akaike information criterion), and CAIC (corrected Akaike information criterion). Table 1 shows the 

MLEs under both distributions, Table 2 shows the values of KS, −2ℓ, AIC, AICC, and BIC values for the data 

set. The better distribution corresponds to smaller KS, −2ℓ, AIC and CAIC values. The values in Table 2 

indicate that the GOLLE leads to a better fit than the beta exponential, Kumaraswamy exponential and 

exponential distribution. 

 

Table 2. Criteria for comparison. 

Model   K-S         −2ℓ      AIC         CAIC         BIC 

GOLLE   0.0924  241.505 247.505   248.005    254.497 

Beta-E  0.0962   244.455   250.455   250.621   257.447 

Kw-E    0.0988   244.188   250.188   250.521    257.180 

Exp.      0.512    254.228  248.643     249.143  258.559 

 

The P-P plots, fitted distribution function and density functions of the considered models are plotted in Figures 4 

and 5, respectively, for the data set. 
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Figure 4. The P-P plots for the real data set 

 

Figure 5. Fitted pdf’s plots of the considered distribution for the real data set 

 

7. Conclusion 

In this article, we propose a new model, the so-called generalized odd log-logistic-exponential distribution which 

extends the exponential distribution in the analysis of data with real support. An obvious reason for generalizing 

a standard distribution is that the generalized form provides larger flexibility in modeling real data. We study 

shape of the probability density function, hazard rate function, quantile function order statistics, and moments.  

The estimation of parameters is approached by the method of maximum likelihood, maximum product spacing 

and least square estimators. The goodness-of-fits of the exponential, beta exponential, Kumaraswamy 

exponential and the generalized odd log-logistic-exponential distributions have been compared through the AIC, 

AICC, BIC and KS statistics and found that the generalized odd log-logistic-exponential distribution fits well the 

data. Finally, it is concluded that the generalized odd log-logistic-exponential distribution can be quit effectively 

used to model the real problems and so we can recommend the use of the generalized odd log-logistic-

exponential distribution in various fields of science.  
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